working version
Dependencies: mbed mbed-rtos SimpleDMA FreescaleIAP eeprom
Fork of CDMS_CODE_FM_28JAN2017 by
CDMS_PL.h
- Committer:
- ee12b079
- Date:
- 2016-07-10
- Revision:
- 245:da9d1bd999da
- Parent:
- 225:e6a3ffe4a530
- Child:
- 255:642ea552ac77
File content as of revision 245:da9d1bd999da:
int pl_next_index=-1; uint8_t pl_main_flag=0; uint8_t PL_PREV_STATE=0x00; uint8_t POWER_LEVEL = 3; //Would be present in HK data extracted uint32_t pl_block[192]={0}; uint32_t pl_time; uint32_t TIME_LATEST_PL=0; uint8_t i; uint8_t PL_BEE_SW_STATUS=0; //Serial pc(USBTX,USBRX); #define PL_MAIN_STATUS 0x01 #define PL_LOW_POWER 0x02 #define STATE_OFF 0x00 #define STATE_STANDBY 0x04 #define STATE_HIBERNATE 0x08 #define STATE_SCIENCE 0x0C //also used as mask for PL_STATE #define PL_OFF 0x00 #define PL_STANDBY 0x10 #define PL_HIBERNATE 0x20 #define PL_SCIENCE 0x30 #define PL_SUCCESS_I2C 0x40 #define PL_ERR_I2C 0x50 #define PL_INVALID_STATE 0x60 #define PL_DISABLED 0x70 //also used as mask for PL_STATUS #define EXECUTED 0x00000001 #define RETRY 0x00000002 #define UNEXECUTED 0x00000003 //also used as mask for EXEC_STATUS Base_tm* FCTN_CDMS_RLY_TMTC(Base_tc *tc_ptr); // waiting 1us for setup time,hold time and propagation delay #define SET_PL_BEE_OFF {\ PYLD_DFF_CLK = 0;\ PYLD_DFF = 0;\ wait_us(1);\ PYLD_DFF_CLK = 1;\ wait_us(1);\ PYLD_DFF_CLK = 0;\ wait_us(1);\ } #define SET_PL_BEE_ON {\ PYLD_DFF_CLK = 0;\ PYLD_DFF = 1;\ wait_us(1);\ PYLD_DFF_CLK = 1;\ wait_us(1);\ PYLD_DFF_CLK = 0;\ wait_us(1);\ } //TC_string[0] should not be 0x00 #define SET_PL_BEE_STANDBY(tm_ptr_standby) {\ Base_tc *pl_tc_standby = new Short_tc;\ pl_tc_standby->next_TC = NULL;\ PUTshort_or_long(pl_tc_standby,0);\ PUTcrc_pass(pl_tc_standby,0x1);\ PUTexec_status(pl_tc_standby,0);\ pl_tc_standby->TC_string[0] = 0x01;\ pl_tc_standby->TC_string[1] = 0xE1;\ pl_tc_standby->TC_string[2] = 0x81;\ pl_tc_standby->TC_string[3] = 0x02;\ pl_tc_standby->TC_string[4] = 0;\ pl_tc_standby->TC_string[5] = 0;\ pl_tc_standby->TC_string[6] = 0;\ pl_tc_standby->TC_string[7] = 0;\ pl_tc_standby->TC_string[8] = 0;\ uint16_t crc16 = crc16_gen(pl_tc_standby->TC_string, 9);\ pl_tc_standby->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\ pl_tc_standby->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\ tm_ptr_standby = FCTN_CDMS_RLY_TMTC(pl_tc_standby);\ VERIFY_TM(tm_ptr_standby);\ delete pl_tc_standby;\ Base_tm *temp;\ temp = tm_ptr_standby;\ while(tm_ptr_standby!=NULL)\ {\ temp = temp->next_TM;\ delete tm_ptr_standby;\ tm_ptr_standby = temp;\ }\ } //TC_string[0] should not be 0x00 #define SET_PL_BEE_HIBERNATE(tm_ptr_hibernate) {\ Base_tc *pl_tc_hibernate = new Short_tc;\ pl_tc_hibernate->next_TC = NULL;\ PUTshort_or_long(pl_tc_hibernate,0);\ PUTcrc_pass(pl_tc_hibernate,0x1);\ PUTexec_status(pl_tc_hibernate,0);\ pl_tc_hibernate->TC_string[0] = 0x01;\ pl_tc_hibernate->TC_string[1] = 0xE1;\ pl_tc_hibernate->TC_string[2] = 0x81;\ pl_tc_hibernate->TC_string[3] = 0x03;\ pl_tc_hibernate->TC_string[4] = 0;\ pl_tc_hibernate->TC_string[5] = 0;\ pl_tc_hibernate->TC_string[6] = 0;\ pl_tc_hibernate->TC_string[7] = 0;\ pl_tc_hibernate->TC_string[8] = 0;\ uint16_t crc16 = crc16_gen(pl_tc_hibernate->TC_string, 9);\ pl_tc_hibernate->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\ pl_tc_hibernate->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\ tm_ptr_hibernate = FCTN_CDMS_RLY_TMTC(pl_tc_hibernate);\ VERIFY_TM(tm_ptr_hibernate);\ delete pl_tc_hibernate;\ Base_tm *temp;\ temp = tm_ptr_hibernate;\ while(tm_ptr_hibernate!=NULL)\ {\ temp = temp->next_TM;\ delete tm_ptr_hibernate;\ tm_ptr_hibernate = temp;\ }\ } //TC_string[0] should not be 0x00 /* PUTshort_or_long(pl_tc_science,0);\ PUTcrc_pass(pl_tc_science,0x1);\ PUTexec_status(pl_tc_science,0);\*/ #define SET_PL_BEE_SCIENCE(tm_ptr_science) {\ Base_tc *pl_tc_science = new Short_tc;\ pl_tc_science->next_TC = NULL;\ pl_tc_science->TC_string[0] = 0x01;\ pl_tc_science->TC_string[1] = 0xE1;\ pl_tc_science->TC_string[2] = 0x81;\ pl_tc_science->TC_string[3] = 0x04;\ pl_tc_science->TC_string[4] = 0;\ pl_tc_science->TC_string[5] = 0;\ pl_tc_science->TC_string[6] = 0;\ pl_tc_science->TC_string[7] = 0;\ pl_tc_science->TC_string[8] = 0;\ uint16_t crc16 = crc16_gen(pl_tc_science->TC_string, 9);\ pl_tc_science->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\ pl_tc_science->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\ tm_ptr_science = FCTN_CDMS_RLY_TMTC(pl_tc_science);\ VERIFY_TM(tm_ptr_science);\ delete pl_tc_science;\ Base_tm *temp;\ temp = tm_ptr_science;\ while(tm_ptr_science!=NULL)\ {\ temp = temp->next_TM;\ delete tm_ptr_science;\ tm_ptr_science = temp;\ }\ } void print_processed_block(uint8_t index) { gPC.printf("\n\n\rBlock after processing:"); gPC.printf("\n\rTime of block:"); gPC.printf("\n\rYear :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x0C000000)>>26)+2016); gPC.printf("\tMonth :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x03C00000)>>22)); gPC.printf("\tDay :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x003E0000)>>17)); gPC.printf("\n\rHours :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x0001F000)>>12)); gPC.printf("\tMin :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x00000FC0)>>6)); gPC.printf("\tSec :%d",(((pl_block[index]&0xFFFFFFF0)>>4) & 0x0000003F)); gPC.printf("\n\rSID :%d",(pl_block[index] & 0x0000000C)>>2); gPC.printf("\tExecution Status :%d",pl_block[index] & UNEXECUTED); } void print_exit(uint8_t* temp) { uint8_t temp2[3]; temp2[0] = (pl_main_flag&STATE_SCIENCE)>>2; temp2[1] = (pl_main_flag&PL_DISABLED)>>4; temp2[2] = (PL_PREV_STATE & STATE_SCIENCE)>>2; gPC.printf("\n\rAt exit"); char state[][17] = {"STATE_OFF","STATE_STANDBY","STATE_HIBERNATE","STATE_SCIENCE"}; char status[][17] = {"PL_OFF","PL_STANDBY","PL_HIBERNATE","PL_SCIENCE","PL_SUCCESS_I2C","PL_ERR_I2C","PL_INVALID_STATE","PL_DISABLED"}; gPC.printf("\n\rPL_state:%s -> %s",state[(uint8_t)temp[0]],state[(uint8_t)temp2[0]]); gPC.printf("\n\rPL_status:%s -> %s",status[(uint8_t)temp[1]],status[(uint8_t)temp2[1]]); gPC.printf("\n\rPL_PREV_state:%s -> %s",state[(uint8_t)temp[2]],state[(uint8_t)temp2[2]]); } void VERIFY_TM(Base_tm *tm_ptr) { uint8_t temp = tm_ptr->TM_string[2]; //Obatining ACK_CODE if(GETshort_or_long_tm(tm_ptr)==1) //short TM { gPC.printf("\n\rSHORT TM received"); uint16_t crc16 = crc16_gen(tm_ptr->TM_string, 11); if(tm_ptr->TM_string[12]==((uint8_t)(crc16 & 0x00FF)) && tm_ptr->TM_string[11]==((uint8_t)((crc16 & 0xFF00)>>8))) { if(temp!=0x00 && temp!=0x01 && temp!=0x02 && temp!=0x03 && temp!=0x84 && temp!=0x85) { gPC.printf("\n\rTime_Latest_PL Updated"); TIME_LATEST_PL = pl_time; //update latest time when I2C communication was successful } if(temp==0xA0 || temp==0xC0) { gPC.printf("\n\rACK_CODE Success"); if(temp==0xA0) gPC.printf("\n\rACK_CODE = 0x%02X",temp); else gPC.printf("\n\rACK_CODE = 0x%02X",temp); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_SUCCESS_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= EXECUTED; } else { gPC.printf("\n\rACK_CODE failure (0x%02X)",temp); //gPC.printf("\n\rACK_CODE = 0x%02X",temp); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_ERR_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= RETRY; } } else { gPC.printf("\n\rShort_TM CRC failed"); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_ERR_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= RETRY; } } else if(GETshort_or_long_tm(tm_ptr)==0) //LONG TM { gPC.printf("\n\rLONG TM received"); uint16_t crc16 = crc16_gen(tm_ptr->TM_string,132); if(tm_ptr->TM_string[133]==((uint8_t)(crc16 & 0x00FF)) && tm_ptr->TM_string[132]==((uint8_t)((crc16 & 0xFF00)>>8))) { if(temp!=0x00 && temp!=0x01 && temp!=0x02 && temp!=0x03 && temp!=0x84 && temp!=0x85) { gPC.printf("\n\rTime_Latest_PL Updated"); TIME_LATEST_PL = pl_time; //update latest time when I2C communication was successful } if(temp==0xA0 || temp==0xC0) { gPC.printf("\n\rACK_CODE Success"); if(temp==0xA0) gPC.printf("\n\rACK_CODE = 0x%02X",temp); else gPC.printf("\n\rACK_CODE = 0x%02X",temp); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_SUCCESS_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= EXECUTED; } else { gPC.printf("\n\rACK_CODE failure (0x%02X)",temp); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_ERR_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= RETRY; } } else { gPC.printf("\n\rLong_TM CRC failed"); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_ERR_I2C; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= RETRY; } } } void test1(uint8_t t) { //Output should be PL_STATUS = PL_DISABLED if(t!=0) { gPC.printf("\n\rTesting OC protection"); PL_BEE_SW_STATUS = 2; //OC protection } } void test2(uint8_t t) { //output should be same as test1() if(t!=0) { gPC.printf("\n\rTesting Deviced Disabled case"); PL_BEE_SW_STATUS = 3; //Device DISABLED } } void test3(uint8_t t) { if(t!=0) { gPC.printf("\n\rTesting RTC failed case"); pl_time = 0; //RTC failed } } /*void test4(uint8_t t) { if(t!=0) { gPC.printf("\n\rTesting No future blocks available"); schedule1[0] = {0,0,0,0,0,0,0,0}; } }*/ void FCTN_CDMS_PL_MAIN(void const *args) { uint8_t temp[3]; pl_main_flag|=PL_MAIN_STATUS; //Setting PL_MAIN_STATUS PL_MAIN_COUNTER++; pl_main_flag&=~(PL_LOW_POWER); //Clearing PL_LOW_POWER temp[0] = (pl_main_flag&STATE_SCIENCE)>>2; temp[1] = (pl_main_flag&PL_DISABLED)>>4; temp[2] = (PL_PREV_STATE & STATE_SCIENCE)>>2; //test2(1); if(PL_BEE_SW_STATUS==2 || PL_BEE_SW_STATUS==3) { gPC.printf("\n\rDevice Disabled or OC Fault"); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_DISABLED; //setting PL_STATUS as PL_DISABLED pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status print_exit(temp); return; } PL_PREV_STATE = (pl_main_flag & STATE_SCIENCE); //saving current pl_state uint64_t temp_time; temp_time=FCTN_CDMS_RD_RTC(); pl_time = (uint32_t)((temp_time>>7) & 0x000000000FFFFFFF); //call test3() here //test3(1); //gPC.printf("\n\rprev_state :%d",(PL_PREV_STATE)>>4); gPC.printf("\n\n\rtTime_RTC:"); gPC.printf("\n\rYear :%d\t",((pl_time & 0x0C000000)>>26)+2016); gPC.printf("Month :%d\t",((pl_time & 0x03C00000)>>22)); gPC.printf("Day :%d",((pl_time & 0x003E0000)>>17)); gPC.printf("\n\rHours :%d",((pl_time & 0x0001F000)>>12)); gPC.printf("\tMin :%d",((pl_time & 0x00000FC0)>>6)); gPC.printf("\t\tSec :%d",(pl_time & 0x0000003F)); if(pl_time!=0) //RTC read successful { // run the loop until end of schedule is reached or month and day are both zeros or future block is found gPC.printf("\n\rRTC read success"); for(i=0;(i<192)&&(((uint16_t)((pl_block[i] & 0x3FE00000)>>21))!=0);i++) { if(((pl_block[i]>>4) & 0x0FFFFFFF)>pl_time) //Checking for future blocks { pl_next_index=i; gPC.printf("\n\rFuture block found at index = %d",pl_next_index); break; } } } if((pl_next_index==-1) || pl_time==0) //RTC read failed or Future block not found { if(PL_PREV_STATE==STATE_SCIENCE) { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= STATE_HIBERNATE; } else { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= PL_PREV_STATE; } if(pl_time==0) { gPC.printf("\n\rRTC read failed"); } if(pl_next_index==-1) { gPC.printf("\n\rFuture block not found"); gPC.printf("\n\rpl_next_index = %d",pl_next_index); } gPC.printf("\n\rNew pl_state = %d",(pl_main_flag&(~STATE_SCIENCE))>>2); } //Processing the PL schedule if(((pl_block[pl_next_index-1] & UNEXECUTED)==3)||((pl_block[pl_next_index-1] & UNEXECUTED)==2)) { if(((pl_block[pl_next_index-1] & UNEXECUTED)==3)) gPC.printf("\n\rElapsed blocked not executed"); else gPC.printf("\n\rElapsed block marked for retry"); gPC.printf("\n\r Retrieving pl_state from schedule"); if((pl_block[pl_next_index-1] & 0x0000000C)==0) { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= STATE_OFF; } if((pl_block[pl_next_index-1] & 0x0000000C)==4) { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= STATE_STANDBY; } if((pl_block[pl_next_index-1] & 0x0000000C)==8) { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= STATE_HIBERNATE; } if((pl_block[pl_next_index-1] & 0x0000000C)==12) { pl_main_flag = pl_main_flag & (~STATE_SCIENCE); pl_main_flag |= STATE_SCIENCE; } } else if((pl_block[pl_next_index-1] & UNEXECUTED)==1) { gPC.printf("\n\rElapsed block is executed"); pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status print_exit(temp); return; } else if((pl_block[pl_next_index-1] & UNEXECUTED)==0) { gPC.printf("\n\rEmpty Schedule Block"); pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status print_exit(temp); return; } switch(pl_main_flag & STATE_SCIENCE) //Checking PL_STATE { case STATE_OFF: { gPC.printf("\n\rEntered PL_OFF case"); if(PL_BEE_SW_STATUS!=0) { gPC.printf("\n\rCommanding PL_BEE to go to Standby State"); Base_tm *tm_ptr_standby; SET_PL_BEE_STANDBY(tm_ptr_standby); //No ack needed now gPC.printf("\n\rPowering OFF PL_BEE"); SET_PL_BEE_OFF; PL_BEE_SW_STATUS=0; } pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_OFF; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= EXECUTED; pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; } case STATE_STANDBY: { gPC.printf("\n\rEntered PL_STANDBY case"); if(PL_BEE_SW_STATUS==0) { gPC.printf("\n\rPowering on PL_BEE"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Standby State"); Base_tm *tm_ptr_standby; SET_PL_BEE_STANDBY(tm_ptr_standby); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_STANDBY; } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; //////DELETE THE TM AND TC LATER } case STATE_HIBERNATE: { gPC.printf("\n\rEntered PL_HIBERNATE case"); if(POWER_LEVEL==2 || POWER_LEVEL==3 || POWER_LEVEL==0) { if(PL_BEE_SW_STATUS==0) { gPC.printf("Powering on PL_BEE\r\n"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Hibernate State"); Base_tm *tm_ptr_hibernate; SET_PL_BEE_HIBERNATE(tm_ptr_hibernate); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_HIBERNATE; } } else { pl_main_flag |= PL_LOW_POWER; if(PL_BEE_SW_STATUS==0) { gPC.printf("\n\rPowering on PL_BEE"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Standby State"); Base_tm *tm_ptr_standby; SET_PL_BEE_STANDBY(tm_ptr_standby); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_STANDBY; } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; //////DELETE THE TM AND TC LATER } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; //////DELETE THE TM LATER } case STATE_SCIENCE: { gPC.printf("\n\rEntered PL_SCIENCE case"); if(POWER_LEVEL==3 || POWER_LEVEL==0) //POWER_LEVEL = 0 = NA { gPC.printf("\n\rPOWER_LEVEL = 3 or NA"); if(PL_BEE_SW_STATUS==0) { gPC.printf("\n\rPowering on PL_BEE"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Science State"); Base_tm *tm_ptr_science; SET_PL_BEE_SCIENCE(tm_ptr_science); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_SCIENCE; } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; } else { gPC.printf("\n\rPower level = 2,3 or NA"); pl_main_flag |= PL_LOW_POWER; if(POWER_LEVEL==2 || POWER_LEVEL==3 || POWER_LEVEL==0) { if(PL_BEE_SW_STATUS==0) { gPC.printf("\n\rPowering on PL_BEE"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Hibernate State"); Base_tm *tm_ptr_hibernate; SET_PL_BEE_HIBERNATE(tm_ptr_hibernate); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_HIBERNATE; } } else { pl_main_flag |= PL_LOW_POWER; if(PL_BEE_SW_STATUS==0) { gPC.printf("\n\rPowering on PL_BEE"); SET_PL_BEE_ON; PL_BEE_SW_STATUS=1; } gPC.printf("\n\rCommanding PL_BEE to go to Standby State"); Base_tm *tm_ptr_standby; SET_PL_BEE_STANDBY(tm_ptr_standby); if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C) { pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_STANDBY; } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; //////DELETE THE TM AND TC LATER } pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; //////DELETE THE TM LATER } } default: { gPC.printf("\n\rInvalid PL_STATE in block at index = %d",pl_next_index-1); pl_main_flag = pl_main_flag & (~PL_DISABLED); pl_main_flag |= PL_INVALID_STATE; pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status pl_block[pl_next_index-1] |= EXECUTED; pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS print_processed_block(pl_next_index-1); print_exit(temp); return; } } }