Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- simontruelove
- Date:
- 2018-12-14
- Revision:
- 10:808cb9052f14
- Parent:
- 9:061600a6c750
- Child:
- 11:74eeb8871fe6
File content as of revision 10:808cb9052f14:
#include "mbed.h"
#include "QEI.h"
void Initialisation (void); //These voids are written after the main. They must be listed here too (functional prototypes).
void StepCW(void);
void Ph1(void);
void Ph12 (void);
void Ph2(void);
void Ph23 (void);
void Ph3(void);
void Ph34 (void);
void Ph4(void);
void Ph41 (void);
void GetChar (void);
void RPM (void);
void VelocityLoop (void);
Serial pc(USBTX, USBRX); // tx, rx - set up the Terraterm input from mbed
QEI wheel(p5, p6, p8, 800, QEI::X4_ENCODING); //code for quadrature encoder see QEI.h
Timer t; //timer used in RPM
PwmOut Phase1 (p23); //Pin and LED set up - originally standard pins but changed to PWM to enable speed control
PwmOut Phase2 (p24);
PwmOut Phase3 (p25);
PwmOut Phase4 (p26);
AnalogOut Aout(p18); //Used with multimeter to give a speed indicator 1mV = 1RPM
//DigitalIn Button1 (p11); //not used
//DigitalIn Button2 (p12); //not used
DigitalOut led1(LED1); //LEDs used to as very basic memmory for controlling the state machines
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);
DigitalOut SerialClock (p12); //ReadKType
DigitalIn DOut (p13); //ReadKType
DigitalOut cs1 (p14); //ReadKType
int StateA = 0; //State for first 2 revolutions (calibration of the index)
int StateB = 0; //All state machines after calibration use this state
//int StateC = 0;
int AdjCW = 0; //CW offset to adjust phase firing to give the fastest speed = used to calculate stateB
int AdjACW = 3; //ACW offset to adjust phase firing to give the fastest speed = used to calculate stateB
int TimePerClick = 0; //for calc of RPM
int TimePerRev = 0; //for calc of RPM
int RPS = 0; //for calc of RPMl;
int rpm = 0; //for calc of RPM
int SetPoint = 1000; //for adjusting the speed
int z = 80; //TimePerRev = TimePerClick * (800/z); 800 pulses per rev, PulseCount2_==80 for wheel.getwhoop_ flag. i.e. 10 points per reoluition for RPM calc.
int i = 0; //ReadKType
int Readout = 0; //ReadKType
char c; //keyboard cotrol GetChar
float duty = 0.5; //velocity loop: 1 = fastest, 0.96 = slowest. Below 0.96 the motor will not operate.
float diff = 0.0; //Velocity loop: diff = SetPoint - rpm;
float x=0.1; //x=time of square wave when 1 phase energised,
float y=0.04; //y=time of square wave when 2 phases energised
float temp = 0; //ReadKType
int main(void)
{
pc.baud(230400); //Set fastest baud rate
Phase1.period(0.00002); //period of 0.000002 = 2 microseconds (50kHz). Good balance of low and high speed performance.
Phase2.period(0.00002);
Phase3.period(0.00002);
Phase4.period(0.00002);
StepCW();
Initialisation();
wait(0.1);
t.start();
while(wheel.getRevolutions()<2) //Index Calibration
{
switch(StateA)
{
case 0:Ph1();break;
case 1:Ph1();break;
case 2:Ph12();break;
case 3:Ph12();break;
case 4:Ph2();break;
case 5:Ph2();break;
case 6:Ph23();break;
case 7:Ph23();break;
case 8:Ph3();break;
case 9:Ph3();break;
case 10:Ph34();break;
case 11:Ph34();break;
case 12:Ph4();break;
case 13:Ph4();break;
case 14:Ph41();break;
case 15:Ph41();break;
default:break;
}
if(wheel.getYay()==1) //PulseCount_==1, yay_=1;
{
StateA++;
wheel.ResetYay();
if (StateA>15)
{
StateA=0;
}
}
}
while(1)
{
while((led1 == 0) && (led2 == 0)) //If no command to operate
{
Aout = 0;
rpm = 0;
Phase1.write(0);
Phase2.write(0);
Phase3.write(0);
Phase4.write(0);
GetChar();
//StateB = wheel.getPulses()%16;
//StateC = (800+wheel.getPulses()+StateA+AdjCW)%16;
//pc.printf("StateA= %i, StateB= %i, StateC= %i, Pulses = %i\n\r", StateA, StateB, StateC, wheel.getPulses());
//pc.printf("0 StateB= %i, Pulses= %i, Revs= %i\r", StateB,wheel.getPulses(),wheel.getRevolutions());
}
while((wheel.getRevolutions()>1) && (wheel.getPulses()>0) && (led1==1)) //After Calibration, Prev CW movement, CW command
{
GetChar();
StateB = (wheel.getPulses()+StateA+AdjCW)%16;
//pc.printf("rpm = %i, Whoop = %i\n\r", rpm, wheel.getWhoop());
//pc.printf("StateB= %i\n\r", StateB);
//pc.printf("1 StateB= %i, Pulses= %i, Revs= %i\r", StateB,wheel.getPulses(),wheel.getRevolutions());
switch(StateB)
{
case 0:Ph1();break;
case 1:Ph1();break;
case 2:Ph12();break;
case 3:Ph12();break;
case 4:Ph2();break;
case 5:Ph2();break;
case 6:Ph23();break;
case 7:Ph23();break;
case 8:Ph3();break;
case 9:Ph3();break;
case 10:Ph34();break;
case 11:Ph34();break;
case 12:Ph4();break;
case 13:Ph4();break;
case 14:Ph41();break;
case 15:Ph41();break;
default:break;
}
if(wheel.getWhoop()==1) //PulseCount2_==80, whoop_=1;
{
RPM();
VelocityLoop();
}
}
while(wheel.getRevolutions()>1 && wheel.getPulses()<1 && (led1==1)) //After Calibration, Prev ACW movement, CW command
{
GetChar();
StateB = (800+wheel.getPulses()+StateA+AdjCW)%16;
//pc.printf("StateA= %i\r", StateA);
//pc.printf("2 StateB= %i, Pulses= %i, Revs= %i\r", StateB,wheel.getPulses(),wheel.getRevolutions());
switch(StateB)
{
case 0:Ph1();break;
case 1:Ph1();break;
case 2:Ph12();break;
case 3:Ph12();break;
case 4:Ph2();break;
case 5:Ph2();break;
case 6:Ph23();break;
case 7:Ph23();break;
case 8:Ph3();break;
case 9:Ph3();break;
case 10:Ph34();break;
case 11:Ph34();break;
case 12:Ph4();break;
case 13:Ph4();break;
case 14:Ph41();break;
case 15:Ph41();break;
default:break;
}
if(wheel.getWhoop()==1) //PulseCount2_==80, whoop_=1;
{
RPM();
VelocityLoop();
}
}
while((wheel.getRevolutions()>1) && (wheel.getPulses()>0) && (led2==1)) //After Calibration, Prev CW movement, ACW command
{
GetChar();
//StateB = (800+wheel.getPulses())%16;
StateB = (800+wheel.getPulses()+StateA+AdjACW)%16;
//pc.printf("StateA= %i\r", StateA);
//pc.printf("3 StateB= %i, Pulses= %i, Revs= %i \r", StateB,wheel.getPulses(),wheel.getRevolutions());
switch(StateB)
{
case 15:Ph41();break;
case 14:Ph41();break;
case 13:Ph4();break;
case 12:Ph4();break;
case 11:Ph34();break;
case 10:Ph34();break;
case 9:Ph3();break;
case 8:Ph3();break;
case 7:Ph23();break;
case 6:Ph23();break;
case 5:Ph2();break;
case 4:Ph2();break;
case 3:Ph12();break;
case 2:Ph12();break;
case 1:Ph1();break;
case 0:Ph1();break;
default:break;
}
if(wheel.getWhoop()==1) //PulseCount2_==80, whoop_=1;
{
RPM();
VelocityLoop();
}
}
while((wheel.getRevolutions()>1) && (wheel.getPulses()<1) && (led2==1)) //After Calibration, Prev ACW movement, ACW command
{
GetChar();
StateB = (800+wheel.getPulses()+StateA+AdjACW)%16;
//pc.printf("StateA= %i\r", StateA);
//pc.printf("4 StateB= %i, Pulses= %i, Revs= %i \r", StateB,wheel.getPulses(),wheel.getRevolutions());
switch(StateB)
{
case 15:Ph41();break;
case 14:Ph41();break;
case 13:Ph4();break;
case 12:Ph4();break;
case 11:Ph34();break;
case 10:Ph34();break;
case 9:Ph3();break;
case 8:Ph3();break;
case 7:Ph23();break;
case 6:Ph23();break;
case 5:Ph2();break;
case 4:Ph2();break;
case 3:Ph12();break;
case 2:Ph12();break;
case 1:Ph1();break;
case 0:Ph1();break;
default:break;
}
if(wheel.getWhoop()==1) //PulseCount2_==80, whoop_=1;
{
RPM();
VelocityLoop();
}
}
}
}
void StepCW(void) //Square wave switching
{
Ph1();
wait(x);
Ph12();
wait(y);
Ph2();
wait(x);
Ph23();
wait(y);
Ph3();
wait(x);
Ph34();
wait(y);
Ph4();
wait(x);
Ph41();
wait(y);
}
void Ph1(void)
{
Phase1.write(duty);
Phase2.write(0);
Phase3.write(0);
Phase4.write(0);
//wait(x);
//pc.printf("Phase 1 = %i\n\r", wheel.getPulses());
}
void Ph12 (void)
{
Phase1.write(duty);
Phase2.write(duty);
Phase3.write(0);
Phase4.write(0);
//wait(y);
}
void Ph2(void)
{
Phase1.write(0);
Phase2.write(duty);
Phase3.write(0);
Phase4.write(0);
//wait(x);
//pc.printf("Phase 2 = %i\n\r", wheel.getPulses());
}
void Ph23 (void)
{
Phase1.write(0);
Phase2.write(duty);
Phase3.write(duty);
Phase4.write(0);
//wait(y);
}
void Ph3(void)
{
Phase1.write(0);
Phase2.write(0);
Phase3.write(duty);
Phase4.write(0);
//wait(x);
//pc.printf("Phase 3 = %i\n\r", wheel.getPulses());
}
void Ph34 (void)
{
Phase1.write(0);
Phase2.write(0);
Phase3.write(duty);
Phase4.write(duty);
//wait(y);
}
void Ph4(void)
{
Phase1.write(0);
Phase2.write(0);
Phase3.write(0);
Phase4.write(duty);
//wait(x);
//pc.printf("Phase 4 = %i\n\r", wheel.getPulses());
}
void Ph41 (void)
{
Phase1.write(duty);
Phase2.write(0);
Phase3.write(0);
Phase4.write(duty);
//wait(y);
}
void Initialisation (void) //Turn everything off
{
Phase1.write(0);
Phase2.write(0);
Phase3.write(0);
Phase4.write(0);
led1 = 0;
led2 = 0;
led3 = 0;
led4 = 0;
wheel.ResetYay();
}
void GetChar (void) //read keyboard strikes with terraterm
{ if (pc.readable())
{
c = pc.getc();
if(c == 'z') //turn on led1 causes CW operation
{
led1 = !led1;
led2 = 0;
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c == 'x') //turn on led2 causes ACW operation
{
led1 = 0;
led2 = !led2 ;
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c == 'q') //Increases setpoint used in Velocity loop
{
//duty = duty + 0.0001;
SetPoint=SetPoint+10;
if (SetPoint >2200)
{
SetPoint = 2200;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c == 'a') //Decreases setpoint used in Velocity loop
{
//duty = duty - 0.0001;
SetPoint=SetPoint-10;
if (SetPoint <50)
{
SetPoint = 50;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c== 'o')
{
AdjCW = AdjCW+1;
if (AdjCW >15)
{
AdjCW = 0;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c== 'k')
{
AdjCW = AdjCW-1;
if (AdjCW <0)
{
AdjCW = 15;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c== 'p')
{
AdjACW = AdjACW+1;
if (AdjACW >15)
{
AdjACW = 0;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c== 'l')
{
AdjACW = AdjACW-1;
if (AdjACW <0)
{
AdjACW = 15;
}
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
if(c=='0')
{
pc.printf("%i, %.5f, %i, %i, %i \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
}
}
}
void RPM (void)
{
wheel.ResetWhoop(); //PulseCount2_==80, whoop_=1;
TimePerClick = (t.read_us()); //read timer in microseconds
t.reset(); //reset timer
TimePerRev = TimePerClick * (800/z); //z = 80 (PulseCount2_==80)
TimePerRev = TimePerRev / 1000; //
RPS = 10000000 / TimePerRev;
rpm = (RPS * 60)/10000;
Aout=((0.30303*rpm)/1000); // for 500 rpm (0.30303*500/1000)*3.3V = 0.500V
//if(rpm < 800)
//{
// AdjCW = 0;
// AdjACW = 3;
//}
//if(rpm > 799 and rpm < 2000)
//{
// AdjCW = 1;
// AdjACW = 2;
//}
//if(rpm >1999)
//{
// AdjCW = 2;
// AdjACW = 1;
//}
//pc.printf("rpm = %i\r", rpm);
//pc.printf("StateA= %i, StateB= %i, StateC= %i, Pulses = %i\n\r", StateA, StateB, StateC, wheel.getPulses());
}
void VelocityLoop (void)
{
diff = SetPoint - rpm; //difference between setpoint and the RPM measurement
duty = duty + (diff*0.00001); //duty is adjusted to speed up or slow down until difference = 0
if (duty > 1) //limits for duty. Motor will not operate below 0.96. 1 = max
{
duty = 1;
}
if (duty <0.01) //3A min duty 0.96, 6.5A min duty 0.4
{
duty = 0.01;
}
//pc.printf("%i, %.5f, %i, %i, %i \r", SetPoint, duty, AdjCW, AdjACW, rpm); //SetPoint = %i, rpm = %i\n\r", duty, SetPoint, rpm);
}