Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of workinQM_10thDec by
ACS.cpp
- Committer:
- Bragadeesh153
- Date:
- 2016-06-03
- Revision:
- 36:cc77770d787f
- Parent:
- 15:e09aaaccf134
File content as of revision 36:cc77770d787f:
/*------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/
#include <mbed.h>
#include <math.h>
#include "pni.h" //pni header file
#include "pin_config.h"
#include "ACS.h"
#include "EPS.h"
//********************************flags******************************************//
extern uint32_t BAE_STATUS;
extern uint32_t BAE_ENABLE;
extern uint8_t ACS_INIT_STATUS;
extern uint8_t ACS_DATA_ACQ_STATUS;
extern uint8_t ACS_ATS_STATUS;
extern uint8_t ACS_MAIN_STATUS;
extern uint8_t ACS_STATUS;
extern DigitalOut ATS1_SW_ENABLE; // enable of att sens2 switch
extern DigitalOut ATS2_SW_ENABLE; // enable of att sens switch
extern uint8_t ACS_ATS_ENABLE;
extern uint8_t ACS_DATA_ACQ_ENABLE;
extern uint8_t ACS_STATE;
DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod
DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod
DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod
extern PwmOut PWM1; //x //Functions used to generate PWM signal
extern PwmOut PWM2; //y
extern PwmOut PWM3; //z //PWM output comes from pins p6
int g_err_flag_TR_x=0; // setting x-flag to zero
int g_err_flag_TR_y=0; // setting y-flag to zero
int g_err_flag_TR_z=0; // setting z-flag to zero
extern float data[6];
extern BAE_HK_actual actual_data;
//DigitalOut gpo1(PTC0); // enable of att sens2 switch
//DigitalOut gpo2(PTC16); // enable of att sens switch
Serial pc_acs(USBTX,USBRX); //for usb communication
//CONTROL_ALGO
float moment[3]; // Unit: Ampere*Meter^2
float b_old[3]={1.15e-5,-0.245e-5,1.98e-5}; // Unit: Tesla
int flag_firsttime=1, controlmode, alarmmode=0;
void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode);
void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax);
float max_array(float arr[3]);
void inverse(float mat[3][3],float inv[3][3]);
//CONTROLALGO PARAMETERS
void FCTN_ACS_CNTRLALGO(float b[3],float omega[3])
{
float b1[3];
float omega1[3];
b1[0] = b[0]/1000000.0;
b1[1] = b[1]/1000000.0;
b1[2] = b[2]/1000000.0;
omega1[0] = omega[0]*3.14159/180;
omega1[1] = omega[1]*3.14159/180;
omega1[2] = omega[2]*3.14159/180;
controller (moment, b1, omega1, b_old, alarmmode, flag_firsttime, controlmode);
}
void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode)
{
float db1[3]; // Unit: Tesla/Second
float sampling_time=10; // Unit: Seconds. Digital Control law excuted once in 10 seconds
float MmntMax=1.1; // Unit: Ampere*Meter^2
float OmegaMax=1*3.1415/180.0; // Unit: Radians/Second
float normalising_fact;
float b1_copy[3], omega1_copy[3], db1_copy[3];
int i;
if(flag_firsttime==1)
{
for(i=0;i<3;i++)
{
db1[i]=0; // Unit: Tesla/Second
}
flag_firsttime=0;
}
else
{
for(i=0;i<3;i++)
{
db1[i]= (b1[i]-b_old[i])/sampling_time; // Unit: Tesla/Second
}
}
if(max_array(omega1)<(0.8*OmegaMax) && alarmmode==1)
{
alarmmode=0;
}
else if(max_array(omega1)>OmegaMax && alarmmode==0)
{
alarmmode=1;
}
for (i=0;i<3;i++)
{
b1_copy[i]=b1[i];
db1_copy[i]=db1[i];
omega1_copy[i]=omega1[i];
}
if(alarmmode==0)
{
controlmode=0;
controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
for (i=0;i<3;i++)
{
b1[i]=b1_copy[i];
db1[i]=db1_copy[i];
omega1[i]=omega1_copy[i];
}
if(max_array(moment)>MmntMax)
{
controlmode=1;
controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
for (i=0;i<3;i++)
{
b1[i]=b1_copy[i];
db1[i]=db1_copy[i];
omega1[i]=omega1_copy[i];
}
if(max_array(moment)>MmntMax)
{
normalising_fact=max_array(moment)/MmntMax;
for(i=0;i<3;i++)
{
moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
}
}
}
}
else
{
controlmode=1;
controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
for (i=0;i<3;i++)
{
b1[i]=b1_copy[i];
db1[i]=db1_copy[i];
omega1[i]=omega1_copy[i];
}
if(max_array(moment)>MmntMax)
{
normalising_fact=max_array(moment)/MmntMax;
for(i=0;i<3;i++)
{
moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
}
}
}
for (i=0;i<3;i++)
{
b_old[i]=b1[i];
}
}
void inverse(float mat[3][3],float inv[3][3])
{
int i,j;
float det=0;
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]);
}
}
det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]);
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
inv[i][j]/=det;
}
}
}
float max_array(float arr[3])
{
int i;
float temp_max=fabs(arr[0]);
for(i=1;i<3;i++)
{
if(fabs(arr[i])>temp_max)
{
temp_max=fabs(arr[i]);
}
}
return temp_max;
}
void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax)
{
float bb[3]={0,0,0};
float d[3]={0,0,0};
float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure
float den=0,den2;
float bcopy[3];
int i, j;//temporary variables
float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs
float invJm[3][3];
float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4,kdetumble=2000000;
int infflag; // Flag variable to check if the moment value is infinity or NaN
if(controlmode1==0)
{
den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2]));
den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]);
for(i=0;i<3;i++)
{
db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1)
}
for(i=0;i<3;i++)
{
b[i]/=den; // Mormalized b. Hence no unit.
}
if(b[2]>0.9 || b[2]<-0.9)
{
kz=kz2;
kmu=kmu2;
gamma=gamma2;
}
for(i=0;i<2;i++)
{
Mu[i]=b[i];
v[i]=-kmu*Mu[i];
dv[i]=-kmu*db[i];
z[i]=db[i]-v[i];
u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma);
}
inverse(Jm,invJm);
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]);
}
}
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
d[i]+=bb[j]*invJm[i][j];
}
}
bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]);
bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]);
bb[0]=0;
for(i=0;i<3;i++)
{
d[i]=invJm[2][i];
invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i];
invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i];
invJm[0][i]=b[i];
}
inverse(invJm,Jm);
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2
}
}
for(i=0;i<3;i++)
{
bcopy[i]=b[i]*den;
}
for(i=0;i<3;i++)
{
Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3];
Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2
}
infflag=0;
for (i=0; i<3 && infflag==0; i++)
{
if (isinf(Mmnt[i])==1 || isnan(Mmnt[i])==1)
infflag=1;
}
if (infflag==1)
{
for (i=0; i<3; i++)
Mmnt[i]=2*MmntMax;
}
}
else if(controlmode1==1)
{
for(i=0;i<3;i++)
{
Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2
}
}
for(i=0;i<3;i++)
{
moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2
}
}
I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl for the attitude sensors and battery gauge
int FCTN_ACS_INIT(); //initialization of registers happens
int SENSOR_INIT();
int FCTN_ATS_DATA_ACQ(); //data is obtained
int SENSOR_DATA_ACQ();
void T_OUT(); //timeout function to stop infinite loop
void CONFIG_UPLOAD();
Timeout to; //Timeout variable to
int toFlag;
int count =0; // Time for which the BAE uC is running (in seconds)
void T_OUT()
{
toFlag=0; //as T_OUT function gets called the while loop gets terminated
}
//DEFINING VARIABLES
char cmd[2];
char raw_gyro[6];
char raw_mag[6];
char store,status;
int16_t bit_data;
float gyro_data[3], mag_data[3],combined_values[6];
float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps
float senstivity_mag =32.768; //senstivity is obtained from 2^15/1000microtesla
float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0};
void CONFIG_UPLOAD()
{
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
wait_ms(600);
//Verify magic number
cmd[0]=HOST_CTRL; //0x02 is written in HOST CONTROL register to enable upload
cmd[1]=BIT_HOST_UPLD_ENB;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=UPLOAD_ADDR; //0x02 is written in HOST CONTROL register to enable upload
cmd[1]=0x0000;
i2c.write(SLAVE_ADDR,cmd,3);
wait_ms(100);
cmd[0]=HOST_CTRL; //0x00 is written in HOST CONTROL register to free upload
cmd[1]=0x00;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
}
int SENSOR_INIT()
{
pc_acs.printf("Entered sensor init\n \r");
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
wait_ms(800); //waiting for loading configuration file stored in EEPROM
cmd[0]=SENTRALSTATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&store,1);
wait_ms(100);
pc_acs.printf("Sentral Status is %x\n \r",(int)store);
//to check whether EEPROM is uploaded
switch((int)store) {
case(3): {
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(600);
break;
}
case(11): {
break;
}
default: {
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(600);
}
}
cmd[0]=SENTRALSTATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&store,1);
wait_ms(100);
pc_acs.printf("Sentral Status is %x\n \r",(int)store);
int manual=0;
if((int)store != 11)
{
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(600);
//manually upload
if(manual == 0)
{
return 0;
}
}
cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
cmd[1]=BIT_RUN_ENB;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
cmd[1]=BIT_MAGODR;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
cmd[1]=BIT_GYROODR;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
cmd[1]=0x00;
wait_ms(100);
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values
cmd[1]=0x00;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values
cmd[1]=BIT_EVT_ENB;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
pc_acs.printf("Exited sensor init successfully\n \r");
return 1;
}
int FCTN_ACS_INIT()
{
ACS_INIT_STATUS = 1; //set ACS_INIT_STATUS flag
if( (ATS1_SW_ENABLE!= 0 )&&(ATS2_SW_ENABLE!= 0 ) )
{
ATS2_SW_ENABLE = 1;
ATS1_SW_ENABLE = 0;
wait_ms(5);
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
}
int working=0;
pc_acs.printf("Attitude sensor init called \n \r");
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf("ATS Status & 0xC0 is %x\n\n \r",(int)(ACS_ATS_STATUS&0xC0));
pc_acs.printf("Sensor 1 condition is %d \n\n \r",(int)(( (ACS_ATS_STATUS & 0xC0) != 0xC0)&&( (ACS_ATS_STATUS & 0xC0) != 0x80)));
if(( (ACS_ATS_STATUS & 0xC0) != 0xC0)&&( (ACS_ATS_STATUS & 0xC0) != 0x80))
{
pc_acs.printf("Sensor 1 marked working \n \r");
working = SENSOR_INIT();
if(working ==1)
{
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 1\n \r");
ACS_INIT_STATUS = 0;
return 1;
}
pc_acs.printf("Sensor 1 not working.Powering off.\n \r");
ATS1_SW_ENABLE = 1;
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
}
pc_acs.printf("Sensor 1 not working. Trying Sensor 2\n \r");
if(( (ACS_ATS_STATUS & 0x0C) != 0x0C)&&( (ACS_ATS_STATUS & 0x0C) != 0x08))
{
ATS2_SW_ENABLE = 0;
wait_ms(5);
working = SENSOR_INIT();
if(working ==1)
{
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 2\n \r");
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
ACS_INIT_STATUS = 0;
return 2;
}
}
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf("Sensor 2 also not working.Exit init.\n \r");
ATS2_SW_ENABLE = 1;
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag
return 0;
}
int SENSOR_DATA_ACQ()
{
int mag_only=0;
pc_acs.printf("Entering Sensor data acq.\n \r");
char reg;
//int sentral;
int event;
int sensor;
int error;
int init;
cmd[0]=EVT_STATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&status,1);
wait_ms(100);
pc_acs.printf("Event Status is %x\n \r",(int)status);
event = (int)status;
cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
cmd[0]=MAG_XOUT_H; //LSB of x
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,raw_mag,6);
// pc_acs.printf("\nGyro Values:\n");
for(int i=0; i<3; i++) {
//concatenating gyro LSB and MSB to get 16 bit signed data values
bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i];
gyro_data[i]=(float)bit_data;
gyro_data[i]=gyro_data[i]/senstivity_gyro;
gyro_data[i]+=gyro_error[i];
// pc_acs.printf("%f\t",gyro_data[i]);
}
// pc_acs.printf("\nMag Values:\n");
for(int i=0; i<3; i++) {
//concatenating mag LSB and MSB to get 16 bit signed data values
bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
mag_data[i]=(float)bit_data;
mag_data[i]=mag_data[i]/senstivity_mag;
mag_data[i]+=mag_error[i];
//pc_acs.printf("%f\t",mag_data[i]);
}
for(int i=0; i<3; i++) {
// data[i]=gyro_data[i];
actual_data.AngularSpeed_actual[i] = gyro_data[i];
actual_data.Bvalue_actual[i] = mag_data[i];
//data[i+3]=mag_data[i];
}
//(event & 40 != 40 ) || (event & 08 != 08 ) || (event & 01 == 01 )|| (event & 02 == 02 )
if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 )) //check for any error
{
cmd[0]=RESETREQ;
cmd[1]=BIT_RESREQ;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(600);
cmd[0]=EVT_STATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&status,1);
wait_ms(100);
pc_acs.printf("Event Status after resetting is %x\n \r",(int)status);
if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 ))
{
// cmd[0]=SENTRALSTATUS;
// i2c.write(SLAVE_ADDR,cmd,1);
/// i2c.read(SLAVE_ADDR_READ,®,1);
// wait_ms(100);
// sentral = (int)reg;
cmd[0]=SENSORSTATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,®,1);
wait_ms(100);
sensor = (int)reg;
cmd[0]=ERROR;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,®,1);
wait_ms(100);
error = (int)reg;
if( error&128 == 128)
{
cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
cmd[1]=BIT_MAGODR;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
cmd[1]=BIT_GYROODR;
i2c.write(SLAVE_ADDR,cmd,2);
wait_ms(100);
cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
cmd[1]=0x00;
wait_ms(100);
cmd[0]=ERROR;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,®,1);
wait_ms(100);
error = (int)reg;
if( error&128 == 128)
{
pc_acs.printf("Rate error.Exiting.\n \r");
return 1;
}
}
if((error&16 == 16) || (error&32 == 32) || (sensor!=0))
{
if( (error&1 == 1) || (sensor&1 == 1) || (sensor&16 == 16) )
{
if( (error&4 == 4) || (sensor&4 == 4) || (sensor&64 == 64) )
{
pc_acs.printf("error in both sensors.Exiting.\n \r");
return 1;
}
pc_acs.printf("error in gyro alone.Exiting.\n \r");
return 2;
}
pc_acs.printf("error in something else.Exiting.\n \r");
return 1;
}
if(((int)status & 1 == 1 ))
{
pc_acs.printf("error in CPU Reset.calling init.\n \r");
init = SENSOR_INIT();
if(init == 0)
return 1;
cmd[0]=EVT_STATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&status,1);
wait_ms(100);
if(((int)status & 1 == 1 ))
{
pc_acs.printf("Still error in CPU Reset.Exiting.\n \r");
return 1;
}
pc_acs.printf("error in CPU Reset cleared.\n \r");
}
if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 )))
{
pc_acs.printf("Data not ready waiting...\n \r");
//POLL
wait_ms(1500);
cmd[0]=EVT_STATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&status,1);
wait_ms(100);
if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 )))
{
if((int)status & 32 != 32 )
{
if((int)status & 8 != 8 )
{
pc_acs.printf("Both data still not ready.Exiting..\n \r");
return 1;
}
pc_acs.printf("Mag data only ready.Read..\n \r");
mag_only = 1;
//return 2;
}
}
}
}
}
cmd[0]=EVT_STATUS;
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,&status,1);
wait_ms(100);
pc_acs.printf("Event Status is %x\n \r",(int)status);
//if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take
cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
cmd[0]=MAG_XOUT_H; //LSB of x
i2c.write(SLAVE_ADDR,cmd,1);
i2c.read(SLAVE_ADDR_READ,raw_mag,6);
// pc_acs.printf("\nGyro Values:\n");
for(int i=0; i<3; i++) {
//concatenating gyro LSB and MSB to get 16 bit signed data values
bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i];
gyro_data[i]=(float)bit_data;
gyro_data[i]=gyro_data[i]/senstivity_gyro;
gyro_data[i]+=gyro_error[i];
// pc_acs.printf("%f\t",gyro_data[i]);
}
// pc_acs.printf("\nMag Values:\n");
for(int i=0; i<3; i++) {
//concatenating mag LSB and MSB to get 16 bit signed data values
bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
mag_data[i]=(float)bit_data;
mag_data[i]=mag_data[i]/senstivity_mag;
mag_data[i]+=mag_error[i];
//pc_acs.printf("%f\t",mag_data[i]);
}
for(int i=0; i<3; i++) {
// data[i]=gyro_data[i];
actual_data.AngularSpeed_actual[i] = gyro_data[i];
actual_data.Bvalue_actual[i] = mag_data[i];
//data[i+3]=mag_data[i];
}
if(mag_only == 0)
{
pc_acs.printf("Reading data successful.\n \r");
return 0;
}
else if(mag_only == 1)
{
pc_acs.printf("Reading data partial success.\n \r");
return 2;
}
pc_acs.printf("Reading data success.\n \r");
return 0;
}
int FCTN_ATS_DATA_ACQ()
{
int acq;
pc_acs.printf("DATA_ACQ called \n \r");
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
// 0 success //1 full failure //2 partial failure
if(( (ACS_ATS_STATUS & 0xC0) == 0x40))
{
acq = SENSOR_DATA_ACQ();
if(acq == 0)
{
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf(" Sensor 1 data acq successful.Exit Data ACQ\n \r");
return 0;
}
else if(acq == 2)
{
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
pc_acs.printf(" Sensor 1 data partial success.Exiting.\n \r");
return 2;
/*if((ACS_ATS_STATUS & 0x0F == 0x00))
{
pc_acs.printf(" Sensor 1 data acq partial success.Trying Sensor 2\n \r");
ATS1_SW_ENABLE = 1;
ATS2_SW_ENABLE = 0;
wait_ms(5);
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x20;
int acq;
acq = SENSOR_DATA_ACQ();
if(acq == 0)
{
ACS_DATA_ACQ_STATUS = 0;
pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
return 0;
}
else if(acq == 2)
{
ACS_DATA_ACQ_STATUS = 2;
pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
return 2;
}
else if(acq == 1)
{
int acq;
pc_acs.printf(" Sensor 2 data acq failure.Go to sensor 1 again.\n \r");
ATS2_SW_ENABLE = 1;
ATS1_SW_ENABLE = 0;
wait_ms(5);
acq = SENSOR_DATA_ACQ();
if(acq == 0)
{
pc_acs.printf(" Sensor 1 data acq success.Exiting.\n \r");
ACS_DATA_ACQ_STATUS = 0;
return 0;
}
else if(acq == 2)
{
pc_acs.printf(" Sensor 1 data acq partial success.Exiting.\n \r");
ACS_DATA_ACQ_STATUS = 2;
return 2;
}
else
{
pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
ATS1_SW_ENABLE = 0;
ACS_DATA_ACQ_STATUS = 1;
return 1;
}
pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
ATS1_SW_ENABLE = 0;
ACS_DATA_ACQ_STATUS = 1;
return 1;
}
}
else
{
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
pc_acs.printf(" Sensor 1 data partial success.Sensor 2 marked not working.Exiting.\n \r");
return 2;
}*/
}
else if(acq == 1)
{
pc_acs.printf(" Sensor 1 data acq failure.Try sensor 2.\n \r");
ATS1_SW_ENABLE = 1;
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
}
}
ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
if(( (ACS_ATS_STATUS & 0x0C) == 0x04))
{
ATS2_SW_ENABLE = 0;
wait_ms(5);
acq = SENSOR_DATA_ACQ();
if(acq == 0)
{
pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2
return 0;
}
else if(acq == 2)
{
pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x04;
ACS_DATA_ACQ_STATUS = 2; //clear ACS_DATA_ACQ_STATUS flag for att sens 2
return 2;
}
else if(acq == 1)
{
pc_acs.printf(" Sensor 2 data acq failure.Exiting.\n \r");
ATS2_SW_ENABLE = 1;
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
//Sensor 2 also not working
}
}
pc_acs.printf(" Reading value from sensor 1 before exiting\n \r");
ATS1_SW_ENABLE = 0;
wait_ms(5);
SENSOR_DATA_ACQ();
ATS1_SW_ENABLE = 1;
wait_ms(5);
ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
pc_acs.printf(" Both sensors data acq failure.Exiting.\n \r");
ACS_DATA_ACQ_STATUS = 1; //set ACS_DATA_ACQ_STATUS flag for att sens 2
return 1;
}
void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
float l_duty_cycle_x=0; //Duty cycle of Moment in x direction
float l_current_x=0; //Current sent in x TR's
float l_duty_cycle_y=0; //Duty cycle of Moment in y direction
float l_current_y=0; //Current sent in y TR's
float l_duty_cycle_z=0; //Duty cycle of Moment in z direction
float l_current_z=0; //Current sent in z TR's
for(int i = 0 ; i<3;i++)
{
// printf(" %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs
}
//----------------------------- x-direction TR --------------------------------------------//
float l_moment_x = Moment[0]; //Moment in x direction
phase_TR_x = 1; // setting the default current direction
if (l_moment_x <0)
{
phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_x = abs(l_moment_x);
}
l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship
printf("current in trx is %f \r \n",l_current_x);
if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_x = 3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation
printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if (l_current_x >= 0.0016 && l_current_x < 0.0171)
{
l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if(l_current_x >= 0.0171 && l_current_x < 0.1678)
{
l_duty_cycle_x = 275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if(l_current_x==0)
{
printf("\n \r l_current_x====0");
l_duty_cycle_x = 0; // default value of duty cycle
printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else //not necessary
{
g_err_flag_TR_x = 1;
}
//------------------------------------- y-direction TR--------------------------------------//
float l_moment_y = Moment[1]; //Moment in y direction
phase_TR_y = 1; // setting the default current direction
if (l_moment_y <0)
{
phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_y = abs(l_moment_y);
}
l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship
printf("current in try is %f \r \n",l_current_y);
if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_y = 3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation
printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if (l_current_y >= 0.0016 && l_current_y < 0.0171)
{
l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if(l_current_y >= 0.0171 && l_current_y < 0.1678)
{
l_duty_cycle_y = 275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if(l_current_y==0)
{
printf("\n \r l_current_y====0");
l_duty_cycle_y = 0; // default value of duty cycle
printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else // not necessary
{
g_err_flag_TR_y = 1;
}
//----------------------------------------------- z-direction TR -------------------------//
float l_moment_z = Moment[2]; //Moment in z direction
phase_TR_z = 1; // setting the default current direction
if (l_moment_z <0)
{
phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_z = abs(l_moment_z);
}
l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship
printf("current in trz is %f \r \n",l_current_z);
if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_z = 3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation
printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if (l_current_z >= 0.0016 && l_current_z < 0.0171)
{
l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if(l_current_z >= 0.0171 && l_current_z < 0.1678)
{
l_duty_cycle_z = 275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if(l_current_z==0)
{
printf("\n \r l_current_z====0");
l_duty_cycle_z = 0; // default value of duty cycle
printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else // not necessary
{
g_err_flag_TR_z = 1;
}
//-----------------------------------------exiting the function-----------------------------------//
printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
}
/*void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
float l_duty_cycle_x=0; //Duty cycle of Moment in x direction
float l_current_x=0; //Current sent in x TR's
float l_duty_cycle_y=0; //Duty cycle of Moment in y direction
float l_current_y=0; //Current sent in y TR's
float l_duty_cycle_z=0; //Duty cycle of Moment in z direction
float l_current_z=0; //Current sent in z TR's
for(int i = 0 ; i<3;i++)
{
printf("pwm %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs
}
//----------------------------- x-direction TR --------------------------------------------//
float l_moment_x = Moment[0]; //Moment in x direction
phase_TR_x = 1; // setting the default current direction
if (l_moment_x <0)
{
phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_x = abs(l_moment_x);
}
l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship
pc_acs.printf("current in trx is %f \r \n",l_current_x);
if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_x = 6*1000000*pow(l_current_x,4) - 377291*pow(l_current_x,3) + 4689.6*pow(l_current_x,2) + 149.19*l_current_x - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation
pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if( l_current_x >= 0.006 && l_current_x < 0.0116)
{
l_duty_cycle_x = 1*100000000*pow(l_current_x,4) - 5*1000000*pow(l_current_x,3) + 62603*pow(l_current_x,2) - 199.29*l_current_x + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if (l_current_x >= 0.0116 && l_current_x < 0.0624)
{
l_duty_cycle_x = 212444*pow(l_current_x,4) - 33244*pow(l_current_x,3) + 1778.4*pow(l_current_x,2) + 120.91*l_current_x + 0.3878; // calculating upto 10% dutycycle by polynomial interpolation
pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if(l_current_x >= 0.0624 && l_current_x < 0.555)
{
l_duty_cycle_x = 331.15*pow(l_current_x,4) - 368.09*pow(l_current_x,3) + 140.43*pow(l_current_x,2) + 158.59*l_current_x + 0.0338; // calculating upto 100% dutycycle by polynomial interpolation
pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else if(l_current_x==0)
{
printf("\n \r l_current_x====0");
l_duty_cycle_x = 0; // default value of duty cycle
pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
PWM1.period(TIME_PERIOD);
PWM1 = l_duty_cycle_x/100 ;
}
else //not necessary
{
g_err_flag_TR_x = 1;
}
//------------------------------------- y-direction TR--------------------------------------//
float l_moment_y = Moment[1]; //Moment in y direction
phase_TR_y = 1; // setting the default current direction
if (l_moment_y <0)
{
phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_y = abs(l_moment_y);
}
l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship
pc_acs.printf("current in try is %f \r \n",l_current_y);
if( l_current_y>0 && l_current_y < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_y = 6*1000000*pow(l_current_y,4) - 377291*pow(l_current_y,3) + 4689.6*pow(l_current_y,2) + 149.19*l_current_y - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation
pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if( l_current_y >= 0.006 && l_current_y < 0.0116)
{
l_duty_cycle_y = 1*100000000*pow(l_current_y,4) - 5*1000000*pow(l_current_y,3) + 62603*pow(l_current_y,2) - 199.29*l_current_y + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if (l_current_y >= 0.0116&& l_current_y < 0.0624)
{
l_duty_cycle_y = 212444*pow(l_current_y,4) - 33244*pow(l_current_y,3) + 1778.4*pow(l_current_y,2) + 120.91*l_current_y + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if(l_current_y >= 0.0624 && l_current_y < 0.555)
{
l_duty_cycle_y = 331.15*pow(l_current_y,4) - 368.09*pow(l_current_y,3) + 140.43*pow(l_current_y,2) + 158.59*l_current_y + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else if(l_current_y==0)
{
printf("\n \r l_current_y====0");
l_duty_cycle_y = 0; // default value of duty cycle
pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
PWM2.period(TIME_PERIOD);
PWM2 = l_duty_cycle_y/100 ;
}
else // not necessary
{
g_err_flag_TR_y = 1;
}
//----------------------------------------------- z-direction TR -------------------------//
float l_moment_z = Moment[2]; //Moment in z direction
phase_TR_z = 1; // setting the default current direction
if (l_moment_z <0)
{
phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high
l_moment_z = abs(l_moment_z);
}
l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship
pc_acs.printf("current in trz is %f \r \n",l_current_z);
if( l_current_z>0 && l_current_z < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
{
l_duty_cycle_z = 6*1000000*pow(l_current_z,4) - 377291*pow(l_current_z,3) + 4689.6*pow(l_current_z,2) + 149.19*l_current_z - 0.0008;// calculating upto 0.1% dutycycle by polynomial interpolation
pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if( l_current_z >= 0.006 && l_current_z < 0.0116)
{
l_duty_cycle_z = 1*100000000*pow(l_current_z,4) - 5*1000000*pow(l_current_z,3) + 62603*pow(l_current_z,2) - 199.29*l_current_z + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if (l_current_z >= 0.0116 && l_current_z < 0.0624)
{
l_duty_cycle_z = 212444*pow(l_current_z,4) - 33244*pow(l_current_z,3) + 1778.4*pow(l_current_z,2) + 120.91*l_current_z + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if(l_current_z >= 0.0624 && l_current_z < 0.555)
{
l_duty_cycle_z = 331.15*pow(l_current_z,4) - 368.09*pow(l_current_z,3) + 140.43*pow(l_current_z,2) + 158.59*l_current_z + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else if(l_current_z==0)
{
printf("\n \r l_current_z====0");
l_duty_cycle_z = 0; // default value of duty cycle
pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
PWM3.period(TIME_PERIOD);
PWM3 = l_duty_cycle_z/100 ;
}
else // not necessary
{
g_err_flag_TR_z = 1;
}
//-----------------------------------------exiting the function-----------------------------------//
printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
}*/
