Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- simontruelove
- Date:
- 2019-01-25
- Revision:
- 15:12a4bbfa6de4
- Parent:
- 14:1eb49362a607
- Child:
- 16:e6c8df9960c6
File content as of revision 15:12a4bbfa6de4:
#include "mbed.h"
#include "QEI.h"
void Initialisation (void);                             //These voids are written after the main. They must be listed here too (functional prototypes).
void StepCW(void);
void Ph0(void);
void Ph1(void);
void Ph12 (void);
void Ph2(void);
void Ph23 (void);
void Ph3(void);
void Ph34 (void);
void Ph4(void);
void Ph41 (void);
void GetChar (void);
void RPM (void);
void VelocityLoop (void);
void ReadKType(void);
Serial pc(USBTX, USBRX);                                // tx, rx - set up the Terraterm input from mbed
QEI wheel(p5, p6, p8, 800, QEI::X4_ENCODING);           //code for quadrature encoder see QEI.h
Timer t;                                                //timer used in RPM
PwmOut      Phase1       (p21);                         //Pin and LED set up - originally standard pins but changed to PWM to enable speed control
PwmOut      Phase2       (p22);
PwmOut      Phase3       (p25);
PwmOut      Phase4       (p26);
DigitalOut      UnUsedPhase1 (p23);
DigitalOut      UnUsedPhase2 (p24);
//AnalogOut Aout(p18);                                    //Used with multimeter to give a speed indicator 1mV = 1RPM
//DigitalIn       Button1                 (p11);          //not used
//DigitalIn       Button2                 (p12);          //not used
DigitalOut      led1(LED1);                             //LEDs used to as very basic memmory for controlling the state machines
DigitalOut      led2(LED2);
DigitalOut      led3(LED3);
DigitalOut      led4(LED4);
DigitalOut      SerialClock (p12);                      //ReadKType
DigitalIn       DOut        (p13);                      //ReadKType
DigitalOut      cs1         (p14);                      //ReadKType
int StateA = 0;                                         //State for first 2 revolutions (calibration of the index)
int StateB  = 0;                                        //All state machines after calibration use this state
//int StateC = 0;
int AdjCW = 57;                                          //2 CW offset to adjust phase firing to give the fastest speed = used to calculate stateB
int AdjACW = 12;                                        //5 ACW offset to adjust phase firing to give the fastest speed = used to calculate stateB
int CW = 57;
int ACW = 12;
int TimePerClick = 0;                                   //for calc of RPM
int RPS = 0;                                            //for calc of RPM
int rpm = 0;                                            //for calc of RPM
int SetPoint = 1500;                                     //for adjusting the speed
int enc = 3200;
int s = enc/50;
int z = 3200;                                           //TimePerRev = TimePerClick * (800/z); 800 pulses per rev, PulseCount2_==800 for wheel.getwhoop_ flag. i.e. 10 points per reoluition for RPM calc.
int T = 80;                                             //Motor temp limit
int slowloop = 0;
     
char c;                                                 //keyboard cotrol GetChar
float duty   =   1;                                     //velocity loop: 1 = fastest, 0.96 = slowest. Below 0.96 the motor will not operate.
float diff = 0.0;                                       //Velocity loop: diff = SetPoint - rpm;
float AdjDiff = 0.0001;
float x=0.1;                                            //x=time of square wave when 1 phase energised, 
float TimePerRev = 0;                                     //for calc of RPM
float y=0.04;                                           //y=time of square wave when 2 phases energised
float temp = 0;                                         //ReadKType
int main(void) 
{   
    pc.baud(230400);                                    //Set fastest baud rate
    Phase1.period(0.00001);                             //period of 0.000002 = 2 microseconds (500kHz). Good balance of low and high speed performance.
    Phase2.period(0.00001);
    Phase3.period(0.00001);
    Phase4.period(0.00001);
    wait(0.1);
    t.start();
    SerialClock = 0;
    StepCW();
    Initialisation();
    
/*while(1)        
{
   
}
*/
while(wheel.getRevolutions()<2)                     //Index Calibration
   { 
        StateA = (wheel.getPulses()+25)%s;
        switch(StateA)
        {
            case 0:Ph1();break;//;pc.printf("1 Pulses= %i\n\r", wheel.getPulses());break;
            case 1:Ph1();break;
            case 2:Ph1();break;
            case 3:Ph1();break;
            case 4:Ph1();break;
            case 5:Ph1();break;
            case 6:Ph1();break;
            case 7:Ph1();break;
            case 8:Ph1();break;
            case 9:Ph1();break;
            case 10:Ph1();break;
            case 11:Ph1();break;
            case 12:Ph1();break;
            case 13:Ph1();break;
            case 14:Ph1();break;
            case 15:Ph1();break;
            case 16:Ph2();break;//;pc.printf("2 Pulses= %i\n\r", wheel.getPulses());break;
            case 17:Ph2();break;
            case 18:Ph2();break;
            case 19:Ph2();break;
            case 20:Ph2();break;
            case 21:Ph2();break;
            case 22:Ph2();break;
            case 23:Ph2();break;
            case 24:Ph2();break;
            case 25:Ph2();break;
            case 26:Ph2();break;
            case 27:Ph2();break;
            case 28:Ph2();break;
            case 29:Ph2();break;
            case 30:Ph2();break;
            case 31:Ph2();break;
            case 32:Ph3();break;//;pc.printf("3 Pulses= %i\n\r", wheel.getPulses());break;
            case 33:Ph3();break;
            case 34:Ph3();break;
            case 35:Ph3();break;
            case 36:Ph3();break;
            case 37:Ph3();break;
            case 38:Ph3();break;
            case 39:Ph3();break;
            case 40:Ph3();break;
            case 41:Ph3();break;
            case 42:Ph3();break;
            case 43:Ph3();break;
            case 44:Ph3();break;
            case 45:Ph3();break;
            case 46:Ph3();break;
            case 47:Ph3();break;
            case 48:Ph4();break;//;pc.printf("4 Pulses= %i\n\r", wheel.getPulses());break;
            case 49:Ph4();break;
            case 50:Ph4();break;
            case 51:Ph4();break;
            case 52:Ph4();break;
            case 53:Ph4();break;
            case 54:Ph4();break;
            case 55:Ph4();break;
            case 56:Ph4();break;
            case 57:Ph4();break;
            case 58:Ph4();break;
            case 59:Ph4();break;
            case 60:Ph4();break;
            case 61:Ph4();break;
            case 62:Ph4();break;
            case 63:Ph4();break;
            default:break; 
        } 
        if(wheel.getYay()==1)                           //PulseCount_==1, yay_=1;
        {
            StateA++;
            wheel.ResetYay();
            if (StateA>(s-1))
            {
                StateA=0;
            }
        } 
    }      
        
    while(1)
    { 
        while((led1 == 0) && (led2 == 0))               //If no command to operate
        {
            //Aout = 0;
            //duty = 0.5;        
            rpm = 0;
            AdjCW = CW;
            AdjACW = ACW;
            Ph0();
            GetChar();
            ReadKType();
            StateB = (wheel.getPulses()+StateA)%s;    //wheel.getPulses()%1(s-1);
            //StateC = (800+wheel.getPulses()+StateA+AdjCW)%s;
            //if(wheel.getPulses()==wheel.getPulses()+1);
            //{
                //pc.printf("B StateA= %i, Pulses= %i, Revs= %i\r", StateA,wheel.getPulses(),wheel.getRevolutions());
                //pc.printf("StateA= %i, StateB= %i, Pulses = %i                                  \r", StateA, StateB, wheel.getPulses());
            //}
            //pc.printf("0 StateB= %i, Pulses= %i, Revs= %i\r", StateB,wheel.getPulses(),wheel.getRevolutions());
        }
        while((wheel.getRevolutions()>1) && (wheel.getPulses()>0) && (led1==1) && (temp<T))     //After Calibration, Prev CW movement, CW command
        {
            GetChar();
            StateB = (wheel.getPulses()+StateA+AdjCW)%s;
            //pc.printf("rpm = %i, whoop = %i\n\r", rpm, wheel.getWhoop());
            //pc.printf("StateB= %i\n\r", StateB);
            //pc.printf("1 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            
            switch(StateB)
            {
                case 0:Ph1();break;
                case 1:Ph1();break;
                case 2:Ph1();break;
                case 3:Ph1();break;
                case 4:Ph1();break;
                case 5:Ph1();break;
                case 6:Ph1();break;
                case 7:Ph1();break;
                case 8:Ph1();break;
                case 9:Ph1();break;
                case 10:Ph1();break;
                case 11:Ph1();break;
                case 12:Ph1();break;
                case 13:Ph1();break;
                case 14:Ph1();break;
                case 15:Ph1();break;
                case 16:Ph2();break;
                case 17:Ph2();break;
                case 18:Ph2();break;
                case 19:Ph2();break;
                case 20:Ph2();break;
                case 21:Ph2();break;
                case 22:Ph2();break;
                case 23:Ph2();break;
                case 24:Ph2();break;
                case 25:Ph2();break;
                case 26:Ph2();break;
                case 27:Ph2();break;
                case 28:Ph2();break;
                case 29:Ph2();break;
                case 30:Ph2();break;
                case 31:Ph2();break;
                case 32:Ph3();break;
                case 33:Ph3();break;
                case 34:Ph3();break;
                case 35:Ph3();break;
                case 36:Ph3();break;
                case 37:Ph3();break;
                case 38:Ph3();break;
                case 39:Ph3();break;
                case 40:Ph3();break;
                case 41:Ph3();break;
                case 42:Ph3();break;
                case 43:Ph3();break;
                case 44:Ph3();break;
                case 45:Ph3();break;
                case 46:Ph3();break;
                case 47:Ph3();break;
                case 48:Ph4();break;
                case 49:Ph4();break;
                case 50:Ph4();break;
                case 51:Ph4();break;
                case 52:Ph4();break;
                case 53:Ph4();break;
                case 54:Ph4();break;
                case 55:Ph4();break;
                case 56:Ph4();break;
                case 57:Ph4();break;
                case 58:Ph4();break;
                case 59:Ph4();break;
                case 60:Ph4();break;
                case 61:Ph4();break;
                case 62:Ph4();break;
                case 63:Ph4();break;
                default:break; 
            } 
            /*if(wheel.getYay()==1)
            {
                pc.printf("1 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            }*/
            if(wheel.getWhoop()==1)             //PulseCount2_==800, whoop_=1;
            {
                RPM();
                VelocityLoop();
                slowloop++;
                if(slowloop>rpm)
                {
                    ReadKType();
                    slowloop=0;
                }
            }
        }
    
        while(wheel.getRevolutions()>1 && wheel.getPulses()<1 && (led1==1) && (temp<T))                     //After Calibration, Prev ACW movement, CW command
        {
            GetChar();
            StateB = (enc+wheel.getPulses()+StateA+AdjCW)%s;
            //pc.printf("StateA= %i\r", StateA);
            //pc.printf("2 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            
            switch(StateB)
            {
                case 0:Ph1();break;
                case 1:Ph1();break;
                case 2:Ph1();break;
                case 3:Ph1();break;
                case 4:Ph1();break;
                case 5:Ph1();break;
                case 6:Ph1();break;
                case 7:Ph1();break;
                case 8:Ph1();break;
                case 9:Ph1();break;
                case 10:Ph1();break;
                case 11:Ph1();break;
                case 12:Ph1();break;
                case 13:Ph1();break;
                case 14:Ph1();break;
                case 15:Ph1();break;
                case 16:Ph2();break;
                case 17:Ph2();break;
                case 18:Ph2();break;
                case 19:Ph2();break;
                case 20:Ph2();break;
                case 21:Ph2();break;
                case 22:Ph2();break;
                case 23:Ph2();break;
                case 24:Ph2();break;
                case 25:Ph2();break;
                case 26:Ph2();break;
                case 27:Ph2();break;
                case 28:Ph2();break;
                case 29:Ph2();break;
                case 30:Ph2();break;
                case 31:Ph2();break;
                case 32:Ph3();break;
                case 33:Ph3();break;
                case 34:Ph3();break;
                case 35:Ph3();break;
                case 36:Ph3();break;
                case 37:Ph3();break;
                case 38:Ph3();break;
                case 39:Ph3();break;
                case 40:Ph3();break;
                case 41:Ph3();break;
                case 42:Ph3();break;
                case 43:Ph3();break;
                case 44:Ph3();break;
                case 45:Ph3();break;
                case 46:Ph3();break;
                case 47:Ph3();break;
                case 48:Ph4();break;
                case 49:Ph4();break;
                case 50:Ph4();break;
                case 51:Ph4();break;
                case 52:Ph4();break;
                case 53:Ph4();break;
                case 54:Ph4();break;
                case 55:Ph4();break;
                case 56:Ph4();break;
                case 57:Ph4();break;
                case 58:Ph4();break;
                case 59:Ph4();break;
                case 60:Ph4();break;
                case 61:Ph4();break;
                case 62:Ph4();break;
                case 63:Ph4();break;
                default:break; 
            } 
            /*if(wheel.getYay()==1)
            {
                pc.printf("2 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            }*/
            if(wheel.getWhoop()==1)             //PulseCount2_==800, whoop_=1;
            {
                RPM();
                VelocityLoop();
                slowloop++;
                if(slowloop>rpm)
                {
                    ReadKType();
                    slowloop=0;
                }
            } 
        }
        while((wheel.getRevolutions()>1) && (wheel.getPulses()>0) && (led2==1) && (temp<T))                                 //After Calibration, Prev CW movement, ACW command
        {
            GetChar();
            //StateB = (800+wheel.getPulses())%16; 
            StateB = (wheel.getPulses()+StateA+AdjACW)%s;
            //pc.printf("StateA= %i\r", StateA);
            //pc.printf("3 StateB= %i, Pulses= %i, Revs= %i \n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            switch(StateB)
            {   
                case 63:Ph4();break;
                case 62:Ph4();break;
                case 61:Ph4();break;
                case 60:Ph4();break;
                case 59:Ph4();break;
                case 58:Ph4();break;
                case 57:Ph4();break;
                case 56:Ph4();break;
                case 55:Ph4();break;
                case 54:Ph4();break;
                case 53:Ph4();break;
                case 52:Ph4();break;
                case 51:Ph4();break;
                case 50:Ph4();break;
                case 49:Ph4();break;
                case 48:Ph4();break;
                case 47:Ph3();break;
                case 46:Ph3();break;
                case 45:Ph3();break;
                case 44:Ph3();break;
                case 43:Ph3();break;
                case 42:Ph3();break;
                case 41:Ph3();break;
                case 40:Ph3();break;
                case 39:Ph3();break;
                case 38:Ph3();break;
                case 37:Ph3();break;
                case 36:Ph3();break;
                case 35:Ph3();break;
                case 34:Ph3();break;
                case 33:Ph3();break;
                case 32:Ph3();break;
                case 31:Ph2();break;
                case 30:Ph2();break;
                case 29:Ph2();break;
                case 28:Ph2();break;
                case 27:Ph2();break;
                case 26:Ph2();break;
                case 25:Ph2();break;
                case 24:Ph2();break;
                case 23:Ph2();break;
                case 22:Ph2();break;
                case 21:Ph2();break;
                case 20:Ph2();break;
                case 19:Ph2();break;
                case 18:Ph2();break;
                case 17:Ph2();break;
                case 16:Ph2();break;
                case 15:Ph1();break;
                case 14:Ph1();break;
                case 13:Ph1();break;
                case 12:Ph1();break;
                case 11:Ph1();break;
                case 10:Ph1();break;
                case 9:Ph1();break;
                case 8:Ph1();break;
                case 7:Ph1();break;
                case 6:Ph1();break;
                case 5:Ph1();break;
                case 4:Ph1();break;
                case 3:Ph1();break;
                case 2:Ph1();break;
                case 1:Ph1();break;
                case 0:Ph1();break;
                default:break; 
            } 
            /*if(wheel.getYay()==1)
            {
                pc.printf("3 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            }*/
            if(wheel.getWhoop()==1)             //PulseCount2_==800, whoop_=1;
            {
                RPM();
                VelocityLoop();
                slowloop++;
                if(slowloop>rpm)
                {
                    ReadKType();
                    slowloop=0;
                }
            }
        }
        while((wheel.getRevolutions()>1) && (wheel.getPulses()<1) && (led2==1) &&(temp<T))                                 //After Calibration, Prev ACW movement, ACW command
        {
            GetChar();
            StateB = (enc+wheel.getPulses()+StateA+AdjACW)%s;
            //pc.printf("StateA= %i\r", StateA);
            //pc.printf("4 StateB= %i, Pulses= %i, Revs= %i \n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            switch(StateB)
            {
                case 63:Ph4();break;
                case 62:Ph4();break;
                case 61:Ph4();break;
                case 60:Ph4();break;
                case 59:Ph4();break;
                case 58:Ph4();break;
                case 57:Ph4();break;
                case 56:Ph4();break;
                case 55:Ph4();break;
                case 54:Ph4();break;
                case 53:Ph4();break;
                case 52:Ph4();break;
                case 51:Ph4();break;
                case 50:Ph4();break;
                case 49:Ph4();break;
                case 48:Ph4();break;
                case 47:Ph3();break;
                case 46:Ph3();break;
                case 45:Ph3();break;
                case 44:Ph3();break;
                case 43:Ph3();break;
                case 42:Ph3();break;
                case 41:Ph3();break;
                case 40:Ph3();break;
                case 39:Ph3();break;
                case 38:Ph3();break;
                case 37:Ph3();break;
                case 36:Ph3();break;
                case 35:Ph3();break;
                case 34:Ph3();break;
                case 33:Ph3();break;
                case 32:Ph3();break;
                case 31:Ph2();break;
                case 30:Ph2();break;
                case 29:Ph2();break;
                case 28:Ph2();break;
                case 27:Ph2();break;
                case 26:Ph2();break;
                case 25:Ph2();break;
                case 24:Ph2();break;
                case 23:Ph2();break;
                case 22:Ph2();break;
                case 21:Ph2();break;
                case 20:Ph2();break;
                case 19:Ph2();break;
                case 18:Ph2();break;
                case 17:Ph2();break;
                case 16:Ph2();break;
                case 15:Ph1();break;
                case 14:Ph1();break;
                case 13:Ph1();break;
                case 12:Ph1();break;
                case 11:Ph1();break;
                case 10:Ph1();break;
                case 9:Ph1();break;
                case 8:Ph1();break;
                case 7:Ph1();break;
                case 6:Ph1();break;
                case 5:Ph1();break;
                case 4:Ph1();break;
                case 3:Ph1();break;
                case 2:Ph1();break;
                case 1:Ph1();break;
                case 0:Ph1();break;
                default:break;
            } 
            /*if(wheel.getYay()==1)
            {
                pc.printf("4 StateB= %i, Pulses= %i, Revs= %i\n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            }*/
            if(wheel.getWhoop()==1)             //PulseCount2_==800, whoop_=1;
            {
                RPM();
                VelocityLoop();
                slowloop++;
                if(slowloop>rpm)
                {
                    ReadKType();
                    slowloop=0;
                }                
            }
        }
    while(temp>(T-1))
        {
            Initialisation();
            pc.printf("Motor Over Temp\n\r");
           while(1)
            {
               ReadKType();
               pc.printf("%f\r",temp); 
               wait(1);
               if(temp<T-20)               
               {
                pc.printf("Motor Back Online\n\r");
                break;
                }
                            }  
        }        
    }
}
void StepCW(void)                           //Square wave switching
{
        /*Ph1();
        wait(x);
        //pc.printf("1 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph12(); 
        wait(y);
        //pc.printf("12 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph2();
        wait(x);
        //pc.printf("2 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph23();
        wait(y);
        //pc.printf("23 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph3();
        wait(x);
        //pc.printf("3 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph34();
        wait(y);
        //pc.printf("34 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph4();
        wait(x);
        //pc.printf("4 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph41();
        wait(y); 
        //pc.printf("41 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        */
        Ph4();
        wait(x);
        //pc.printf("4 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph34(); 
        wait(y);
        //pc.printf("34 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph3();
        wait(x);
        //pc.printf("3 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph23();
        wait(y);
        //pc.printf("23 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph2();
        wait(x);
        //pc.printf("2 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph12();
        wait(y);
        //pc.printf("12 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph1();
        wait(x);
        //pc.printf("1 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());
        Ph41();
        wait(y); 
        //pc.printf("41 StateA= %i, Pulses= %i, Revs= %i\n\r", StateA,wheel.getPulses(),wheel.getRevolutions());          
}
void Ph0(void)
{
        Phase1.write(0);
        Phase2.write(0);
        Phase3.write(0);
        Phase4.write(0);                         
        //wait(x);
        //pc.printf("Phase 1 = %i\n\r", wheel.getPulses());   
}
void Ph1(void)
{
        Phase1.write(duty);
        Phase2.write(0);
        Phase3.write(0);
        Phase4.write(0);                         
        //wait(x);
        //pc.printf("Phase 1 = %i\n\r", wheel.getPulses());   
}
void Ph12 (void)
{
        Phase1.write(duty);
        Phase2.write(duty);
        Phase3.write(0);
        Phase4.write(0);
        //wait(y);
}
void Ph2(void)
{
        Phase1.write(0);
        Phase2.write(duty);
        Phase3.write(0);
        Phase4.write(0);
        //wait(x);
        //pc.printf("Phase 2 = %i\n\r", wheel.getPulses());
}
void Ph23 (void)
{
        Phase1.write(0);
        Phase2.write(duty);
        Phase3.write(duty);
        Phase4.write(0);
        //wait(y);
}
void Ph3(void)
{
        Phase1.write(0);
        Phase2.write(0);
        Phase3.write(duty);
        Phase4.write(0);
        //wait(x);
        //pc.printf("Phase 3 = %i\n\r", wheel.getPulses());
}
void Ph34 (void)
{
        Phase1.write(0);
        Phase2.write(0);
        Phase3.write(duty);
        Phase4.write(duty);
        //wait(y);
}
void Ph4(void)
{
        Phase1.write(0);
        Phase2.write(0);
        Phase3.write(0);
        Phase4.write(duty);
        //wait(x);
        //pc.printf("Phase 4 = %i\n\r", wheel.getPulses());
}
void Ph41 (void)
{
        Phase1.write(duty);
        Phase2.write(0);
        Phase3.write(0);
        Phase4.write(duty);
        //wait(y);
}
void Initialisation (void)                  //Turn everything off
{
    Phase1.write(0);
    Phase2.write(0);
    Phase3.write(0);
    Phase4.write(0);
    led1 = 0;
    led2 = 0;
    led3 = 0;
    led4 = 0;
    UnUsedPhase1=0;
    UnUsedPhase2=0;
    wheel.ResetYay();
    wheel.QEI::reset();
}
   
void GetChar (void)                                 //read keyboard strikes with terraterm
{    if (pc.readable())   
        {
            c = pc.getc();
            if(c == 'z')                            //turn on led1 causes CW operation
            {
                //AdjCW = 0;
                //AdjACW = 10;
                led1 = !led1;
                led2 = 0;
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);                
            }
            if(c == 'x')                            //turn on led2 causes ACW operation
            {
                //AdjCW = 0;
                //AdjACW = 10;
                led1 = 0;
                led2 = !led2 ;
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c == 'q')                            //Increases setpoint used in Velocity loop
            {
                //duty = duty + 0.0001;
                SetPoint=SetPoint+5;                
                if (SetPoint >3000)
               {
                   SetPoint = 3000;
               }
               pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);         
            }
            if(c == 'a')                            //Decreases setpoint used in Velocity loop
            {
                //duty = duty - 0.0001;
                SetPoint=SetPoint-5;                
                if (SetPoint <50)
               {
                   SetPoint = 50;
               }
               pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c == 'w')                            //Increases setpoint used in Velocity loop
            {
                duty = duty + 0.1;
                /*SetPoint=SetPoint+5;                
                if (SetPoint >2200)
               {
                   SetPoint = 2200;
               }*/
               pc.printf("%i, %.5f, %i, %i, %i, %f  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm, AdjDiff);         
            }
            if(c == 's')                            //Decreases setpoint used in Velocity loop
            {
                duty = duty - 0.1;
                /*SetPoint=SetPoint-5;                
                if (SetPoint <50)
               {
                   SetPoint = 50;
               }*/
            pc.printf("%i, %.5f, %i, %i, %i, %f  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm, AdjDiff);         
            }
            if(c == 'e')                            //Increases setpoint used in Velocity loop
            {
                AdjDiff = AdjDiff * 10;
                /*SetPoint=SetPoint+5;                
                if (SetPoint >2200)
               {
                   SetPoint = 2200;
               }*/
               pc.printf("%i, %.5f, %i, %i, %i, %f  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm, AdjDiff);         
            }
            if(c == 'd')                            //Decreases setpoint used in Velocity loop
            {
                AdjDiff = AdjDiff / 10;
                /*SetPoint=SetPoint-5;                
                if (SetPoint <50)
               {
                   SetPoint = 50;
               }*/
               pc.printf("%i, %.5f, %i, %i, %i, %f  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm, AdjDiff);
            }
            if(c== 'o')
            {   
                AdjCW = AdjCW+1;                
                if (AdjCW >(s-1))
                {
                    AdjCW = 0;
                }
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c== 'k')
            {   
                AdjCW = AdjCW-1;
                if (AdjCW <0)
                {
                    AdjCW = (s-1);
                }
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c== 'p')
            {   
                AdjACW = AdjACW+1;                
                if (AdjACW >(s-1))
                {
                    AdjACW = 0;
                }
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c== 'l')
            {   
                AdjACW = AdjACW-1;                
                if (AdjACW <0)
                {
                    AdjACW = (s-1);
                }
                pc.printf("%i, %.5f, %i, %i, %i  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm);
            }
            if(c=='0')
            {
                pc.printf("%i, %.5f, %i, %i, %i, %f  \n\r", SetPoint, duty, AdjCW, AdjACW, rpm, AdjDiff);
            }
            if(c=='t')
            {
                pc.printf("%.0f C\n\r",temp);                
            }
            if(c=='y')
            {
                pc.printf("3 StateB= %i, Pulses= %i, Revs= %i \n\r", StateB,wheel.getPulses(),wheel.getRevolutions());
            }
        }
}
void RPM (void)
{
    wheel.ResetWhoop();                         //PulseCount2_==400 x 4,  x4 encoding, whoop_=1;
    TimePerClick = (t.read_us());               //read timer in microseconds       
    t.reset();                                  //reset timer
    TimePerRev = enc * TimePerClick / z;    //z = 400 (PulseCount2_==1600)
    TimePerRev = TimePerRev / 1000000;          // 1microsecond = 0.000001s
    RPS = 1 / TimePerRev;                       //inverse to convert SPR to RPS
    rpm = RPS * 60;                             //x 60 to convert RPS to RPM
    //Aout=((0.30303*rpm)/1000);                // for 500 rpm (0.30303*500/1000)*3.3V = 0.500V   
    //ReadKType();
    if(rpm < 300)
    {
        AdjCW = 57;
        AdjACW = 12;
    }
    if(rpm > 299 && rpm <400)
    {
        AdjCW = 62;
        AdjACW = 7;
    }
    if(rpm > 399  and rpm < 525)
    {
        AdjCW = 63;
        AdjACW = 6;
    }
    if(rpm > 524  and rpm < 625)
    {
        AdjCW = 0;
        AdjACW = 5;
    }
    if(rpm > 624 and rpm < 725)
    {
        AdjCW = 1;
        AdjACW = 4;
    }
    if(rpm > 724 and rpm < 850)
    {
        AdjCW = 2;
        AdjACW = 3;
    }
    if(rpm > 849 and rpm < 975)
    {
        AdjCW = 3;
        AdjACW = 2;
    }
    if(rpm > 974 and rpm < 1150)
    {
        AdjCW = 4;
        AdjACW = 1;
    }              
    if(rpm > 1149 and rpm < 1375)
    {
        AdjCW = 5;
        AdjACW = 0;
    }
    if(rpm > 1374 and rpm < 1725)
    {
        AdjCW = 6;
        AdjACW = 63;
    }
    if(rpm > 1724 and rpm < 2150)
    {
        AdjCW = 7;
        AdjACW = 62;
    }
    if(rpm > 2149 and rpm < 2525)
    {
        AdjCW = 8;
        AdjACW = 61;
    }
    if(rpm > 2524 and rpm < 2600)
    {
        AdjCW = 9;
        AdjACW = 60;
    }
    if(rpm > 2599 and rpm < 2650)
    {
        AdjCW = 10;
        AdjACW = 59;
    }
    if(rpm > 2649 and rpm < 2700)
    {
        AdjCW = 11;
        AdjACW = 58;
    }
    if(rpm > 2699 and rpm < 2750)
    {
        AdjCW = 12;
        AdjACW = 57;
    }
    if(rpm > 2749 and rpm < 2825)
    {
        AdjCW = 13;
        AdjACW = 56;
    }
    if(rpm > 2824 and rpm < 2875)
    {
        AdjCW = 14;
        AdjACW = 55;
    }
    if(rpm > 2874)
    {
        AdjCW = 15;
        AdjACW = 54;
    }
    //pc.printf("RPS = %i      \r", RPS);
    //pc.printf("StateA= %i, StateB= %i, StateC= %i, Pulses = %i\n\r", StateA, StateB, StateC, wheel.getPulses());
}
void VelocityLoop (void)
{
    diff = SetPoint - rpm;                   //difference between setpoint and the RPM measurement
    duty = duty + (diff*AdjDiff);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0  
    /*if(duty > 0.8)
    {
        duty = duty + (diff*0.000001);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0  
    }
    if(0.5 < duty < 0.8)
    {
        duty = duty + (diff*0.005);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0  
    }
    if(duty < 0.5)
    {
        duty = duty + (diff*0.001);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0  
    }
    /*if(0 < rpm < 500)
    {
        duty = duty + (diff*0.0001);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }
    if(500 < rpm < 1000)
    {
        duty = duty + (diff*0.00008);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }
    if(1000 < rpm < 1500)
    {
        duty = duty + (diff*0.00006);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }
    if(1500 < rpm < 2000)
    {
        duty = duty + (diff*0.00004);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }
    if(2000 < rpm < 2500)
    {
        duty = duty + (diff*0.00002);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }
    if(2500 < rpm < 3000)
    {
        duty = duty + (diff*0.00001);           //0.00001 when change required at fast rpm. 0.001 when changes required at slow rpm. duty is adjusted to speed up or slow down until difference = 0     
    }*/
    if (duty > 1)                            //limits for duty. Motor will not operate below 0.96. 1 = max
    {
       duty = 1;
    }
    if (duty <0.1)                          //3A min duty 0.96, 6.5A min duty 0.4
    {
        duty = 0.1;
    }
    //pc.printf("%i, %.5f, %i, %i, %i  \r", SetPoint, duty, AdjCW, AdjACW, rpm);   //SetPoint = %i, rpm = %i\n\r", duty, SetPoint, rpm);
}
void ReadKType(void)
{
    int i = 0;
    int Readout = 0;
    cs1 = 0;
    SerialClock = 0;                    //set clock to 0
        wait_ms(1);
        SerialClock = 1;               //clock once to set to the 13 bit temp data 
    wait_ms(0.1);
    SerialClock = 0;
    wait_ms(0.1);
        
    for(i = 13; i > -1; i = i-1)    // now data is temp data where MSB is first and each count is worth 0.25 degrees 
    {
        if(DOut == 1)               //check data, store results in readout 
        {
            Readout |= (1<<i);
        }
        else
        {
            Readout |= (0<<i);
        }
      
        SerialClock = 1;                //clock to the next bit
        wait_ms(0.1);
        SerialClock = 0;
        wait_ms(0.1); 
    }
    temp = Readout * 0.125;                   //get the real temp value which is a float 
    //pc.printf("%f\n\r",temp);   
    Readout = 0; 
    cs1 = 1;
}