Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of workinQM_10thDec by
main.cpp
- Committer:
- lakshya
- Date:
- 2016-07-14
- Revision:
- 49:61c9f28332ba
- Parent:
- 48:9fd15e3e0b53
- Child:
- 50:6001287f3045
File content as of revision 49:61c9f28332ba:
#include "mbed.h"
#include "rtos.h"
#include "pin_config.h"
#include "ACS.h"
#include "EPS.h"
#include "BCN.h"
Serial pc(USBTX,USBRX);
#include "TCTM.h"
#define tm_len 134
#define tc_len 135
#define batt_heat_low 20
#define print 1
#define PRINT2 1
#define baby 1
#define baby2 1
#define SBC 1
Timer timer_FCTN_ACS_GENPWM_MAIN;
Timer timer_FCTN_ACS_CNTRLALGO;
Timer timer_FCTN_BAE_INIT;
Timer timer_FLASH_INI;
Timer timer_FCTN_ACS_INIT;
Timer timer_FCTN_EPS_INIT;
Timer timer_FCTN_BCN_INIT;
Timer timer_F_ACS;
Timer timer_FCTN_ATS_DATA_ACQ;
extern Timer timer_SENSOR_INIT;
extern Timer timer_CONFIG_UPLOAD;
extern Timer timer_SENSOR_DATA_ACQ;
extern Timer timer_controlmodes;
Timer timer_F_ESP;
Timer timer_minMaxHkData;
Timer timer_FCTN_APPEND_HKDATA;
Timer timer_FCTN_EPS_HANDLE_CDMS_FAULT;
Timer timer_FCTN_EPS_HANDLE_HW_FAULTS;
Timer timer_FCTN_HK_MAIN;
Timer timer_FCTN_BATTERYGAUGE_MAIN;
Timer timer_FCTN_BATT_TEMP_SENSOR_MAIN;
extern Timer timer_alertFlags;
extern Timer timer_soc;
extern Timer timer_FCTN_BATTERYGAUGE_INIT;
Timer timer_F_BCN;
Timer timer_FCTN_BCN_TX_MAIN;
extern Timer timer_Init_BEACON_HW;
extern Timer timer_Set_BCN_TX_STATUS_DISABLED;
extern Timer timer_Set_BCN_TX_STATUS_SUSPENDED;
extern Timer timer_Set_BCN_TX_STATUS_RF_SILENCE;
extern Timer timer_Set_BCN_TX_STATUS_SUCCESS;
extern Timer timer_Set_BCN_TX_STATUS_FAILURE;
#define DISABLE_WDOG 0;
void kick_WDOG()
{
SIM->SRVCOP=0x55;
SIM->SRVCOP=0xAA;
printf("\n\rkicked");
}
void init_WDOG()
{
SIM->COPC=0x0C;
kick_WDOG();
}
DigitalOut time_wdog(PIN68,0);// for determining the time between code
//**********************************************GLOBAL RTOS TIMER*********************************************************//
RtosTimer *BAE_STANDBY_STATUS_TIMER;
//bcn heater rtostimers=============================================================================
RtosTimer *HTR_OFF=NULL;
RtosTimer *HTR_CYCLE=NULL;
RtosTimer *HTR_DLY=NULL;
//UPTIME TIMERS
Timer BAE_uptime;
Timer I2C_last;
void RETURN_UPTIME(float time, uint8_t *day,uint8_t *hour,uint8_t *min)
{
*day = time/(3600*24);
time = (int)time % (3600*24);
*hour = time/(3600);
time = (int)time % (3600);
*min = time/60;
}
extern DigitalOut BTRY_HTR_ENABLE;
int eps_btg_read_flag; // flag to check I2C ack on reading from BTG
int eps_btg_writ_flag; // flag to check I2C ack on writing from BTG
uint8_t HTR_CYCLE_COUNTS=0; //Count of heater cycles
uint8_t HTR_CYCLE_START_DLY=0; //EPS_HTR_DLY_TIMER timer duration in minutes
uint8_t HTR_ON_DURATION=0; //EPS_HTR_OFF timer duration in minutes
uint16_t HTR_CYCLE_PERIOD =0; //EPS_HTR_CYCLE timer duration - MSB minutes, LSB seconds
uint8_t HTR_CYCLE_COUNTER = 0 ;
uint32_t HTR_CYCLE_PERIOD_DECODER() //To convert HTR_CYCLE_PERIOD to millisecs
{
uint8_t PERIOD_mins, PERIOD_secs;
//pc.printf("\n\r FCTN_HTR_CYCLE_PERIOD");
PERIOD_secs = HTR_CYCLE_PERIOD;
PERIOD_mins = HTR_CYCLE_PERIOD >> 8;
uint32_t period = 1000*((int)PERIOD_mins * 60 + (int)PERIOD_secs);
return period;
}
void FCTN_EPS_HTR_CYCLE(void const *arg)
{
BTRY_HTR_ENABLE = 1;//assuming its active high check
//pc.printf("\n\r on kar diya");
//pc.printf("\n\r FCTN_EPS_HTR_CYCLE");
//tim.reset();
//tim.start();
//HTR_OFF->start(((uint32_t)HTR_ON_DURATION)*1000);
HTR_OFF->start((int)HTR_ON_DURATION*60*1000);
}
void FCTN_EPS_HTR_DLY(void const* arg)
{
BTRY_HTR_ENABLE = 1;
HTR_CYCLE_COUNTER = 0;
HTR_OFF->start(((int)HTR_ON_DURATION*60*1000));
//pc.printf("\n\r on kar diya");
//pc.printf("\n\r FCTN_EPS_HTR_DLY");
//tim.start();
HTR_CYCLE->start((uint32_t)HTR_CYCLE_PERIOD_DECODER);
}
void FCTN_EPS_HTR_OFF(void const *arg)
{
BTRY_HTR_ENABLE = 0;
//tim.stop();
//pc.printf("\n\r off kar diya");
//pc.printf("\n\r the timer value is %f",tim.read());
//tim.reset();
if(HTR_CYCLE_COUNTS != 0xFF)
{
HTR_CYCLE_COUNTER++;
if( HTR_CYCLE_COUNTER == (int)HTR_CYCLE_COUNTS)//HTR_CYCLE_COUNTS )
HTR_CYCLE->stop();
}
}
//====================================================================================================
//fctn to pass the data to bcn long type
//uint8_t CDMS_HK_data[134]; now implemented as LONG_HK_data[0][134];
uint8_t LONG_HK_data[2][134];
void FCTN_CDMS_HK_TC(uint8_t tc[])
{
for(int i=0;i<134;i++)
LONG_HK_data[0][i] = tc[i];
}
uint8_t BAE_STANDBY=0x00;// as Bcn Acs Eps last three bits BAE order , 1 refer to switch off.
void BAE_STANDBY_STATUS_RESET(const void* arg)
{
printf("\n\rBAE standby reset to 0x00");
BAE_STANDBY=0x00;
}
/*no problem in first stopping and then starting even when for the first time*/
void BAE_STANDBY_TIMER_RESET()
{
BAE_STANDBY_STATUS_TIMER->stop();
BAE_STANDBY_STATUS_TIMER->start(30000);//20 min ie 20*60=1200 sec or 1200,000 milisec but for testing setting it to 30sec
}
extern void gen_I_TM();
//*************** FLAGS ****************************//
uint32_t BAE_STATUS = 0x00000000;
uint32_t BAE_ENABLE = 0xFFFFFFFF;
//i2c//
char data_send_flag = 'h';
//uint8_t BAE_MNG_I2C_STATUS = 0;
//BAE
uint8_t BAE_INIT_STATUS=0;
uint8_t BAE_MNG_I2C_STATUS=0;
//ACS
uint8_t ACS_INIT_STATUS = 0;
uint8_t ACS_DATA_ACQ_STATUS = 0;
uint8_t ACS_ATS_STATUS = 0x73;
uint8_t ACS_MAIN_STATUS = 0;
uint8_t ACS_STATUS = 0;
uint8_t ACS_DETUMBLING_ALGO_TYPE = 0;
uint8_t ACS_ATS_ENABLE = 1;
uint8_t ACS_DATA_ACQ_ENABLE = 1;
uint8_t ACS_STATE = 3;
extern uint16_t ACS_MM_X_COMSN;
extern uint16_t ACS_MM_Y_COMSN;
extern uint16_t ACS_MG_X_COMSN;
extern uint16_t ACS_MG_Y_COMSN;
extern uint16_t ACS_MM_Z_COMSN;
extern uint16_t ACS_MG_Z_COMSN;
extern uint8_t controlmode_mms;
extern uint8_t B_SCZ_ANGLE;
//BCN
extern uint8_t BCN_FEN;
extern void FCTN_BCN_FEN(void const *args);
extern void LONG_BCN_DATA(uint8_t* );
extern uint16_t gencrc16_for_me();//for calculating the crc of baehk data before sendingkk as including crc causes problem
extern DigitalOut BTRY_HTR_ENABLE;
Timeout timeout_bcn;
/*long beacon data/sending*/
/*be sure it is created in bcn.cpp*/
//EPS
uint8_t EPS_INIT_STATUS = 0;
uint8_t EPS_BATTERY_GAUGE_STATUS = 0;
uint8_t EPS_MAIN_STATUS = 0;
uint8_t EPS_BTRY_TMP_STATUS = 0;/// to be diss
uint8_t EPS_STATUS = 7; //invalid status
uint8_t EPS_BTRY_HTR = 0;
uint8_t EPS_BTRY_HTR_AUTO = 1;
extern uint8_t EPS_SOC_LEVEL_12;
extern uint8_t EPS_SOC_LEVEL_23;
extern uint8_t EPS_BAT_TEMP_LOW;
extern uint8_t EPS_BAT_TEMP_HIGH;
extern uint8_t EPS_BAT_TEMP_DEFAULT;
float EPS_BTRY_TMP_AVG;
extern DigitalOut BTRY_HTR_ENABLE;
//extern void FCTN_BATTERYGAUGE_MAIN(float*Battery_parameters);
//**********************GLOBAL DECLARATIONS********************************//
//CDMS
//eps cdms fault
uint8_t CDMS_SW_STATUS;
DigitalIn CDMS_OC_FAULT(PIN79);
bool CDMS_SW_ENABLE;
int CDMS_FAULT_COUNTER = 0;
//BAE new hk structure- everything has to changed based on this
char BAE_chardata[74];
// uint8_t LONG_HK_data[2][134];
//uint8_t BAE_HK_data[134]; now known as LONG_HK_data[1][i];
uint8_t BAE_RESET_COUNTER;// INITIALIZATION or do you want to initialize evertime the main is reset? or is it same
uint16_t BAE_I2C_COUNTER = 0;//change/apply
//uint8_t BAE_STANDBY=0x00;// as Bcn Acs Eps last three bits BAE order , 1 refer to switch off.
//BCN
//uint16_t BCN_TX_MAIN_COUNTER = 0;
uint8_t BCN_LONG_MSG_TYPE = 1;
DigitalIn BCN_TX_OC_FAULT(PIN80);
int BCN_TX_FAULT_COUNTER;
//ACS
uint16_t ACS_MAIN_COUNTER = 0;
//eps hw faults
//uint8_t ACS_TR_Z_SW_STATUS;
DigitalOut ACS_TR_Z_ENABLE(PIN40);
DigitalIn ACS_TR_Z_OC_FAULT(PIN91);
DigitalIn ACS_TR_Z_FAULT(PIN89); //Driver IC fault
int ACS_TR_Z_FAULT_COUNTER = 0;
#if SBC
InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS
DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS
#endif
#if !SBC
InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS
DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS
#endif
//uint8_t ACS_TR_XY_SW_STATUS;
DigitalOut ACS_TR_XY_ENABLE(PIN71);
DigitalIn ACS_TR_XY_OC_FAULT(PIN72);
DigitalIn ACS_TR_XY_FAULT(PIN83); //Driver IC fault
int ACS_TR_XY_FAULT_COUNTER = 0;
//bool ACS_ATS1_ENABLE;
DigitalIn ACS_ATS1_OC_FAULT(PIN5);
int ACS_TS1_FAULT_COUNTER = 0;
//bool ACS_ATS2_ENABLE;
DigitalIn ACS_ATS2_OC_FAULT(PIN97);
int ACS_ATS2_FAULT_COUNTER;
//EPS
int EPS_MAIN_COUNTER = 0;
//GEN DEC FOR TESTING or to be DECIDED whre to ASSIGN HERE
const int addr = 0x20; //slave address
Timer t_rfsilence;
Timer t_start;
/*defined as of now to check execution time*/
/*remember to remove them*/
Timer t_acs;
Timer t_eps;
//Timer t_tc;
Timer t_tm;
int power_flag_dummy=2;
float data[6];
//*************EXTERN PARA********
//BAE
extern BAE_HK_actual actual_data;
extern BAE_HK_quant quant_data;
extern BAE_HK_min_max bae_HK_minmax;
extern BAE_HK_arch arch_data;
//BCN
extern uint8_t BCN_FEN;
extern uint8_t BCN_TX_SW_STATUS;
extern uint8_t BCN_SPND_TX;
//TCTM
extern uint8_t telemetry[tm_len];
//ACS
extern uint8_t ACS_TR_Z_SW_STATUS;
extern uint8_t ACS_TR_XY_SW_STATUS;
extern float gyro_data[3];
extern float mag_data[3];
extern float moment[3];
extern float b_old[3]; // Unit: Tesla
extern float db[3];
extern uint8_t flag_firsttime;
extern uint8_t ACS_MAG_TIME_DELAY;
extern uint8_t ACS_DEMAG_TIME_DELAY;
extern uint16_t ACS_Z_FIXED_MOMENT;
int write_ack;
int read_ack;
char telecommand[tc_len];
bool pf1check = 0;
bool pf2check = 0;
bool if1check = 0;
bool if2check = 0;
//ASSIGNING PINS//
DigitalOut ATS1_SW_ENABLE(PTC0); // enable of att sens2 switch
DigitalOut ATS2_SW_ENABLE(PTC16); // enable of att sens switch
////InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS
////DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS
I2CSlave slave (PIN1,PIN2);///pin1 pin2
//DigitalOut batt_heat(PIN96);
//ATS1_SW_ENABLE = 0;
PwmOut PWM1(PIN93); //x //Functions used to generate PWM signal
PwmOut PWM2(PIN94); //y
PwmOut PWM3(PIN95); //z //PWM output comes from pins p6
//........faults
//Polled Faults
//DigitalIn pf1(PIN5);//Attitude Sensor 1 OC bar fault signal
//DigitalIn pf2(PIN97);//Attitude Sensor 2 OC bar fault signal
//DigitalIn pf3(PIN83);//Fault Bar for TRXY driver
DigitalOut TRXY_SW(PIN71,1); //TR XY Switch
DigitalOut DRV_Z_EN(PIN88); //Sleep pin of driver z
DigitalOut TRZ_SW(PIN40,1); //TR Z Switch
DigitalOut CDMS_RESET(PIN7,1); // CDMS RESET
DigitalOut BCN_SW(PIN14,0); //Beacon switch
DigitalOut DRV_XY_EN(PIN82);
//================================================================================
//default flash array some filler bits added (detail in MMS file)
uint32_t ARR_INITIAL_VAL[8]={0x73582600,0x505A4141,0x1A1A1400,0x00000000,0x00000000,0x00000000,0xCBA20000,0x00000000};//to be done
void FLASH_INI()
{
uint32_t read[8];
for(int i=0;i<8;i++)
{
read[i] = FCTN_BAE_RD_FLASH_ENTITY(i);
//printf("\n\r val is read after starting %x ",read[i]);
}
if(read[0] == -1)
for(int j=0;j<8;j++)
{
FCTN_BAE_WR_FLASH(j,ARR_INITIAL_VAL[j]);
ACS_ATS_STATUS = ARR_INITIAL_VAL[0]>>24;
ACS_TR_XY_SW_STATUS = ((uint8_t)(ARR_INITIAL_VAL[0]>>22))&0x03;
ACS_TR_Z_SW_STATUS = (ARR_INITIAL_VAL[0]>>20)&0x03;
ACS_STATE = (ARR_INITIAL_VAL[0]>>16)&0x0F;
//pc.pc.printf("\n\r acs state in starting is %x",ACS_STATE);
ACS_DETUMBLING_ALGO_TYPE = (ARR_INITIAL_VAL[0]>>15)&0x01;
BCN_TX_SW_STATUS = ((uint8_t)(ARR_INITIAL_VAL[0]>>13))&0x03;
BCN_SPND_TX = ((uint8_t)(ARR_INITIAL_VAL[0]>>12))&0x01;
BCN_FEN = ((uint8_t)(ARR_INITIAL_VAL[0]>>11))&0x01;
BCN_LONG_MSG_TYPE = ((uint8_t)(ARR_INITIAL_VAL[0]>>10))&0x01;
EPS_BTRY_HTR_AUTO = ((uint8_t)(ARR_INITIAL_VAL[0]>>9))&0x03;//EPS_BATTERY_HEATER_ENABLE
//now one spares in telemetry[5]
//updating the reset counter
BAE_RESET_COUNTER = ((uint8_t)(ARR_INITIAL_VAL[0]));
EPS_SOC_LEVEL_12 = (uint8_t)(ARR_INITIAL_VAL[1]>>24);
EPS_SOC_LEVEL_23 = (uint8_t)(ARR_INITIAL_VAL[1]>>16);
ACS_MAG_TIME_DELAY = (uint8_t)(ARR_INITIAL_VAL[1]>>8);
ACS_DEMAG_TIME_DELAY = (uint8_t)ARR_INITIAL_VAL[1];
EPS_BAT_TEMP_LOW = (uint8_t)(ARR_INITIAL_VAL[2]>>24);
EPS_BAT_TEMP_HIGH = (uint8_t)(ARR_INITIAL_VAL[2]>>16);
EPS_BAT_TEMP_DEFAULT = (uint8_t)(ARR_INITIAL_VAL[2]>>8);
ACS_MM_X_COMSN = (uint16_t)(ARR_INITIAL_VAL[3]>>16);
ACS_MM_Y_COMSN = (uint16_t)ARR_INITIAL_VAL[3];
ACS_MG_X_COMSN = (uint16_t)(ARR_INITIAL_VAL[4]>>16);
ACS_MG_Y_COMSN = (uint16_t)ARR_INITIAL_VAL[4];
ACS_MM_Z_COMSN = (uint16_t)(ARR_INITIAL_VAL[5]>>16);
ACS_MG_Z_COMSN = (uint16_t)ARR_INITIAL_VAL[5];
ACS_Z_FIXED_MOMENT = (uint16_t)(ARR_INITIAL_VAL[6]>>16);//assignvalues
}
else
{
for(int j=0;j<8;j++)
{
read[j] = FCTN_BAE_RD_FLASH_ENTITY(j);
}
ACS_ATS_STATUS = read[0]>>24;
ACS_TR_XY_SW_STATUS = ((uint8_t)(read[0]>>22))&0x03;
ACS_TR_Z_SW_STATUS = (read[0]>>20)&0x03;
ACS_STATE = (read[0]>>16)&0x0F;
//pc.printf("\n\r acs state in starting is %x",ACS_STATE);
ACS_DETUMBLING_ALGO_TYPE = (read[0]>>15)&0x01;
BCN_TX_SW_STATUS = ((uint8_t)(read[0]>>13))&0x03;
BCN_SPND_TX = ((uint8_t)(read[0]>>12))&0x01;
BCN_FEN = ((uint8_t)(read[0]>>11))&0x01;
BCN_LONG_MSG_TYPE = ((uint8_t)(read[0]>>10))&0x01;
EPS_BTRY_HTR_AUTO = ((uint8_t)(read[0]>>9))&0x01;//EPS_BATTERY_HEATER_ENABLE
//now one spares in telemetry[5]
//updating the reset counter
BAE_RESET_COUNTER = ((uint8_t)(read[0]))+1;
read[0]=(read[0]&0xffffff00) | (uint32_t)BAE_RESET_COUNTER;
FCTN_BAE_WR_FLASH(0,read[0]);
pc.printf("\n\r reset counter %d",BAE_RESET_COUNTER);
EPS_SOC_LEVEL_12 = (uint8_t)(read[1]>>24);
EPS_SOC_LEVEL_23 = (uint8_t)(read[1]>>16);
ACS_MAG_TIME_DELAY = (uint8_t)(read[1]>>8);
ACS_DEMAG_TIME_DELAY = (uint8_t)read[1];
EPS_BAT_TEMP_LOW = (uint8_t)(read[2]>>24);
EPS_BAT_TEMP_HIGH = (uint8_t)(read[2]>>16);
EPS_BAT_TEMP_DEFAULT = (uint8_t)(read[2]>>8);
ACS_MM_X_COMSN = (uint16_t)(read[3]>>16);
ACS_MM_Y_COMSN = (uint16_t)read[3];
ACS_MG_X_COMSN = (uint16_t)(read[4]>>16);
ACS_MG_Y_COMSN = (uint16_t)read[4];
ACS_MM_Z_COMSN = (uint16_t)(read[5]>>16);
ACS_MG_Z_COMSN = (uint16_t)read[5];
ACS_Z_FIXED_MOMENT = (uint16_t)(read[6]>>16);//assignvalues
}
}
//================================================================================
/*****************************************************************Threads USed***********************************************************************************/
Thread *ptr_t_i2c;
/*********************************************************FCTN HEADERS***********************************************************************************/
void FCTN_ISR_I2C();
void FCTN_TM();
void F_ACS();
void F_EPS();
void F_BCN();
//I2C
uint32_t pdir_tc1,pdir_tc2,pdir_tm1,pdir_tm2,pdir_ss1,pdir_ss2;//variables used to verify i2c working
uint16_t crc16_check;
void I2C_busreset()
{
PORTE->PCR[1] &= 0xfffffffb;
PORTE->PCR[0] &= 0xfffffffb;
I2C1->C1 &= 0x7f;
SIM->SCGC4 &= 0xffffff7f;
SIM->SCGC4 |= 0x00000080;
I2C1->C1 |= 0x80;
PORTE->PCR[1] |= 0x00000004;
PORTE->PCR[0] |= 0x00000004;
wait_ms(1);
}
//*******************************************ACS THREAD**************************************************//
uint8_t iterP1;
uint8_t iterP2;
uint8_t iterI1;
uint8_t iterI2;
//FLOAT TO UINT_8 CONVERSION FUNCTION
extern uint8_t float_to_uint8(float min,float max,float val);
//#define print 0
void F_ACS()
{
ACS_MAIN_COUNTER++;
//time_wdog = 1;
pc.printf("Entered ACS.\n\r");
ACS_MAIN_STATUS = 1; //set ACS_MAIN_STATUS flag
//FLAG();
PWM1 = 0; //clear pwm pins
PWM2 = 0; //clear pwm pins
PWM3 = 0; //clear pwm pins
wait_ms(ACS_DEMAG_TIME_DELAY);
ACS_DATA_ACQ_STATUS = (uint8_t) FCTN_ATS_DATA_ACQ();
//#if print
//printing the angular speed and magnetic field values
pc.printf("gyro values\n\r");
for(int i=0; i<3; i++)
{
pc.printf("%f\n\r",actual_data.AngularSpeed_actual[i]);
}
pc.printf("mag values\n\r");
for(int i=0; i<3; i++)
{
pc.printf("%f\n\r",actual_data.Bvalue_actual[i]);
}
//#endif
for(int i=0;i<3;i++)
{
mag_data[i] = actual_data.Bvalue_actual[i]/1000000;
gyro_data[i] = actual_data.AngularSpeed_actual[i]*3.14159/180;
}
int b_inclination = mag_data[2]/sqrt(mag_data[0]*mag_data[0]+mag_data[1]*mag_data[1]+mag_data[2]*mag_data[2]);
if(b_inclination <0)
{
b_inclination = (-1)*b_inclination;
}
B_SCZ_ANGLE = (uint8_t)b_inclination;
if( b_inclination >= 16)
{
B_SCZ_ANGLE = 0x0F;
}
if(b_inclination <=0)
{
B_SCZ_ANGLE = 0x00;
}
if(ACS_STATE == 0) // check ACS_STATE = ACS_CONTROL_OFF?
{
#if print
pc.printf("\n\r acs control off\n");
#endif
ACS_STATUS = 0; // set ACS_STATUS = ACS_CONTROL_OFF
ACS_MAIN_STATUS = 0;
return;
}
else if((actual_data.power_mode<=2)&&( (ACS_STATE&0x80) != 0x80))
{
#if print
pc.printf("\n\r Low Power \n\r");
#endif
DRV_Z_EN = 0;
DRV_XY_EN = 0;
ACS_STATUS = 1; // set ACS_STATUS = ACS_LOW_POWER
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_TR_Z_SW_STATUS != 1)
{
DRV_Z_EN = 0;
DRV_XY_EN = 0;
ACS_STATUS = 2; // set ACS_STAUS = ACS_TRZ_DISABLED
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_TR_XY_SW_STATUS != 1)
{
DRV_Z_EN = 1;
DRV_XY_EN = 0;
ACS_STATUS = 3; // set ACS_STAUS = ACS_TRXY_DISABLED , Z axis only
moment[0] = 0;
moment[1] = 0;
moment[2] = ACS_Z_FIXED_MOMENT; // is a dummy value
//timer_FCTN_ACS_GENPWM_MAIN.start();
FCTN_ACS_GENPWM_MAIN(moment) ;
//timer_FCTN_ACS_GENPWM_MAIN.stop();
//pc.printf("\n\r the timer_FCTN_ACS_GENPWM_MAIN is %f",timer_FCTN_ACS_GENPWM_MAIN.read());
ACS_MAIN_STATUS = 0;
return;
}
else if((ACS_DATA_ACQ_STATUS == 0)||(ACS_DATA_ACQ_STATUS == 1))
{
DRV_Z_EN = 1;
DRV_XY_EN = 0;
ACS_STATUS = 3; // set Set ACS_STATUS = ACS_DATA_ACQN_FAILURE , Z axis only
moment[0] = 0;
moment[1] = 0;
moment[2] = ACS_Z_FIXED_MOMENT; // is a dummy value
//timer_FCTN_ACS_GENPWM_MAIN.start();
FCTN_ACS_GENPWM_MAIN(moment) ;
//timer_FCTN_ACS_GENPWM_MAIN.stop();
//pc.printf("\n\r the timer_FCTN_ACS_GENPWM_MAIN is %f",timer_FCTN_ACS_GENPWM_MAIN.read());
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_STATE == 1)
{
DRV_Z_EN = 1;
DRV_XY_EN = 0;
ACS_STATUS = 3; // set ACS_STAUS = ACS_TRXY_DISABLED by ACS_STATE i.e Z axis only
moment[0] = 0;
moment[1] = 0;
moment[2] = ACS_Z_FIXED_MOMENT; // 1.3 is a dummy value
FCTN_ACS_GENPWM_MAIN(moment) ;
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_DATA_ACQ_STATUS == 2) // MM only is available
{
DRV_Z_EN = 1;
DRV_XY_EN = 1;
ACS_STATUS = 4; // set Set ACS_STATUS = ACS_BDOT_CONTROL
ACS_DETUMBLING_ALGO_TYPE = 0x01;
FCTN_ACS_CNTRLALGO(moment,mag_data,gyro_data,0x00,0x01,ACS_DETUMBLING_ALGO_TYPE);
controlmode_mms=0x00;
#if print
pc.printf("\n\r Moment values returned by control algo \n");
#endif
for(int i=0; i<3; i++)
{
pc.printf("%f\t",moment[i]);
}
FCTN_ACS_GENPWM_MAIN(moment) ;
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_STATE == 2) // Nominal mode
{
#if print
pc.printf("\n\r Nominal mode \n");
#endif
DRV_Z_EN = 1;
DRV_XY_EN = 1;
//timer_FCTN_ACS_CNTRLALGO.start();
FCTN_ACS_CNTRLALGO(moment,mag_data,gyro_data,0x01,0x00,ACS_DETUMBLING_ALGO_TYPE);
//timer_FCTN_ACS_CNTRLALGO.stop();
//pc.printf("\n\r the timer_FCTN_ACS_GENPWM_MAIN is %f",timer_FCTN_ACS_CNTRLALGO.read());
controlmode_mms = 0x01;
#if print
pc.printf("\n\r Moment values returned by control algo \n");
#endif
for(int i=0; i<3; i++)
{
pc.printf("%f\t",moment[i]);
}
//timer_FCTN_ACS_GENPWM_MAIN.start();
FCTN_ACS_GENPWM_MAIN(moment) ;
//timer_FCTN_ACS_GENPWM_MAIN.stop();
//pc.printf("\n\r the timer_FCTN_ACS_CNTRLALGO is %f",timer_FCTN_ACS_GENPWM_MAIN.read());
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_STATE == 3) // Auto Control
{
#if print
pc.printf("\n\r Auto control mode \n");
#endif
DRV_Z_EN = 1;
DRV_XY_EN = 1;
timer_FCTN_ACS_CNTRLALGO.start();
FCTN_ACS_CNTRLALGO(moment,mag_data,gyro_data,0x00,0x00,ACS_DETUMBLING_ALGO_TYPE);
timer_FCTN_ACS_CNTRLALGO.stop();
//pc.printf("\n\r the timer_FCTN_ACS_CNTRLALGO is %f",timer_FCTN_ACS_CNTRLALGO.read());
controlmode_mms = 0x00;
#if print
pc.printf("\n\r Moment values returned by control algo \n");
for(int i=0; i<3; i++)
{
pc.printf("%f\t",moment[i]);
}
#endif
timer_FCTN_ACS_GENPWM_MAIN.start();
FCTN_ACS_GENPWM_MAIN(moment) ;// set ACS_STATUS in function
timer_FCTN_ACS_GENPWM_MAIN.stop();
//pc.printf("\n\r the timer_FCTN_ACS_GENPWM_MAIN is %f",timer_FCTN_ACS_GENPWM_MAIN.read());
ACS_MAIN_STATUS = 0;
return;
}
else if(ACS_STATE == 4) // Detumbling
{
DRV_Z_EN = 1;
DRV_XY_EN = 1;
FCTN_ACS_CNTRLALGO(moment,mag_data,gyro_data,0x00,0x01,ACS_DETUMBLING_ALGO_TYPE);
controlmode_mms = 0x00;
FCTN_ACS_GENPWM_MAIN(moment) ;
ACS_MAIN_STATUS = 0;
return;
}
ACS_STATUS = 7; //INVALID_STATE
DRV_Z_EN = 0;
DRV_XY_EN = 0;
ACS_MAIN_STATUS = 0; //clear ACS_MAIN_STATUS flag
}
//***************************************************EPS THREAD***********************************************//
void F_EPS()
{
float eps_btry_temp;
pc.printf("\n\rEntered EPS %f\n\r",t_start.read());
EPS_MAIN_STATUS = 1; // Set EPS main status
EPS_MAIN_COUNTER++;
timer_FCTN_BATT_TEMP_SENSOR_MAIN.reset();
timer_FCTN_BATT_TEMP_SENSOR_MAIN.start();
FCTN_BATT_TEMP_SENSOR_MAIN(actual_data.Batt_temp_actual);
timer_FCTN_BATT_TEMP_SENSOR_MAIN.stop();
pc.printf("Battery temperature %f %f\n\r" ,actual_data.Batt_temp_actual[0], actual_data.Batt_temp_actual[1]);
EPS_BTRY_TMP_AVG = ( actual_data.Batt_temp_actual[0] + actual_data.Batt_temp_actual[1] )/2.0;
if(abs(actual_data.Batt_temp_actual[0] - actual_data.Batt_temp_actual[1]) > 10)
{
EPS_BTRY_TMP_STATUS = 0; //clear EPS_BTRY_TMP_STATUS
eps_btry_temp = (float) EPS_BAT_TEMP_DEFAULT;
}
else
{
EPS_BTRY_TMP_STATUS = 1; //set EPS_BTRY_TMP_STATUS
eps_btry_temp = EPS_BTRY_TMP_AVG;
}
if(EPS_BTRY_HTR_AUTO == 0)
EPS_STATUS = 1; //EPS_BATTERY_HEATER_DISABLED
else if( EPS_BTRY_TMP_STATUS == 0 )
{
BTRY_HTR_ENABLE = 0;
EPS_BTRY_HTR = 0;
EPS_STATUS = 0; //Set EPS_ERR_BATTERY_TEMP
}
else
{
if( EPS_BTRY_HTR == 1 && eps_btry_temp >= EPS_BAT_TEMP_HIGH )
{
BTRY_HTR_ENABLE = 0;
EPS_BTRY_HTR = 0;
EPS_STATUS = 4; //Set EPS_BATTERY_HEATER_OFF
}
else if( EPS_BTRY_HTR == 0 && eps_btry_temp < EPS_BAT_TEMP_LOW )
{
BTRY_HTR_ENABLE = 1;
EPS_BTRY_HTR = 1;
EPS_STATUS = 5; //Set EPS_BATTERY_HEATER_ON
}
}
unsigned short statusreg = read(REG_STATUS);
if( EPS_BATTERY_GAUGE_STATUS == 0 ) reset();
if( read(REG_STATUS) & 0x0100 == 0x0100 ) //checking if Reset Indicator bit is set
{
pc.printf("REG_STATUS = %d\r\n",read(REG_STATUS));
FCTN_BATTERYGAUGE_INIT();
}
timer_FCTN_BATTERYGAUGE_MAIN.reset();
timer_FCTN_BATTERYGAUGE_MAIN.start();
int BTG_MAIN_FLAG = FCTN_BATTERYGAUGE_MAIN(actual_data.Batt_gauge_actual, eps_btry_temp);
timer_FCTN_BATTERYGAUGE_MAIN.stop();
if( BTG_MAIN_FLAG == 0 ) //Data not received
{
actual_data.power_mode = 1;
EPS_BATTERY_GAUGE_STATUS = 0; //clear EPS_BATTERY_GAUGE_STATUS
}
else
{
FCTN_EPS_POWERMODE(actual_data.Batt_gauge_actual[1]); //updating power level
EPS_BATTERY_GAUGE_STATUS = 1; //set EPS_BATTERY_GAUGE_STATUS
}
timer_FCTN_HK_MAIN.reset();
timer_FCTN_HK_MAIN.start();
FCTN_HK_MAIN();
timer_FCTN_HK_MAIN.stop();
// pc.printf("ere");
timer_FCTN_EPS_HANDLE_HW_FAULTS.reset();
timer_FCTN_EPS_HANDLE_HW_FAULTS.start();
FCTN_EPS_HANDLE_HW_FAULTS();
timer_FCTN_EPS_HANDLE_HW_FAULTS.stop();
timer_FCTN_EPS_HANDLE_CDMS_FAULT.reset();
timer_FCTN_EPS_HANDLE_CDMS_FAULT.start();
FCTN_EPS_HANDLE_CDMS_FAULT();
timer_FCTN_EPS_HANDLE_CDMS_FAULT.stop();
timer_FCTN_APPEND_HKDATA.reset();
timer_FCTN_APPEND_HKDATA.start();
FCTN_APPEND_HKDATA();
timer_FCTN_APPEND_HKDATA.stop();
timer_minMaxHkData.reset();
timer_minMaxHkData.start();
minMaxHkData();
timer_minMaxHkData.stop();
//pc.printf("ere");
EPS_MAIN_STATUS = 0; // clear EPS main status
}
//**************************************************BCN THREAD*******************************************************************//
void F_BCN()
{
pc.printf("\n\rEntered BCN %f\n",t_start.read());
//BCN_TX_MAIN_COUNTER=+1;
timer_FCTN_BCN_TX_MAIN.reset();
timer_FCTN_BCN_TX_MAIN.start();
FCTN_BCN_TX_MAIN();
timer_FCTN_BCN_TX_MAIN.stop();
}
//**************************************************TCTM THREAD*******************************************************************//
//===================================================================
void T_TC(void const * args)
{
while(1)
{
Thread::signal_wait(0x4);
wait_us(300);
BAE_MNG_I2C_STATUS =1 ;
I2C_last.reset();
I2C_last.start();
// pc.printf("\n\r intrpet");
if( slave.receive() == 0)
{
pdir_ss1=PTE->PDIR; /////////edited
irpt_2_mstr = 0;
data_send_flag = 'h';
slave.stop();
if(((pdir_ss1 & 0x00000003)!=3)) //check if bus has freezed
{
I2C_busreset(); /////////edited
}
pdir_ss2=PTE->PDIR;
pc.printf("\n\rSlave not addressed");
pc.printf("\n\rPTE->DIR = 0x%08X",pdir_ss1);
#if PRINT2
pc.printf("\n\rPTE->DIR = 0x%08X",pdir_ss2);
#endif
}
else if( slave.receive() == 1) // slave writes to master
{
BAE_I2C_COUNTER++; //////////edited
if(data_send_flag == 'h') //to be renamed as BAE_I2C_STATUS
{
irpt_2_mstr =1;
//pc.printf("\n\r hk "); //wait till cdms code is changed
FCTN_APPEND_HKDATA();
uint8_t i2c_count =0;
//crc is already being added
write_ack=slave.write((char*)BAE_chardata,134);
wait_ms(1); //for correct values of register to be updated
pdir_tm1=PTE->PDIR;
irpt_2_mstr = 0;
if(write_ack==0)// wait till cdms code is changed
{
/*checking the tc timings*/
// time_wdog = 1;
while(((pdir_tm1 & 0x00000003)!=3)&& i2c_count<10)
{
wait_ms(1);
pdir_tm1=PTE->PDIR;
i2c_count++;
}
if(((pdir_tm1 & 0x00000003)==3))
{
pc.printf("\n\rWrite HK success");
// data_send_flag = 'h';
irpt_2_mstr = 0; //////////edited
}
else
{
#if baby
pc.printf("\n\rWrite HK failed");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
wait_ms(20); //should be atleast 7ms for correct operation but fix this value as 20ms
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
}
}
else
{
#if baby1
pc.printf("\n\rWrite Ack failed(HK)");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
}
i2c_count=0;
}
else if (data_send_flag == 't') //else if(telecommand[1]&0xC0 == 't')
{
uint8_t i2c_count =0;
write_ack=slave.write((char*)telemetry,134); ////////edited(size)
wait_ms(1); //for correct values of register to be updated
pdir_tm1=PTE->PDIR;
irpt_2_mstr = 0;
data_send_flag = 'h';
// pc.printf("\n\r h set here");
if(write_ack==0)
{
while(((pdir_tm1 & 0x00000003)!=3)&& i2c_count<10)
{
wait_ms(1);
pdir_tm1=PTE->PDIR;
i2c_count++;
}
if(((pdir_tm1 & 0x00000003)==3))
{
pc.printf("\n\rWrite TM success");
}
else
{
#if baby
pc.printf("\n\rWrite TM failed");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
wait_ms(20); //should be atleast 7ms for correct operation but fix this value as 20ms
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
}
}
else
{
#if baby
pc.printf("\n\rWrite Ack failed");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
}
i2c_count=0;
}
// else
// pc.printf("\n\r hey something wrong");
}
else if( slave.receive()==3 || slave.receive()==2) // slave read
{
BAE_I2C_COUNTER++;
/*checking the tc timings*/
time_wdog = 1;
uint8_t i2c_count = 0;
read_ack=slave.read((char *)telecommand,135); //read() function returns acknowledgement
wait_ms(1);
pdir_tc1=PTE->PDIR;
if(read_ack==0) //read() says it was successful
{
while(((pdir_tc1 & 0x00000003)!=3)&& i2c_count<10)//checking if SDA and SCL lines are logic 0 and not more than 10 times(10ms)
{
wait_ms(1);
pdir_tc1=PTE->PDIR;
i2c_count++;
}
if(((pdir_tc1 & 0x00000003)==3))
{
//pc.printf("\n\n\rRead TC success");
if(telecommand[0] == 0x00) /////////////edited
{
FCTN_CDMS_HK_TC((uint8_t*) telecommand); /////////////edited
data_send_flag = 'h';
pc.printf("\n\n\rRead LBCN QM is comming");
}
else
{
pc.printf("\n\r Read TC SUCESS");
FCTN_BAE_TM_TC((uint8_t*) telecommand);
data_send_flag = 't';
irpt_2_mstr = 1;
}
}
else //either or both of SDA and SCL lines low
{
#if baby
pc.printf("\n\rRead TC failed");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
gen_I_TM();
data_send_flag = 't';
irpt_2_mstr = 1; /////////////added
}
}
else //read() says it was not successful
{
#if baby
pc.printf("\n\rRead Ack failed");
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm1);
#endif
I2C_busreset();
#if baby2
pdir_tm2 = PTE->PDIR;
pc.printf("\n\rPTE->PDIR = 0x%08X",pdir_tm2);
#endif
//pc.printf("\n\r no data case");
gen_I_TM();
data_send_flag = 't';
irpt_2_mstr = 1; /////////////added
}
i2c_count = 0;
}
BAE_MNG_I2C_STATUS=0;
}
}
void FCTN_TM()
{
data_send_flag = 't';
pc.printf("\n\r Telemetry Generation \n");
irpt_2_mstr = 1;
}
//******************************************************* I2C *******************************************************************//
void FCTN_I2C_ISR()
{
ptr_t_i2c->signal_set(0x4);
}
//***********************************************************FAULTS***************************************************************//
uint8_t iter2=0,iter4 = 0;
void pollfault()
{
if (ACS_ATS1_OC_FAULT==0) // OC_ATS1
{
pf1check=1;
actual_data.faultPoll_status |=0x01 ;
ATS1_SW_ENABLE = 1; // turn off ats1 // to be turned on next cycle in ACS
}
else
actual_data.faultPoll_status &= 0xFE;
if(ACS_ATS2_OC_FAULT==0)
{
pf2check=1;
actual_data.faultPoll_status |=0x02 ;
ATS2_SW_ENABLE = 1; // turn off ats2 // turn on in ACS
}
else
actual_data.faultPoll_status &= 0xFD;
if (ACS_TR_XY_FAULT==0)
{
actual_data.faultPoll_status |=0x04 ;
DRV_XY_EN = 0;
wait_us(1);
DRV_XY_EN = 1;
}
else
actual_data.faultPoll_status &= 0xFB;
}
//------------------------------------------------------------------------------------------------------------------------------------------------
//SCHEDULER
//------------------------------------------------------------------------------------------------------------------------------------------------
uint8_t schedcount=1;
void T_SC(void const *args)
{
#if print
pc.printf("\n\r in scheduler");
#endif
/*if keeping thish many cases creates a problem then make 3 seperate flagvariable i.e bae_standby_acs so on that will make it easy.!!!*/
if(schedcount == 13) //to reset the counter
schedcount = 1;
if(schedcount%1==0)
{
if( BAE_STANDBY!=0x02 && BAE_STANDBY!=0x03 && BAE_STANDBY!=0x06 && BAE_STANDBY!=0x07)
{
pc.printf("\nSTATE IS !!!!!! = %x !!\n",ACS_STATE);
timer_F_ACS.reset();
timer_F_ACS.start();
F_ACS();
timer_F_ACS.stop();
/*pc.printf("\n\r timer_F_ACS is %f",timer_F_ACS.read());
pc.printf("\n\r timer_SENSOR_INIT is %f",timer_SENSOR_INIT.read());
pc.printf("\n\r timer_CONFIG_UPLOAD is %f",timer_CONFIG_UPLOAD.read());
pc.printf("\n\r timer_SENSOR_DATA_ACQ is %f",timer_SENSOR_DATA_ACQ.read());
pc.printf("\n\r timer_FCTN_ACS_GENPWM_MAIN is %f",timer_FCTN_ACS_GENPWM_MAIN.read());
pc.printf("\n\r timer_FCTN_ACS_CNTRLALGO is %f",timer_FCTN_ACS_CNTRLALGO.read());
pc.printf("\n\r timer_controlmodes is %f",timer_controlmodes.read());
*/
//time_wdog = 0;
}
}
if(schedcount%4==0)
{
if( BAE_STANDBY!=0x01 && BAE_STANDBY!=0x03 && BAE_STANDBY!=0x05 && BAE_STANDBY!=0x07)
{
//time_wdog = 1;
timer_F_ESP.reset();
timer_F_ESP.start();
F_EPS();
timer_F_ESP.stop();
pc.printf("\n\r timer_F_ESP is %f",timer_F_ESP.read());
/* pc.printf("\n\r timer_FCTN_BATTERYGAUGE_INIT is %f",timer_FCTN_BATTERYGAUGE_INIT.read());
pc.printf("\n\r timer_alertFlags is %f",timer_alertFlags.read());
pc.printf("\n\r timer_soc is %f",timer_soc.read());
pc.printf("\n\r timer_FCTN_BATT_TEMP_SENSOR_MAIN is %f",timer_FCTN_BATT_TEMP_SENSOR_MAIN.read());
pc.printf("\n\r timer_FCTN_BATTERYGAUGE_MAIN is %f",timer_FCTN_BATTERYGAUGE_MAIN.read());
pc.printf("\n\r timer_FCTN_HK_MAIN is %f",timer_FCTN_HK_MAIN.read());
pc.printf("\n\r timer_FCTN_EPS_HANDLE_HW_FAULTS is %f",timer_FCTN_EPS_HANDLE_HW_FAULTS.read());
pc.printf("\n\r timer_FCTN_EPS_HANDLE_CDMS_FAULT is %f",timer_FCTN_EPS_HANDLE_CDMS_FAULT.read());
pc.printf("\n\r timer_FCTN_APPEND_HKDATA is %f",timer_FCTN_APPEND_HKDATA.read());
pc.printf("\n\r timer_minMaxHkData is %f",timer_minMaxHkData.read());
*/
}
//time_wdog = 0;
}
if(schedcount%6==0)
{
if(BAE_STANDBY!=0x04 && BAE_STANDBY!=0x05 && BAE_STANDBY!=0x06 && BAE_STANDBY!=0x07)
{ // time_wdog = 0;
timer_F_BCN.reset();
timer_F_BCN.start();
F_BCN();
timer_F_BCN.stop();
/*pc.printf("\n\r timer_F_BCN is %f",timer_F_BCN.read());
pc.printf("\n\r timer_Init_BEACON_HW is %f",timer_Init_BEACON_HW.read());
pc.printf("\n\r timer_FCTN_BCN_TX_MAIN is %f",timer_FCTN_BCN_TX_MAIN.read());
pc.printf("\n\r timer_Set_BCN_TX_STATUS_SUCCESS is %f",timer_Set_BCN_TX_STATUS_SUCCESS.read());
pc.printf("\n\r timer_Set_BCN_TX_STATUS_FAILURE is %f",timer_Set_BCN_TX_STATUS_FAILURE.read());
pc.printf("\n\r timer_Set_BCN_TX_STATUS_DISABLED is %f",timer_Set_BCN_TX_STATUS_DISABLED.read());
pc.printf("\n\r timer_Set_BCN_TX_STATUS_SUSPENDED is %f",timer_Set_BCN_TX_STATUS_SUSPENDED.read());
pc.printf("\n\r timer_Set_BCN_TX_STATUS_RF_SILENCE is %f",timer_Set_BCN_TX_STATUS_RF_SILENCE.read());
*/}
}
schedcount++;
#if print
printf("\n\r exited scheduler h");
printf("\n\r time taken %f",t_start.read());
#endif
}
Timer t_flag;
void FLAG()
{
//I2C
//if(BAE_MNG_I2C_STATUS == 1)
// BAE_STATUS = BAE_STATUS | 0x10000000;
//else if(BAE_MNG_I2C_STATUS == 0)
// BAE_STATUS &= 0xEFFFFFF;
//.............bae..................//
if(BAE_INIT_STATUS == 1)
BAE_STATUS = BAE_STATUS | 0x00000001; //BAE_STATUS |= 0x00000001;
else if(BAE_INIT_STATUS == 0)
BAE_STATUS &= 0xFFFFFFFE;
if(BAE_MNG_I2C_STATUS == 1)
BAE_STATUS = BAE_STATUS | 0x00000002;
if(BAE_MNG_I2C_STATUS == 0)
BAE_STATUS &= 0xFFFFFFFD;
//.............acs..................//
if(ACS_INIT_STATUS == 1)
BAE_STATUS = BAE_STATUS | 0x00000080; //set ACS_INIT_STATUS flag
else if(ACS_INIT_STATUS == 0)
BAE_STATUS &= 0xFFFFFF7F; //clear ACS_INIT_STATUS flag
if(ACS_DATA_ACQ_STATUS == 1)
BAE_STATUS =BAE_STATUS | 0x00000100; //set ACS_DATA_ACQ_STATUS flag
else if(ACS_DATA_ACQ_STATUS == 0)
BAE_STATUS &= 0xFFFFFEFF; //clear ACS_DATA_ACQ_STATUS flag
if(ACS_ATS_ENABLE == 1)
BAE_ENABLE |= 0x00000004;
else if(ACS_ATS_ENABLE == 0)
BAE_ENABLE = BAE_ENABLE &0xFFFFFFFB | 0x00000004;
if(ACS_DATA_ACQ_STATUS == 'f')
BAE_STATUS |= 0x00000200;
if(ACS_MAIN_STATUS == 1)
BAE_STATUS = (BAE_STATUS | 0x00001000); //set ACS_MAIN_STATUS flag
else if(ACS_MAIN_STATUS == 0)
BAE_STATUS &= 0xFFFFEFFF; //clear ACS_MAIN_STATUS flag
if(ACS_STATUS == '0')
BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF); // set ACS_STATUS = ACS_CONTROL_OFF
else if(ACS_STATUS == '1')
BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x00002000; // set ACS_STATUS = ACS_LOW_POWER
else if(ACS_STATUS == '2')
BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF)| 0x00004000; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY
else if(ACS_STATUS == '3')
BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00006000; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE
else if(ACS_STATUS == '4')
BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00008000; // set ACS_STATUS = ACS_NOMINAL_ONLY
else if(ACS_STATUS == '5')
BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000A000; // set ACS_STATUS = ACS_AUTO_CONTROL
else if(ACS_STATUS == '6')
BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000C000; // set ACS_STATUS = ACS_DETUMBLING_ONLY
else
BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000E000; // set ACS_STATUS = INVALID STATE
if(ACS_STATE == '0')
BAE_ENABLE = (BAE_ENABLE & 0xFFFFFF8F); //ACS_STATE = ACS_CONTROL_OFF
else if(ACS_STATE == '2')
BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000020); // ACS_STATE = ACS_ZAXIS_MOMENT_ONLY
else if(ACS_STATE == '3')
BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000030); // set ACS_STATUS = ACS_DATA_ACQ_FAILURE
else if(ACS_STATE == '4')
BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000040); // ACS_STATE = ACS_NOMINAL_ONLY
else if(ACS_STATE == '5')
BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000050); // ACS_STATE = ACS_AUTO_CONTROL
else if(ACS_STATE == '6')
BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000060); //ACS_STATE = ACS_DETUMBLING_CONTROL
//...............eps......................//
if (EPS_INIT_STATUS==1) // Set EPS_INIT_STATUS
BAE_STATUS |= 0x00010000;
else if(EPS_INIT_STATUS==0) // Clear
BAE_STATUS &= 0xFFFEFFFF;
if (EPS_MAIN_STATUS==1) // Set EPS_MAIIN_STATUS
BAE_STATUS |= 0x00040000;
else if(EPS_MAIN_STATUS==0) // Clear
BAE_STATUS &= 0xFFFBFFFF;
if (EPS_BATTERY_GAUGE_STATUS==1) // Set EPS_BATTERY_GAUGE_STATUS
BAE_STATUS |= 0x00020000;
else if(EPS_BATTERY_GAUGE_STATUS==0) // Clear
BAE_STATUS &= 0xFFFDFFFF;
if (EPS_BTRY_TMP_STATUS==1) // Set EPS_BATTERY_TEMP_STATUS
BAE_STATUS |= 0x00080000;
else if(EPS_BTRY_TMP_STATUS==0) // Clear
BAE_STATUS &= 0xFFF7FFFF;
if (EPS_STATUS==0)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF); // Set EPS_ERR_BATTERY_TEMP
else if (EPS_STATUS==1)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00010000; // Set EPS_BATTERY_HEATER_DISABLED
else if (EPS_STATUS==2)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00020000; // Set EPS_ERR_HEATER_SWITCH_OFF
else if (EPS_STATUS==3)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00030000; // Set EPS_ERR_HEATER_SWITCH_ON
else if (EPS_STATUS==4)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00040000; // Set EPS_BATTERY_HEATER_OFF
else if (EPS_STATUS==5)
BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00050000; // Set EPS_BATTERY_HEATER_ON
if(EPS_BTRY_HTR_AUTO == 1)
BAE_ENABLE |= 0x00000080;
else if(EPS_BTRY_HTR_AUTO == 0)
BAE_ENABLE = BAE_ENABLE &0xFFFFFF7;
#if print
pc.printf("\n\r BAE status %x BAE ENABLE %x ",BAE_STATUS,BAE_ENABLE);
#endif
}
void FCTN_BAE_INIT()
{
#if print
printf("\n\r Initialising BAE _________________________________________________________________________________");
#endif
BAE_INIT_STATUS=1;
FLAG();
//..........intial status....//
ACS_STATE = 4;
ACS_ATS_ENABLE = 1;
ACS_DATA_ACQ_ENABLE = 1;
EPS_BTRY_HTR_AUTO = 1;
actual_data.power_mode=3;
//............intializing pins................//
ATS1_SW_ENABLE = 0;
ATS2_SW_ENABLE = 1;
DRV_XY_EN = 1;
DRV_Z_EN = 1;
TRZ_SW = 1;
TRXY_SW = 1;
//time_wdog = 1;
kick_WDOG();
pc.printf("\n\r lvl1");
//...........order mentioned in flow chart.................//
timer_FCTN_BAE_INIT.reset();
timer_FCTN_BAE_INIT.start();
FCTN_ACS_INIT();
timer_FCTN_BAE_INIT.stop();
pc.printf("\n\r timer_FCTN_BAE_INIT is %f",timer_FCTN_BAE_INIT.read());
timer_FCTN_EPS_INIT.reset();
timer_FCTN_EPS_INIT.start();
FCTN_EPS_INIT();
timer_FCTN_EPS_INIT.stop();
pc.printf("\n\r timer_FCTN_EPS_INIT is %f",timer_FCTN_EPS_INIT.read());
timer_FCTN_BCN_INIT.reset();
timer_FCTN_BCN_INIT.start();
FCTN_BCN_INIT();
timer_FCTN_BCN_INIT.stop();
pc.printf("\n\r timer_FCTN_BCN_INIT is %f",timer_FCTN_BCN_INIT.read());
//uint32_t data_flash=FCTN_BAE_RD_FLASH_ENTITY(0);/*sending the 0 entity as in mms tc/tm bae_reset_counter is present in first 32 bits */
//uint32_t data_modify=data_flash & 0x000000FF;
//data_modify +=1;
//data_modify |=data_flash;
//FCTN_BAE_WR_FLASH(0,data_modify);
//#if print
// printf("\n\rthe number of reset %d",data_modify);
//#endif
BAE_INIT_STATUS=0;
FLAG();
}
int main()
{
//BAE_uptime.reset();
BAE_uptime.start();
//time_wdog = 1;
pc.printf("\n\r BAE Activated. Testing Version 1.2 \n");
//FLASH_INI();
time_wdog=1;
timer_FCTN_BAE_INIT.start();
FCTN_BAE_INIT();
timer_FCTN_BAE_INIT.stop();
pc.printf("\n\r timer_FCTN_BAE_INIT is %f",timer_FCTN_BAE_INIT.read());
time_wdog=0;
//time_wdog = 0;
slave.address(addr);
irpt_2_mstr = 0;
ptr_t_i2c = new Thread(T_TC);
ptr_t_i2c->set_priority(osPriorityHigh);
irpt_4m_mstr.enable_irq();
irpt_4m_mstr.rise(&FCTN_I2C_ISR);
RtosTimer t_sc_timer(T_SC,osTimerPeriodic); // Initiating the scheduler thread
t_sc_timer.start(5000);
t_start.start();
#if print
pc.printf("\n\rStarted scheduler %f\n\r",t_start.read());
#endif
/*if one defines it dynamically then one has to take care that the destuct function is calle everytime BAE resets otheriwse it will lead to memory leakage*/
//BAE_STANDBY_STATUS_TIMER = new RtosTimer(BAE_STANDBY_STATUS_RESET,osTimerOnce);
/*static allocation*/
RtosTimer STANDBY_TIMER(BAE_STANDBY_STATUS_RESET,osTimerOnce);
BAE_STANDBY_STATUS_TIMER=&STANDBY_TIMER;
RtosTimer bcn_start_timer(FCTN_BCN_FEN,osTimerOnce);
/*later change it to 30 min 1800 seconds*/
bcn_start_timer.start(20000);
//BCN HTR TIMERS
RtosTimer EPS_HTR_OFF_TIMER(FCTN_EPS_HTR_OFF, osTimerOnce);
HTR_OFF=&EPS_HTR_OFF_TIMER;
RtosTimer EPS_HTR_CYCLE_TIMER(FCTN_EPS_HTR_CYCLE, osTimerPeriodic);
HTR_CYCLE=&EPS_HTR_CYCLE_TIMER;
RtosTimer EPS_HTR_DLY_TIMER(FCTN_EPS_HTR_DLY,osTimerOnce);
HTR_DLY=&EPS_HTR_DLY_TIMER;
timer_FLASH_INI.start();
FLASH_INI();
timer_FLASH_INI.stop();
pc.printf("\n\r timer_FCTN_BAE_INIT is %f",timer_FCTN_BAE_INIT.read());
while(1); //required to prevent main from terminating
}
