Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of BAE_CODE_MARCH_2017 by
BCN.cpp
- Committer:
- lakshya
- Date:
- 2016-12-07
- Revision:
- 73:d2bca4d2cc64
- Parent:
- 66:a5d2b8dc6b9e
- Child:
- 74:2c82080db98b
File content as of revision 73:d2bca4d2cc64:
#include "BCN.h" #include "EPS.h" #include <stdio.h> #include "pin_config.h" //Check the pin names //Takes max 4 sec in void FCTN_BCN_TX_MAIN() (temp.calc. + long_beacon + short_beacon) Timer timer_Init_BEACON_HW; Timer timer_Set_BCN_TX_STATUS_DISABLED; Timer timer_Set_BCN_TX_STATUS_SUSPENDED; Timer timer_Set_BCN_TX_STATUS_RF_SILENCE; Timer timer_Set_BCN_TX_STATUS_SUCCESS; Timer timer_Set_BCN_TX_STATUS_FAILURE; extern BAE_HK_actual actual_data; //DigitalOut bcn_sw(PIN14,0); Serial pc_bcn(USBTX, USBRX); //tx,rx //see if it creates a problem //SPI spi(D11, D12, D13); // mosi, miso, sclk //DigitalOut cs(D10); //slave select or chip select SPI spi(PIN16, PIN17, PIN15); // mosi, miso, sclk DigitalOut cs(PIN6); //slave select or chip select Timer t_i;//timer for checking the time taken by (temp.calc. + long_beacon + short_beacon) //Timer t_is;//timer for short_beacon //Timer t_il;//timer for long_beacon Timeout rf_sl_timeout;//RF_silence timer Ticker loop;//for transmitting every 10 secs //GLOBAL VARIABLES uint8_t BCN_INIT_STATUS = 0; uint8_t BCN_TX_MAIN_STATUS = 0; uint8_t BCN_TX_STATUS = 0; uint8_t BCN_TX_ENABLE = 1; //hardcoding for now //check where is this variable toggled?? uint8_t BCN_TX_SW_STATUS = 1; uint8_t BCN_FEN = 0; //hardcoding for now //write this value to flash uint8_t BCN_SPND_TX = 0; //hardcoding for now //check where is this variable toggled?? uint8_t BCN_TMP = 5; // For Temperature uint8_t ERROR_CHECK = 0; uint8_t BCN_FAIL_COUNT = 0; //Flag for keeping count of no. of times of BCN failure in init or one transmission in 30 secs (failure in spi communication) //This Flag when exceeds a threshold, uC should reset. uint16_t BCN_TX_MAIN_COUNTER = 0; uint8_t SHORT_HK_data[15]; extern uint8_t BCN_LONG_MSG_TYPE; extern uint8_t LONG_HK_data[2][134]; extern DigitalOut BCN_SW; extern float EPS_BTRY_TMP_AVG; extern BAE_HK_quant quant_data; extern uint8_t BAE_RESET_COUNTER; extern Timer BAE_uptime; extern Timer I2C_last; extern void RETURN_UPTIME(float,uint8_t*,uint8_t*,uint8_t*); extern DigitalIn CDMS_OC_FAULT; extern DigitalIn EPS_CHARGER_STATUS; extern uint8_t crc8_short(); extern uint8_t float_to_uint8(float min,float max,float val); void SHORT_HK_data_AQ() { uint8_t days,hours,mins;//for calculating the timing data in bae i2c uptime //1st 0-7 call sign //SHORT_HK_data[0] _ SHORT_HK_data[6] SHORT_HK_data[0] = 0xF3; SHORT_HK_data[1] = 0x02; SHORT_HK_data[2] = 0xFA; SHORT_HK_data[3] = 0xC6; SHORT_HK_data[4] = 0xD4; SHORT_HK_data[5] = 0x28; SHORT_HK_data[6] = 0x8A; SHORT_HK_data[7] = quant_data.voltage_quant[15]; SHORT_HK_data[7] = (SHORT_HK_data[7] & 0xF0) | (quant_data.current_quant[1]>>4); //taking only the most significant bits SHORT_HK_data[8] = actual_data.bit_data_acs_mg[0]>>8; SHORT_HK_data[8] = (SHORT_HK_data[8] & 0xF0) | BCN_TMP>>4; //SHORT_HK_data[9] = 0xFF; SHORT_HK_data[9] = float_to_uint8(-50,100,EPS_BTRY_TMP_AVG); SHORT_HK_data[9] = (SHORT_HK_data[9]&0xF0) | BAE_RESET_COUNTER>>4; RETURN_UPTIME(BAE_uptime.read(),&days,&hours,&mins); SHORT_HK_data[10] = CDMS_OC_FAULT; SHORT_HK_data[10] = (SHORT_HK_data[10]<<1) | 0;//receiver_oc_fault//to be diss; SHORT_HK_data[10] = (SHORT_HK_data[10]<<1) | ((quant_data.voltage_quant[5]>>2)&0x3C); SHORT_HK_data[10] = (SHORT_HK_data[10]<<2) | ((days>>3)&0x03); SHORT_HK_data[11] = (days<<5) | (hours&0x1F); RETURN_UPTIME(I2C_last.read(),&days,&hours,&mins); SHORT_HK_data[12] = EPS_CHARGER_STATUS; SHORT_HK_data[12] = (SHORT_HK_data[12]<<4) | (quant_data.voltage_quant[6]>>4); SHORT_HK_data[12] = (SHORT_HK_data[12]<<3) | (days>>2); SHORT_HK_data[13] = (days<<6) | (mins&0x3F); SHORT_HK_data[14] = crc8_short(); } void FCTN_BCN_INIT() { pc_bcn.printf("FCTN_BCN_INIT\n"); BCN_INIT_STATUS = 1; if( BCN_TX_SW_STATUS == 0b00000001) { timer_Init_BEACON_HW.reset(); timer_Init_BEACON_HW.start(); Init_BEACON_HW(); timer_Init_BEACON_HW.stop(); } else { timer_Set_BCN_TX_STATUS_DISABLED.reset(); timer_Set_BCN_TX_STATUS_DISABLED.start(); Set_BCN_TX_STATUS(BCN_TX_DISABLED); timer_Set_BCN_TX_STATUS_DISABLED.stop(); } // if(BCN_FEN == 0)//BCN_FEN is in flash // rf_sl_timeout.attach(&FCTN_BCN_FEN, RF_SILENCE_TIME); BCN_INIT_STATUS = 0; } extern uint32_t FCTN_BAE_RD_FLASH_ENTITY(uint16_t); extern void FCTN_BAE_WR_FLASH(uint16_t ,uint32_t ); void FCTN_BCN_FEN(const void*) { pc_bcn.printf("FCTN_FEN\n\r"); BCN_FEN = 1;//write this value to flash uint32_t FLASH_DATA; FLASH_DATA = FCTN_BAE_RD_FLASH_ENTITY(0); FLASH_DATA = (FLASH_DATA | 0x00000800);//see if uint8 to uint32 conversion works FCTN_BAE_WR_FLASH(0,FLASH_DATA); } void FCTN_BCN_TX_MAIN() { ERROR_CHECK=0; pc_bcn.printf("\n\nFCTN_BCN_TX_MAIN\n\r"); t_i.start(); int begin = t_i.read_us(); //int begins,beginl,endl; int begintx,endtx; BCN_TX_MAIN_STATUS = 1; BCN_TX_MAIN_COUNTER++; printf("BCN_FEN = %d\n\r",BCN_FEN); if(BCN_FEN == 1) { printf("BCN_TX_SW_STATUS = %d\n\r",BCN_TX_SW_STATUS); //if(BCN_TX_SW_STATUS == 0b00000001) if(BCN_TX_SW_STATUS != 0b00000000) { timer_Init_BEACON_HW.reset(); timer_Init_BEACON_HW.start(); Init_BEACON_HW(); timer_Init_BEACON_HW.stop(); if( BCN_TX_STATUS == BCN_INIT_SUCCESS ) { pc_bcn.printf("\n\r transmitting"); //Measure and store BCN temperature in BCN_TS_BUFFER uint8_t temp_temp = check_Temperature(); if( temp_temp != 0xFF ) BCN_TMP = temp_temp; printf("\n\rthe BCN_TMP is %d\n",temp_temp); pc_bcn.printf("temperature = %d\n\r",BCN_TMP); //Get BCN_HK data from BCN HW(SPI) //Store BCN_HK data in BCN_HK_BUFFER pc_bcn.printf("BCN_SPND_TX = %d\n\r",BCN_SPND_TX); if(BCN_SPND_TX == 1 ) { timer_Set_BCN_TX_STATUS_SUSPENDED.reset(); timer_Set_BCN_TX_STATUS_SUSPENDED.start(); Set_BCN_TX_STATUS(BCN_TX_SUSPENDED); BCN_TX_MAIN_STATUS = 0; timer_Set_BCN_TX_STATUS_SUSPENDED.stop(); } else { //transmit short beacon and long beacon begintx = t_i.read_us(); BCN_TX(); endtx = t_i.read_us(); if(Check_ACK_RECEIVED() == 1) { Set_BCN_TX_STATUS(BCN_TX_SUCCESS); BCN_TX_MAIN_STATUS = 0; } else { Set_BCN_TX_STATUS(BCN_TX_FAILURE); //BCN_FAIL_COUNT++; //Init_BEACON_HW(); BCN_TX_MAIN_STATUS = 0; } } } } else { Set_BCN_TX_STATUS(BCN_TX_DISABLED); BCN_TX_MAIN_STATUS = 0; } } else { timer_Set_BCN_TX_STATUS_RF_SILENCE.reset(); timer_Set_BCN_TX_STATUS_RF_SILENCE.start(); Set_BCN_TX_STATUS(BCN_RF_SILENCE); //Window of RF Silence: None of the Txs should be on. BCN_TX_MAIN_STATUS = 0; timer_Set_BCN_TX_STATUS_RF_SILENCE.stop(); } t_i.stop(); int end = t_i.read_us(); pc_bcn.printf("The time required for FCTN_BCN_TX_MAIN is %d useconds\r\n", end-begin); pc_bcn.printf("The time required for FCTN_BCN_TX is %d useconds\r\n", endtx-begintx); /* pc_bcn.printf("The time required for Short_BCN is %d useconds\r\n", beginl-begins); pc_bcn.printf("The time required for Long_BCN is %d useconds\r\n", endtx-beginl); */ ERROR_CHECK = 0; BCN_TX_MAIN_STATUS = 0; } void Set_BCN_TX_STATUS(uint8_t STATUS) { BCN_TX_STATUS = STATUS; } uint8_t check_Temperature() { uint8_t temperature; writereg(RF22_REG_0F_ADC_CONFIGURATION,0x00);//set ADC to temp measurement writereg(RF22_REG_12_Temperature_Sensor_Calibration,0x20);//measure in degree celsius writereg(RF22_REG_0F_ADC_CONFIGURATION,0x80);//start adc wait(0.1); //if( readreg(RF22_REG_0F_ADC_CONFIGURATION) & 0x80 == 0x80 ) { temperature = readreg(RF22_REG_11_ADC_Value); temperature = (float)temperature*0.5 - 64; //* 0.5 factor // to be checked } //else temperature = 0xFF; // temperature = (float)temperature*0.5 - 64; printf("\n\rthe vLKUE OF TEMPO %d",temperature); return temperature; } uint32_t timeout_count; void BCN_TX() { pc_bcn.printf("BCN_TX\n\r"); writereg(RF22_REG_6E_TX_DATA_RATE,0x0A); writereg(RF22_REG_6F_TX_DATA_RATE,0x7C);//1280bps wait(0.02); timeout_count = 10e5; //extract values from short_beacon[] /* uint8_t Long_beacon[LONG_TX_DATA]; for(int i = 0;i<LONG_TX_DATA;i++) { Long_beacon[i] = 0xFF; } struct Short_beacon { uint8_t Voltage[1]; uint8_t AngularSpeed[2]; uint8_t SubsystemStatus[1]; uint8_t Temp[3]; uint8_t ErrorFlag[1]; }Shortbeacon = { {0xFF}, {0xFF, 0xFF} , {0xFF},{0xFF,0xFF,0xFF}, {0xFF} }; //filling hk data //uint8_t short_beacon[] = { 0xAB, 0x8A, 0xE2, 0xBB, 0xB8, 0xA2, 0x8E,Shortbeacon.Voltage[0],Shortbeacon.AngularSpeed[0], Shortbeacon.AngularSpeed[1],Shortbeacon.SubsystemStatus[0],Shortbeacon.Temp[0],Shortbeacon.Temp[1],Shortbeacon.Temp[2],Shortbeacon.ErrorFlag[0]}; uint8_t short_beacon[] = { 0xF3, 0x02, 0xFA, 0xC6, 0xD4, 0x28, 0x8A,Shortbeacon.Voltage[0],Shortbeacon.AngularSpeed[0], Shortbeacon.AngularSpeed[1],Shortbeacon.SubsystemStatus[0],Shortbeacon.Temp[0],Shortbeacon.Temp[1],Shortbeacon.Temp[2],Shortbeacon.ErrorFlag[0]}; //writereg(RF22_REG_07_OPERATING_MODE1,0x01); //ready mode ?? */ clearTxBuf(); //writing data first time int byte_counter; uint8_t onebyte[4] = {0x81,0xA6,0xBE,0x4E}; uint8_t zerobyte[4] = {0x7E,0x59,0x41,0xB1}; for (byte_counter = 0; byte_counter <15 ; byte_counter++) { if(BCN_SPND_TX == 1) continue; //changed for(int j = 7; j >= 0 ; j--) { if(BCN_SPND_TX == 1) continue; //changed cs = 0; spi.write(0xFF); if((SHORT_HK_data[byte_counter] & (uint8_t) pow(2.0,j))!= pow(2.0,j)) { //byte=0x00; spi.write(zerobyte[0]); spi.write(zerobyte[1]); spi.write(zerobyte[2]); spi.write(zerobyte[3]); } else { //byte=0xFF; spi.write(onebyte[0]); spi.write(onebyte[1]); spi.write(onebyte[2]); spi.write(onebyte[3]); } cs = 1; /* spi.write(byte); spi.write(byte); spi.write(byte); spi.write(byte); //Each bit is written 32 times */ // byte_count+=4; } if(byte_counter == 1) if(BCN_SPND_TX != 1) //Check for flag update by COM { //Set to Tx mode writereg(RF22_REG_07_OPERATING_MODE1,0x08); //txon wait(0.1);// takes time to set to tx mode hence the delay of 0.1. } //testing level /*if(byte_counter > 0) while(1)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x40) == 0x00)break;else { pc_bcn.printf("w_f_empty1\n\r"); //reset_rfm(1); }*/ //Check for fifoThresh if(byte_counter > 0) if(BCN_SPND_TX != 1) //Check for flag update by COM { wait_ms(25); while( timeout_count --)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break;else if(timeout_count == 1) reset_rfm(1); { wait_ms(25); while( timeout_count --)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break;else if(timeout_count == 1) reset_rfm(1); { //pc_bcn.printf("w_f_empty\n"); //reset_rfm(1); } timeout_count = 10e5; //pc_bcn.printf("w_f_empty\n"); //reset_rfm(1); } timeout_count = 10e5; } /* if(byte_counter%2==0 && byte_counter) while(1)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x40) == 0x00)break;else { pc_bcn.printf("W = %d\r\n",byte_counter); }*/ //pc_bcn.printf("W = %d\r\n",byte_counter); } for(byte_counter = 15;byte_counter<149;byte_counter++) { if(BCN_SPND_TX == 1) continue; cs = 0; spi.write(0xFF); spi.write(LONG_HK_data[BCN_LONG_MSG_TYPE][byte_counter-15]); cs = 1; if((byte_counter-15)%32==0) { //Check for fifoThresh wait_ms(25); while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break;else if(timeout_count == 1) reset_rfm(1); { //pc_bcn.printf("Reset\n"); //reset_rfm(1); } } } wait_ms(70); //Check for fifoThresh while(timeout_count--) if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x40) == 0x00) break; else if(timeout_count == 1) if(BCN_SPND_TX != 1) reset_rfm(1); while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x40) == 0x00)break;else if(timeout_count == 1) reset_rfm(1); { pc_bcn.printf("Waiting for fifo to empty\r\n"); } //Check for packetsent interrupt while(timeout_count--) if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04) break; else if(timeout_count == 1) if(BCN_SPND_TX != 1) reset_rfm(1); while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04)break;else if(timeout_count == 1) reset_rfm(1); //pc_bcn.printf("Short packet sent, bytes written = %d\r\n",byte_count); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode } #if 0 void LONG_BCN_TX() { /* writereg(RF22_REG_6E_TX_DATA_RATE,0x04); writereg(RF22_REG_6F_TX_DATA_RATE,0xEA);//600 bps */ writereg(RF22_REG_3E_PACKET_LENGTH,LONG_TX_DATA); //long packet length wait(0.02); uint32_t timeout_count=10e5; //get long_beacon array uint8_t Long_beacon[LONG_TX_DATA]; for(int i = 0;i<LONG_TX_DATA;i++) { Long_beacon[i] = 0xFF; } clearTxBuf(); //writing data first time cs = 0; spi.write(0xFF); for(int i=0; i<64;i++) { spi.write(Long_beacon[i]); } cs = 1; //Set to Tx mode writereg(RF22_REG_07_OPERATING_MODE1,0x08); wait(0.1);//necessary //Check for fifoThresh while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break;else if(timeout_count == 1) { pc_bcn.printf("Reset\n"); reset_rfm(1); } timeout_count=10e5; cs = 0; spi.write(0xFF); for(int i=64; i<127;i++) { spi.write(Long_beacon[i]); } cs = 1; wait(0.1); //Check for fifoThresh while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break;else if(timeout_count == 1) { pc_bcn.printf("Reset\n"); reset_rfm(1);} timeout_count=10e5; //Check for packetsent interrupt while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04)break;else if(timeout_count == 1) reset_rfm(1); //pc_bcn.printf("Long packet sent\r\n"); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode } #endif void reset_rfm(uint8_t fl) { if (fl ==1 && ERROR_CHECK ==0) { BCN_FAIL_COUNT++; ERROR_CHECK=1; pc_bcn.printf("BCN_FAIL_COUNT++\n"); } else if(fl == 0) { BCN_FAIL_COUNT = 0; ERROR_CHECK=0; } } void writereg(uint8_t reg,uint8_t val) { uint8_t count = 0; for(;;count++) { int read_val =0; cs = 0;spi.write(reg | 0x80);spi.write(val);cs = 1; if(reg != 0x7 && reg != 0x58 && reg != 0xF) { read_val = readreg(reg); if (read_val == val) { break; } else if(count == 2) { reset_rfm(1); pc_bcn.printf("reg = 0x%X\n",reg);break; } else init_spi(); } else break; } } uint8_t readreg(uint8_t reg) { uint8_t val;cs = 0;spi.write(reg & ~0x80);val = spi.write(0);cs = 1;return val; } void clearTxBuf() { writereg(RF22_REG_08_OPERATING_MODE2,0x01); writereg(RF22_REG_08_OPERATING_MODE2,0x00); } uint8_t setFrequency(double centre) { uint8_t fbsel = 0x40; if (centre >= 480.0) { centre /= 2; fbsel |= 0x20; } centre /= 10.0; double integerPart = floor(centre); double fractionalPart = centre - integerPart; uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 fbsel |= fb; uint16_t fc = fractionalPart * 64000; writereg(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT writereg(RF22_REG_74_FREQUENCY_OFFSET2, 0); writereg(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); writereg(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); writereg(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); return 0; } void init_spi() { cs=1; // chip must be deselected wait(0.1); spi.format(8,0); spi.frequency(10000000); //10MHz SCLK } void Init_BEACON_HW() { pc_bcn.printf("Init HW\n\r"); ERROR_CHECK=0; wait(0.1); int BCN_INIT_COUNTER = 1; while(BCN_INIT_COUNTER) { init_spi(); pc_bcn.printf("init spi\r\n"); //should either have a flag for invalid SPI or discard this for actual case or add reset if (readreg(RF22_REG_00_DEVICE_TYPE) == 0x08) { pc_bcn.printf("spi connection valid\r\n"); reset_rfm(0); timer_Set_BCN_TX_STATUS_SUCCESS.reset(); timer_Set_BCN_TX_STATUS_SUCCESS.start(); Set_BCN_TX_STATUS(BCN_INIT_SUCCESS); timer_Set_BCN_TX_STATUS_SUCCESS.stop(); break; } else if (BCN_INIT_COUNTER == 1) { pc_bcn.printf("error in spi connection\r\n"); reset_rfm(1); writereg(RF22_REG_07_OPERATING_MODE1,0x80); //sw_reset wait(0.1); //takes time to reset } else if (BCN_INIT_COUNTER == 2) { pc_bcn.printf("error in spi connection\r\n"); reset_rfm(1); BCN_TX_SW_STATUS = 0b00000011; //Device disabled //reset BCN HW using switch here } else { pc_bcn.printf("BCN_TX_FAILURE\r\n"); timer_Set_BCN_TX_STATUS_FAILURE.reset(); timer_Set_BCN_TX_STATUS_FAILURE.start(); Set_BCN_TX_STATUS(BCN_INIT_FAILURE); timer_Set_BCN_TX_STATUS_FAILURE.stop(); break; } BCN_INIT_COUNTER++; } if(BCN_TX_STATUS == BCN_INIT_SUCCESS) { writereg(RF22_REG_07_OPERATING_MODE1,0x80); //sw_reset wait(0.1); //takes time to reset clearTxBuf(); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode //txfifoalmostempty writereg(RF22_REG_7D_TX_FIFO_CONTROL2,30); //txfifoalmostfull writereg(RF22_REG_7C_TX_FIFO_CONTROL1,50); //Packet-engine registers writereg(RF22_REG_30_DATA_ACCESS_CONTROL,0x00); writereg(RF22_REG_33_HEADER_CONTROL2,0x08); writereg(RF22_REG_34_PREAMBLE_LENGTH,0x00); writereg(RF22_REG_0B_GPIO_CONFIGURATION0,0x15); // TX state writereg(RF22_REG_0C_GPIO_CONFIGURATION1,0x12); // RX state setFrequency(435.0); int i=3; while(i--) if((readreg(RF22_REG_02_DEVICE_STATUS)& 0x08)!= 0x00) { setFrequency(435.0); if (i==1) {pc_bcn.printf("frequency not set properly\r\n"); reset_rfm(1); } } //set Modem Configuration writereg(RF22_REG_58,0x80); //Set Data rate - same for both long and short beacon writereg(RF22_REG_6E_TX_DATA_RATE,0x0A); writereg(RF22_REG_6F_TX_DATA_RATE,0x7C);//1280bps writereg(RF22_REG_70_MODULATION_CONTROL1,0x20);//For data rates below 30kbps writereg(RF22_REG_71_MODULATION_CONTROL2,0x21);//0x21 = FIFO mode with ook demodulation //set tx power writereg(RF22_REG_6D_TX_POWER,0x07); //20dbm //TX_packet_length written later ERROR_CHECK = 0; pc_bcn.printf("Done Init HW\n\r"); } } bool Check_ACK_RECEIVED() { if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04) { pc_bcn.printf("Packet sent: ACK received\r\n"); return 1; } else { pc_bcn.printf("Packet not sent\r\n"); return 0; } } /* int main() { FCTN_BCN_INIT(); loop.attach(&FCTN_BCN_TX_MAIN, 10.0);//in actual case its 30.0 while(1); } /* to write in flash function moved to TCTM*/ void FCTN_BCN_SPND_TX() { printf("BCN_SPND\n\r"); BCN_SPND_TX = 1; if( BCN_TX_MAIN_STATUS == 1 && BCN_TX_SW_STATUS == 1 ) { writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode if( readreg(RF22_REG_07_OPERATING_MODE1) & 0x08 == 0x08 ) { BCN_SW = 0; BCN_TX_SW_STATUS = 3; } } }