Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed QEI mbed-rtos
main.cpp
- Committer:
- kosaka
- Date:
- 2012-11-24
- Revision:
- 10:0984c90b820b
- Parent:
- 9:88d6270f95bc
- Child:
- 11:9747752435d1
File content as of revision 10:0984c90b820b:
// DC motor control program using H-bridge driver (ex. TA7291P) and 360 resolution rotary encoder with A, B phase.
// ver. 121124a by Kosaka lab.
#include "mbed.h"
#include "rtos.h"
#include "QEI.h"
#define PI 3.14159265358979 // def. of PI
/*********** User setting for control parameters (begin) ***************/
//#define SIMULATION // Comment this line if not simulation
#define USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0. Comment if use Vref=analog mode
#define PWM_FREQ 10000.0 //[Hz], pwm freq. available if USE_PWM is defined.
#define USE_CURRENT_CONTROL // Current control on. Comment if current control off.
#define CONTROL_MODE 0 // 0:PID control, 1:Frequency response, 2:Step response, 3. u=Rand to identify G(s), 4) FFT identification
#define DEADZONE_PLUS 1. // deadzone of plus side
#define DEADZONE_MINUS -1.5 // deadzone of minus side
#define GOOD_DATA // Comment this line if the length of data TMAX/TS2 > 1000
//#define R_SIN // Comment this line if r=step, not r = sin
float _freq_u = 0.3; // [Hz], freq. of Frequency response, or Step response
float _rmax=100./180.*PI; // [rad], max. of reference signal
float _Kp4th=20; // P gain for PID from motor volt. to angle.
float _Ki4th=20; // I gain for PID from motor volt. to angle.
float _Kd4th=5; // D gain for PID from motor volt. to angle.
float _Kp4i=10.0; // P gain for PID from motor volt. to motor current.
float _Ki4i=10.0; // I gain for PID from motor volt. to motor current.
float _Kd4i=0.0; // D gain for PID from motor volt. to motor current.
#define iTS 0.0001 // [s], iTS, sampling time[s] of motor current i control PID using timer interrupt
#define thTS 0.001 // [s], thTS>=0.001[s], sampling time[s] of motor angle th PID using rtos-timer
#define TS2 0.01 // [s], TS2>=0.001[s], sampling time[s] to save data to PC using thread. But, max data length is 1000.
#define TMAX 10 // [s], experiment starts from 0[s] to TMAX[s]
#define UMAX 3.3 // [V], max of control input u
#define UMIN -3.3 // [V], max of control input u
#define IMAX 0.5 // [A], max of motor current i
#define IMIN -0.5 // [A], max of motor current i
#define DEADTIME 0.0001 // [s], deadtime to be set between plus volt. to/from minus
// H bridge port setting
#define FIN_PORT p21 // FIN (IN1) port of mbed
#define RIN_PORT p22 // RIN (IN2) port of mbed
#define VREF_PORT p18 // Vref port of mbed (available if USE_PWM is not defined)
DigitalOut debug_p17(p17); // p17 for debug
AnalogIn v_shunt_r(p19); // *3.3 [V], Volt of shunt R_SHUNT[Ohm]. The motor current i = v_shunt_r/R_SHUNT [A]
#define R_SHUNT 1.25 // [Ohm], shunt resistanse
//AnalogIn VCC(p19); // *3.3 [V], Volt of VCC for motor
//AnalogIn VCC2(p20); // *3.3 [V], Volt of (VCC-R i), R=2.5[Ohm]. R is for preventing too much i when deadtime is failed.
#define N_ENC (24*4) // "*4": QEI::X4_ENCODING. Number of pulses in one revolution(=360 deg) of rotary encoder.
QEI encoder (p29, p30, NC, N_ENC, QEI::X4_ENCODING);
// QEI(PinName channelA, mbed pin for channel A input.
// PinName channelB, mbed pin for channel B input.
// PinName index, mbed pin for channel Z input. (index channel input Z phase th=0), (pass NC if not needed).
// int pulsesPerRev, Number of pulses in one revolution(=360 deg).
// Encoding encoding = X2_ENCODING, X2 is default. X2 uses interrupts on the rising and falling edges of only channel A where as
// X4 uses them on both channels.
// )
// void reset (void)
// Reset the encoder.
// int getCurrentState (void)
// Read the state of the encoder.
// int getPulses (void)
// Read the number of pulses recorded by the encoder.
// int getRevolutions (void)
// Read the number of revolutions recorded by the encoder on the index channel.
/*********** User setting for control parameters (end) ***************/
Serial pc(USBTX, USBRX); // Display on tera term in PC
LocalFileSystem local("local"); // save data to mbed USB disk drive in PC
//Semaphore semaphore1(1); // wait and release to protect memories and so on
//Mutex stdio_mutex; // wait and release to protect memories and so on
Ticker controller_ticker; // Timer interrupt using TIMER3, TS<0.001 is OK. Priority is higher than rtosTimer.
#ifdef USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0.
PwmOut FIN(FIN_PORT); // PWM for FIN, RIN=0 when forward rotation. H bridge driver PWM mode
PwmOut RIN(RIN_PORT); // PWM for RIN, FIN=0 when reverse rotation. H bridge driver PWM mode
#else // H bridge Vref=analog mode
DigitalOut FIN(FIN_PORT);// FIN for DC motor H bridge driver. FIN=1, RIN=0 then forward rotation
DigitalOut RIN(RIN_PORT);// RIN for DC motor H bridge driver. FIN=0, RIN=1 then reverse rotation
#endif
AnalogOut analog_out(VREF_PORT);// Vref for DC motor H bridge driver. DA converter for control input [0.0-1.0]% in the output range of 0.0 to 3.3[V]
unsigned long _count; // sampling number
float _time; // time[s]
float _r; // reference signal
float _th=0; // [rad], motor angle, control output of angle controller
float _i=0; // [A], motor current, control output of current controller
float _e=0; // e=r-y for PID controller
float _eI=0; // integral of e for PID controller
float _iref; // reference current iref [A], output of angle th_contorller
float _u; // control input[V], motor input volt.
float _ei=0; // e=r-y for current PID controller
float _eiI=0; // integral of e for current PID controller
unsigned char _f_u_plus=1;// sign(u)
unsigned char _f_umax=0;// flag showing u is max or not
unsigned char _f_imax=0;// flag showing i is max or not
float debug[10]; // for debug
float disp[10]; // for printf to avoid interrupted by quicker process
#ifdef GOOD_DATA
float data[1000][5]; // memory to save data offline instead of "online fprintf".
unsigned int count3; //
unsigned int count2=(int)(TS2/iTS); //
#endif
extern "C" void mbed_reset();
void u2Hbridge(float u){// input u to H bridge driver
float duty;
unsigned int f_deadtime, f_in, r_in;
if( u > 0 ){ // forward: rotate to plus
u += DEADZONE_PLUS; // deadzone compensation
duty = u/3.3; // Vref
if(_f_u_plus==0){ // if plus to/from minus, set FIN=RIN=0/1 for deadtime 100[us].
f_deadtime = 1; // deadtime is required
_f_u_plus=1;
}else{
f_deadtime = 0; // deadtime is required
}
f_in=1; r_in=0; // set forward direction
}else if( u < 0 ){ // reverse: rotate to minus
u += DEADZONE_MINUS;// deadzone compensation
duty = -u/3.3;
if(_f_u_plus==1){ // if plus to/from minus, set FIN=RIN=0/1 for deadtime 100[us].
f_deadtime = 1; // deadtime is required
_f_u_plus=0;
}else{
f_deadtime = 0; // deadtime is required
}
f_in=0; r_in=1; // set reverse direction
}else{// if( u == 0 ){ // stop mode
duty = 0;
f_deadtime = 0; // deadtime is required
f_in=0; r_in=0; // set FIN & RIN
}
if( f_deadtime==1 ){// making deadtime
FIN=0; RIN=0; // set upper&lower arm zero
wait(DEADTIME);
}
#ifdef USE_PWM // H bridge PWM mode: Vref=Vcc, FIN,2 = PWM or 0
FIN = duty*(float)f_in; RIN = duty*(float)r_in; // setting pwm FIN & RIN
analog_out = 1; // setting Vref=UMAX, but Vref=Vcc is better.
#else // Analog mode: Vref=analog, FIN, RIN = 1 or 0)
FIN = f_in; RIN = r_in; // setting FIN & RIN
analog_out = duty; // setting Vref : PID write DA, range is 0-1. Output voltage 0-3.3v
#endif
}
void th_controller(void const *argument) { // if rtos. current controller & velocity controller
float e_old, wt;
float y, u;
// y_old = _th; // y_old=y(t-TS) is older than y by 1 sampling time TS[s]. update data
#ifdef SIMULATION
y = _th + thTS/0.1*(0.2*_iref*100-_th); //=(1-TS/0.1)*_y + 0.2*TS/0.1*_iref; // G = 0.2/(0.1s+1)
#else
// semaphore1.wait(); //
y = (float)encoder.getPulses()/(float)N_ENC*2.0*PI; // get angle [rad] from encoder
// semaphore1.release(); //
#endif
#define RMIN 0
wt = _freq_u *2.0*PI*_time;
if(wt>2.0*PI){ wt -= 2.0*PI*(float)((int)(wt/(2.0*PI)));}
_r = sin(wt ) * (_rmax-RMIN)/2.0 + (_rmax+RMIN)/2.0;
//debug[0] =1;
#ifndef R_SIN
if( _r>=(_rmax+RMIN)/2.0 ) _r = _rmax;
else _r = 0;
#endif
e_old = _e; // e_old=e(t-TS) is older than e by 1 sampling time TS[s]. update data
_e = _r - y; // error e(t)
if( _e<((360.0/N_ENC)/180*PI) && _e>-((360.0/N_ENC)/180*PI) ){ // e is inside minimum precision?
_e = 0;
}
if( _f_imax==0 ){ // u is saturated?
// if( _e>((360.0/N_ENC)/180*PI) || _e<-((360.0/N_ENC)/180*PI) ){ // e is inside minimum precision?
_eI = _eI + thTS*_e; // integral of e(t)
// }
}
u = _Kp4th*_e + _Kd4th*(_e-e_old)/thTS + _Ki4th*_eI; // PID output u(t)
#if CONTROL_MODE==1||CONTROL_MODE==2 // frequency response, or Step response
wt = _freq_u *2.0*PI*_time;
if(wt>2*PI) wt -= 2*PI*(float)((int)(wt/2.0*PI));
u = sin(wt ) * (UMAX-UMIN)/2.0 + (UMAX+UMIN)/2.0;
#endif
#if CONTROL_MODE==2 // Step response
if( u>=0 ) u = UMAX;
else u = UMIN;
#endif
#if CONTROL_MODE==3 // u=rand() to identify motor transfer function G(s) from V to angle
if(count2==(int)(TS2/iTS)){
u = ((float)rand()/RAND_MAX*2.0-1.0) * (UMAX-1.5)/2.0 + (UMAX+1.5)/2.0;
}else{
u = _iref;
}
#endif
#if CONTROL_MODE==4 // FFT identification, u=repetive signal
if(count2==(int)(TS2/thTS)){
u = data[count3][4];
}else{
u = _iref;
}
#endif
// u is saturated? for anti-windup
if( u>IMAX ){
_eI -= (u-IMAX)/_Ki4th; if(_eI<0){ _eI=0;}
u = IMAX;
// _f_imax = 1;
} else if( u<IMIN ){
_eI -= (u-IMIN)/_Ki4th; if(_eI>0){ _eI=0;}
u = IMIN;
// _f_imax = 1;
}else{
_f_imax = 0;
}
//-------- update data
_th = y;
_iref = u;
}
void i_controller() { // if ticker. current controller & velocity controller
void u2Hbridge(float); // input u to H bridge (full bridge) driver
#ifdef USE_CURRENT_CONTROL
float e_old;
float y, u;
// _iref=_r*180/PI; // step response from v to i, useful to tune PID gains.
debug_p17 = 1; // for debug: processing time check
// if(debug_p17 == 1) debug_p17=0;else debug_p17=1; // for debug: sampling time check
_count+=1;
// current PID controller
y = v_shunt_r/R_SHUNT; // get i [A] from shunt resistance
if(_f_u_plus==0){ y=-y;}
e_old = _ei; // e_old=e(t-TS) is older than e by 1 sampling time TS[s]. update data
_ei = _iref - y; // error e(t)
if( _f_umax==0 ){
_eiI = _eiI + iTS*_ei; // integral of e(t)
}
u = _Kp4i*_e + _Kd4i*(_ei-e_old)/iTS + _Ki4i*_eiI; // PID output u(t)
// u is saturated? for anti-windup
if( u>UMAX ){
_eiI -= (u-UMAX)/_Ki4i; if(_eiI<0){ _eiI=0;}
u = UMAX;
// _f_umax = 1;
} else if( u<UMIN ){
_eiI -= (u-UMIN)/_Ki4i; if(_eiI>0){ _eiI=0;}
u = UMIN;
// _f_umax = 1;
}else{
_f_umax = 0;
}
//-------- update data
_i = y;
_u = u;
#else
_u = _iref; // without current control.
#endif
u2Hbridge(_u); // input u to TA7291 driver
//-------- update data
_time += iTS; // time
debug[0]=v_shunt_r; if(_f_u_plus==0){ debug[0]=-debug[0];}
#ifdef GOOD_DATA
if(count2==(int)(TS2/iTS)){
// j=0; if(_count>=j&&_count<j+1000){i=_count-j; data[i][0]=_r; data[i][1]=debug[0]; data[i][2]=_th; data[i][3]=_time; data[i][4]=_u;}
if( count3<1000 ){
data[count3][0]=_r; data[count3][1]=debug[0]; data[count3][2]=_th; data[count3][3]=_time; data[count3][4]=_u;
// data[count3][0]=_iref; data[count3][1]=debug[0]; data[count3][2]=_i; data[count3][3]=_time; data[count3][4]=_u;
count3++;
}
count2 = 0;
}
count2++;
#endif
//-------- update data
debug_p17 = 0; // for debug: processing time check
}
void main1() {
RtosTimer timer_controller(th_controller);
FILE *fp; // save data to PC
#ifdef GOOD_DATA
int i;
count3=0;
#endif
u2Hbridge(0); // initialize H bridge to stop mode
_count=0;
_time = 0; // time
_eI = _eiI = 0; // reset integrater
encoder.reset(); // set encoder counter zero
_th = (float)encoder.getPulses()/(float)N_ENC*2.0*PI; // get angle [rad] from encoder
_r = _r + _th;
// if( _r>2*PI ) _r -= _r-2*PI;
pc.printf("Control start!!\r\n");
if ( NULL == (fp = fopen( "/local/data.csv", "w" )) ){ error( "" );} // save data to PC
#ifdef USE_PWM
FIN.period( 1.0 / PWM_FREQ ); // PWM period [s]. Common to all PWM
#endif
controller_ticker.attach(&i_controller, iTS ); // Sampling period[s] of i_controller
timer_controller.start((unsigned int)(thTS*1000.)); // Sampling period[ms] of th controller
// for ( i = 0; i < (unsigned int)(TMAX/iTS2); i++ ) {
while ( _time <= TMAX ) {
// BUG!! Dangerous if TS2<0.1 because multi interrupt by fprintf is not prohibited! 1st aug of fprintf will be destroyed.
// fprintf returns before process completed.
//BUG fprintf( fp, "%8.2f, %8.4f,\t%8.1f,\t%8.2f\r\n", disp[3], disp[1], disp[0], tmp); // save data to PC (para, y, time, u)
//OK? fprintf( fp, "%f, %f, %f, %f, %f\r\n", _time, debug[0], debug[3], (_y/(2*PI)*360.0),_u); // save data to PC (para, y, time, u)
#ifndef GOOD_DATA
fprintf( fp, "%f, %f, %f, %f, %f\r\n", _r, debug[0], _th, _time, _u); // save data to PC (para, y, time, u)
#endif
Thread::wait((unsigned int)(TS2*1000.)); //[ms]
}
controller_ticker.detach(); // timer interrupt stop
timer_controller.stop(); // rtos timer stop
u2Hbridge(0); // initialize H bridge to stop mode
_eI = _eiI = 0; // reset integrater
#ifdef GOOD_DATA
for(i=0;i<1000;i++){ fprintf( fp, "%f, %f, %f, %f, %f\r\n", data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);} // save data to PC (para, y, time, u)
#endif
fclose( fp ); // release mbed USB drive
pc.printf("Control completed!!\r\n\r\n");
}
void thread_print2PC(void const *argument) {
while (true) {
pc.printf("%8.1f[s]\t%8.5f[V]\t%4d [deg]\t%8.2f\r\n", _time, _u, (int)(_th/(2*PI)*360.0), _r);//debug[0]*3.3/R_SHUNT); // print to tera term
Thread::wait(200);
}
}
void main2(void const *argument) {
#if CONTROL_MODE==0 // PID control
char f;
float val;
#endif
#if CONTROL_MODE==4 // FFT identification, u=repetive signal
int i, j;
float max_u;
#endif
while(true){
#if CONTROL_MODE==4 // FFT identification, u=repetive signal
max_u = 0;
for( i=0;i<1000;i++ ){ // u=data[i][4]: memory for FFT identification input signal.
data[i][4] = sin(_freq_u*2*PI * i*TS2); // _u_freq = 10/2 * i [Hz]
if( data[i][4]>max_u ){ max_u=data[i][4];}
}
for( j=1;j<50;j++ ){
for( i=0;i<1000;i++ ){
data[i][4] += sin((float)(j+1)*_freq_u*2*PI * i*TS2);
if( data[i][4]>max_u ){ max_u=data[i][4];}
}
}
for( i=0;i<1000;i++ ){
// data[i][4] *= UMAX/max_u;
data[i][4] = (data[i][4]/max_u+3)/4*UMAX;
}
#endif
main1();
#if CONTROL_MODE>=1 // frequency response, or Step response
pc.printf("Input u(t) Frequency[Hz]? (if 9, reset mbed)...");
pc.scanf("%f",&_freq_u);
pc.printf("%8.3f[Hz]\r\n", _freq_u); // print to tera term
if(_freq_u==9){ mbed_reset();}
#else // PID control
// #ifdef R_SIN
// pc.printf("Reference signal r(t) Frequency[Hz]?...");
// pc.scanf("%f",&_freq_u);
// pc.printf("%8.3f[Hz]\r\n", _freq_u); // print to tera term
// #endif
pc.printf("th-loop: Kp=%f, Ki=%f, Kd=%f, r=%f[deg], %f Hz\r\n",_Kp4th, _Ki4th, _Kd4th, _rmax*180./PI, _freq_u);
pc.printf(" i-loop: Kp=%f, Ki=%f, Kd=%f\r\n",_Kp4i, _Ki4i, _Kd4i);
pc.printf("Which number do you like to change?\r\n ... 0)no change, 1)Kp, 2)Ki, 3)Kd, 4)r(t) freq.[Hz], 5)r(t) amp.[deg].\r\n 6)iKp, 7)iKi, 8)iKd, 9)reset mbed ?");
f=pc.getc()-48; //int = char-48
pc.printf("\r\n Value?... ");
if(f>=1&&f<=8){ pc.scanf("%f",&val);}
pc.printf("%8.3f\r\n", val); // print to tera term
if(f==1){ _Kp4th = val;}
if(f==2){ _Ki4th = val;}
if(f==3){ _Kd4th = val;}
if(f==4){ _freq_u = val;}
if(f==5){ _rmax = val/180.*PI;}
if(f==6){ _Kp4i = val;}
if(f==7){ _Ki4i = val;}
if(f==8){ _Kd4i = val;}
if(f==9){ mbed_reset();}
pc.printf("th-loop: Kp=%f, Ki=%f, Kd=%f, r=%f[deg], %f Hz\r\n",_Kp4th, _Ki4th, _Kd4th, _rmax*180./PI, _freq_u);
pc.printf(" i-loop: Kp=%f, Ki=%f, Kd=%f\r\n",_Kp4i, _Ki4i, _Kd4i);
#endif
}
}
int main() {
// void main1();
Thread save2PC(main2,NULL,osPriorityBelowNormal);
Thread print2PC(thread_print2PC,NULL,osPriorityLow);
// osStatus set_priority(osPriority osPriorityBelowNormal );
// Priority of Thread (RtosTimer has no priority?)
// osPriorityIdle = -3, ///< priority: idle (lowest)--> then, mbed ERROR!!
// osPriorityLow = -2, ///< priority: low
// osPriorityBelowNormal = -1, ///< priority: below normal
// osPriorityNormal = 0, ///< priority: normal (default)
// osPriorityAboveNormal = +1, ///< priority: above normal
// osPriorityHigh = +2, ///< priority: high
// osPriorityRealtime = +3, ///< priority: realtime (highest)
// osPriorityError = 0x84 ///< system cannot determine priority or thread has illegal priority
}