FINAL ACS TO BE USED FOR TESTING. COMMISSIONING, ACS MAIN, DATA ACQ ALL DONE.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_FULL_Flowchart_BAE by
main.cpp
- Committer:
- Bragadeesh153
- Date:
- 2016-04-13
- Revision:
- 12:af1d7e18b868
- Parent:
- 9:194afacf7449
- Child:
- 13:fb7facaf308b
File content as of revision 12:af1d7e18b868:
#include "mbed.h" #include "rtos.h" #include "pin_config.h" #include "ACS.h" #include "EPS.h" #include "BCN.h" #include "TCTM.h" #define tm_len 134 #define tc_len 135 #define batt_heat_low 20 //***************************************************** flags *************************************************************// uint32_t BAE_STATUS = 0x00000000; uint32_t BAE_ENABLE = 0xFFFFFFFF; //i2c// char data_send_flag = 'h'; //.........acs...............// /* char ACS_INIT_STATUS = 'q'; char ACS_DATA_ACQ_STATUS = 'q'; char ACS_ATS_STATUS = 'q'; char ACS_MAIN_STATUS = 'q'; char ACS_STATUS = 'q'; char ACS_ATS_ENABLE = 'q'; char ACS_DATA_ACQ_ENABLE = 'q'; char ACS_STATE = 'q';*/ uint8_t ACS_INIT_STATUS = 0; uint8_t ACS_DATA_ACQ_STATUS = 0; uint8_t ACS_ATS_STATUS = 0; uint8_t ACS_MAIN_STATUS = 0; uint8_t ACS_STATUS = 0; uint8_t ACS_ATS_ENABLE = 1; uint8_t ACS_DATA_ACQ_ENABLE = 1; uint8_t ACS_STATE = 4; //.....................eps...................// //eps init /*char EPS_INIT_STATUS = 'q'; char EPS_BATTERY_GAUGE_STATUS = 'q'; //eps main char EPS_MAIN_STATUS = 'q'; char EPS_BATTERY_TEMP_STATUS = 'q'; char EPS_STATUS = 'q'; char EPS_BATTERY_HEAT_ENABLE = 'q'; */ uint8_t EPS_INIT_STATUS = 0; uint8_t EPS_BATTERY_GAUGE_STATUS = 0; //eps main uint8_t EPS_MAIN_STATUS = 0; uint8_t EPS_BATTERY_TEMP_STATUS = 0; uint8_t EPS_STATUS = 7; //invalid status uint8_t EPS_BATTERY_HEAT_ENABLE = 0; //.......................global variables..................................................................// new hk structure- everything has to changed based on this uint8_t BAE_data[74]; char BAE_chardata[74]; //*************************************Global declarations************************************************// const int addr = 0x20; //slave address Timer t_rfsilence; Timer t_start; Timer t_tc; Timer t_tm; Serial pc(USBTX, USBRX); int power_flag_dummy=2; float data[6]; extern float moment[3]; extern uint8_t BCN_FEN; extern BAE_HK_actual actual_data; extern BAE_HK_quant quant_data; extern BAE_HK_min_max bae_HK_minmax; extern BAE_HK_arch arch_data; int write_ack = 1; int read_ack = 1; char telecommand[tc_len]; char* telemetry; bool pf1check = 0; bool pf2check = 0; bool if1check = 0; bool if2check = 1; //*****************************************************Assigning pins******************************************************// DigitalOut ATS1_SW_ENABLE(PTC0); // enable of att sens2 switch DigitalOut ATS2_SW_ENABLE(PTC16); // enable of att sens switch InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS I2CSlave slave (PIN1,PIN2); DigitalOut batt_heat(PIN96); //ATS1_SW_ENABLE = 0; PwmOut PWM1(PIN93); //x //Functions used to generate PWM signal PwmOut PWM2(PIN94); //y PwmOut PWM3(PIN95); //z //PWM output comes from pins p6 //........faults //Polled Faults DigitalIn pf1(PIN5);//Attitude Sensor 1 OC bar fault signal DigitalIn pf2(PIN97);//Attitude Sensor 2 OC bar fault signal DigitalIn pf3(PIN83);//Fault Bar for TRXY driver //Interrupt based faults InterruptIn ir1(PIN73);//Battery Gauge - Alert Bar Signal InterruptIn ir2(PIN72);//TRXY Driver TR switch Fault InterruptIn ir3(PIN89);//TRZ Driver Fault Bar InterruptIn ir4(PIN91);//TRZ Driver TR switch Fault InterruptIn ir5(PIN79);//CDMS - Switch Fault InterruptIn ir6(PIN80);//Beacon- Switch OC bar InterruptIn ir7(PIN42);//Charger IC - Fault Bar DigitalOut TRXY_SW_EN(PIN71); //TR XY Switch DigitalOut DRV_Z_SLP(PIN88); //Sleep pin of driver z DigitalOut TRZ_SW(PIN40); //TR Z Switch DigitalOut CDMS_RESET(PIN7); // CDMS RESET DigitalOut BCN_SW(PIN14); //Beacon switch DigitalOut DRV_XY_SLP(PIN82); /*****************************************************************Threads USed***********************************************************************************/ Thread *ptr_t_i2c; /*********************************************************FCTN HEADERS***********************************************************************************/ void FCTN_ISR_I2C(); void FCTN_TM(); void F_ACS(); void F_EPS(); void F_BCN(); //*******************************************ACS THREAD**************************************************// uint8_t iterP1; uint8_t iterP2; uint8_t iterI1; uint8_t iterI2; void F_ACS() { //...................// if(pf1check == 1) { if(iterP1 >= 3) { ATS1_SW_ENABLE = 1; // turn off ats1 permanently //FCTN_SWITCH_ATS(0); // switch on ATS2 } else { ATS1_SW_ENABLE = 0; iterP1++; } pf1check = 0; } if(pf2check == 1) { if(iterP1 >= 3) { ATS2_SW_ENABLE = 1; // turn off ats2 permanently ACS_DATA_ACQ_ENABLE == 0; ACS_STATE == 2 ; // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY } else { ATS2_SW_ENABLE = 0; iterP2++; } pf2check = 0; } if(if1check == 1) { if(iterI1 >= 3) { TRXY_SW_EN = 0; // turn off TRXY permanently } else { TRXY_SW_EN = 1; //switch on TRXY iterI1++; } } if(if2check == 1) { if(iterI2 >= 3) { TRZ_SW = 0; // turn off TRZ permanently ACS_STATE == 2 ; // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY } else { TRZ_SW = 1; //switch on Z iterI2++; } } //float b1[3]={-23.376,-37.56,14.739}, omega1[3]={-1.52,2.746,0.7629}, moment1[3]= {1.0498,-1.0535,1.3246}; //b1[3] = {22, 22,10}; //omega1[3] = {2.1,3.0,1.5}; // ATS1_SW_ENABLE = 0; // att sens2 switch is disabled // ATS2_SW_ENABLE = 0; // att sens switch is disabled //Thread::signal_wait(0x1); ACS_MAIN_STATUS = 1; //set ACS_MAIN_STATUS flag PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins pc.printf("\n\rEntered ACS %f\n",t_start.read()); if(ACS_DATA_ACQ_ENABLE == 1)// check if ACS_DATA_ACQ_ENABLE = 1? { FLAG(); FCTN_ATS_DATA_ACQ(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3 pc.printf("gyro values\n\r"); //printing the angular velocity and magnetic field values for(int i=0; i<3; i++) { pc.printf("%f\n\r",actual_data.AngularSpeed_actual[i]); } pc.printf("mag values\n\r"); for(int i=0; i<3; i++) { pc.printf("%f\n\r",actual_data.Bvalue_actual[i]); } // for(int i=0;i<3;i++) // { // omega1[i]= data[i]; // b1[i] = data[i+3]; // } }//if ACS_DATA_ACQ_ENABLE = 1 else { // Z axis actuation is the only final solution, } if(ACS_STATE == 0) // check ACS_STATE = ACS_CONTROL_OFF? { printf("\n\r acs control off\n"); FLAG(); ACS_STATUS = 0; // set ACS_STATUS = ACS_CONTROL_OFF PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } else { if(actual_data.power_mode>1) { if(ACS_STATE == 2) // check ACS_STATE = ACS_ZAXIS_MOMENT_ONLY { FLAG(); printf("\n\r z axis moment only\n"); ACS_STATUS = 2; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY // FCTN_ACS_CNTRLALGO(b1, omega1); moment[0] = 0; moment[1] = 0; moment[2] =1.3;// is a dummy value FCTN_ACS_GENPWM_MAIN(moment) ; } else { if(ACS_STATE == 3) // check ACS_STATE = ACS_DATA_ACQ_FAILURE { FLAG(); printf("\n\r acs data failure "); ACS_STATUS = 3; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } else { if(ACS_STATE == 4) // check ACS_STATE = ACS_NOMINAL_ONLY { FLAG(); printf("\n\r nominal"); ACS_STATUS = 4; // set ACS_STATUS = ACS_NOMINAL_ONLY FCTN_ACS_CNTRLALGO(actual_data.Bvalue_actual,actual_data.AngularSpeed_actual); printf("\n\r moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; } else { if(ACS_STATE == 5) // check ACS_STATE = ACS_AUTO_CONTROL { FLAG(); printf("\n\r auto control"); ACS_STATUS = 5; // set ACS_STATUS = ACS_AUTO_CONTROL //FCTN_ACS_AUTOCTRL_LOGIC // gotta include this code } else { if(ACS_STATE == 6) // check ACS_STATE = ACS_DETUMBLING_ONLY { FLAG(); printf("\n\r Entered detumbling \n"); ACS_STATUS = 6; // set ACS_STATUS = ACS_DETUMBLING_ONLY FCTN_ACS_CNTRLALGO(actual_data.Bvalue_actual,actual_data.AngularSpeed_actual); // detumbling code has to be included FCTN_ACS_GENPWM_MAIN(moment) ; } else { FLAG(); printf("\n\r invalid state"); ACS_STATUS = 7 ; // set ACS_STATUS = INVALID STATE PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins }//else of invalid }//else of autocontrol }//else of nominal }//else of data acg failure }//else fo z axis moment only }//if power >2 else { FLAG(); printf("\n\r low power"); ACS_STATUS = 1; // set ACS_STATUS = ACS_LOW_POWER PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins } } //else for acs control off ACS_MAIN_STATUS = 0; //clear ACS_MAIN_STATUS flag } //***************************************************EPS THREAD***********************************************// void F_EPS() { pc.printf("\n\rEntered EPS %f\n",t_start.read()); EPS_MAIN_STATUS = 1; // Set EPS main status FCTN_BATT_TEMP_SENSOR_MAIN(actual_data.Batt_temp_actual); pc.printf("\n\r Battery temperature %f %f" ,actual_data.Batt_temp_actual[0], actual_data.Batt_temp_actual[1]); EPS_BATTERY_TEMP_STATUS = 1; //set EPS_BATTERY_TEMP_STATUS if(EPS_BATTERY_HEAT_ENABLE == 1) { if((actual_data.Batt_temp_actual[0] < batt_heat_low) && (actual_data.Batt_temp_actual[1] < batt_heat_low)) // to confirm { batt_heat = 1; //turn on battery heater } else { batt_heat = 0; //turn off battery heater } } else if(EPS_BATTERY_HEAT_ENABLE == 0) { EPS_STATUS = 1;//EPS_STATUS = EPS_BATTERY_HEATER_DISABLED } FCTN_BATTERYGAUGE_MAIN(actual_data.Batt_gauge_actual); if (actual_data.Batt_gauge_actual[1] == 200) //data not received { actual_data.power_mode = 1; EPS_BATTERY_GAUGE_STATUS = 0; //clear EPS_BATTERY_GAUGE_STATUS } else { FCTN_EPS_POWERMODE(actual_data.Batt_gauge_actual[1]); //updating power level EPS_BATTERY_GAUGE_STATUS = 1; //set EPS_BATTERY_GAUGE_STATUS } // if( Temperature data received) //{ // } // else // { // Set battery temp to XX // EPS_BATTERY_TEMP_STATUS = 0; //clear EPS_BATTERY_TEMP_STATUS // EPS_STATUS = EPS_ERR_BATTERY_TEMP; // } FCTN_HK_MAIN(); // printf("\n\r here"); FCTN_APPEND_HKDATA(); minMaxHkData(); //printf("\n\r here"); EPS_MAIN_STATUS = 0; // clear EPS main status } //**************************************************BCN THREAD*******************************************************************// void F_BCN() { pc.printf("\n\rEntered BCN %f\n",t_start.read()); FCTN_BCN_TX_MAIN(); } //**************************************************TCTM THREAD*******************************************************************// void T_TC(void const * args) { while(1) { Thread::signal_wait(0x4); wait_us(200); // can be between 38 to 15700 if( slave.receive() == 0) slave.stop(); else if( slave.receive() == 1) // slave writes to master { if(data_send_flag == 'h') { //FCTN_APPEND_HKDATA(); // pc.printf("\n\r here"); write_ack=slave.write(BAE_chardata,74); } else if(data_send_flag == 't') { write_ack=slave.write(telemetry,tm_len); data_send_flag = 'h'; irpt_2_mstr = 0; } } else if( slave.receive()==3 || slave.receive()==2) // slave read { read_ack=slave.read(telecommand,tc_len); t_tc.start(); //pc.printf("\n\rTELECOMMAND received from CDMS is %s \n",telecommand); pc.printf("\n\r Executing Telecommand \n"); // FCTN_TC_DECODE((uint8_t*) telecommand); uint8_t* temp = FCTN_BAE_TM_TC((uint8_t*) telecommand); telemetry = (char*)temp; FCTN_TM(); t_tc.stop(); printf("\n\r time taken %d",t_tc.read_us()); t_tc.reset(); // for(int i = 0; i<134; i++) //pc.printf("%c", telemetry[i]); } } } void FCTN_TM() { //irpt_2_mstr = 0; data_send_flag = 't'; pc.printf("\n\r Telemetry Generation \n"); irpt_2_mstr = 1; } //******************************************************* I2C *******************************************************************// void FCTN_I2C_ISR() { ptr_t_i2c->signal_set(0x4); } //***********************************************************FAULTS***************************************************************// /*void ir1clear() { actual_data.faultIr_status |= 0x01; // alert }*/ void ir2clear() { actual_data.faultIr_status |= 0x02; TRXY_SW_EN = 0; // Switch off TR XY if1check = 1; } void ir3clear() { actual_data.faultIr_status |= 0x04; DRV_Z_SLP = 0; wait_us(1); DRV_Z_SLP = 1; } void ir4clear() { if2check = 1; actual_data.faultIr_status |= 0x08; TRZ_SW = 0; } void ir5clear() { actual_data.faultIr_status |= 0x10; CDMS_RESET = 0; wait_us(1); CDMS_RESET = 1; } void ir6clear() { actual_data.faultIr_status |= 0x20; BCN_SW = 0; wait_us(1); BCN_SW = 1; } void ir7clear() { actual_data.faultIr_status |= 0x40; } uint8_t iter2=0,iter4 = 0; void pollfault() { if (pf1==0) // OC_ATS1 { pf1check=1; actual_data.faultPoll_status |=0x01 ; ATS1_SW_ENABLE = 1; // turn off ats1 // to be turned on next cycle in ACS } else actual_data.faultPoll_status &= 0xFE; if (pf2==0) { pf2check=1; actual_data.faultPoll_status |=0x02 ; ATS2_SW_ENABLE = 1; // turn off ats2 // turn on in ACS } else actual_data.faultPoll_status &= 0xFD; if (pf3==0) { actual_data.faultPoll_status |=0x04 ; DRV_XY_SLP = 0; wait_us(1); DRV_XY_SLP = 1; } else actual_data.faultPoll_status &= 0xFB; /*if (ir1==1) { actual_data.faultIr_status &=0xFE; }*/ if (ir2==1) { actual_data.faultIr_status &=0xFD; } if (ir3==1) { actual_data.faultIr_status &=0xFB; } if (ir4==1) { actual_data.faultIr_status &=0xF7; } if (ir5==1) { actual_data.faultIr_status &=0xEF; } if (ir6==1) { actual_data.faultIr_status &=0xDF; }if (ir7==1) { actual_data.faultIr_status &=0xBF; } } //------------------------------------------------------------------------------------------------------------------------------------------------ //SCHEDULER //------------------------------------------------------------------------------------------------------------------------------------------------ uint8_t schedcount=1; void T_SC(void const *args) { printf("\n\r in scheduler"); if(schedcount == 7) //to reset the counter { schedcount = 1; } if(schedcount%1==0) { F_ACS(); } if(schedcount%2==0) { F_EPS(); } if(schedcount%3==0) { F_BCN(); } schedcount++; printf("\n\r exited scheduler"); } Timer t_flag; void FLAG() { //.............acs..................// if(ACS_INIT_STATUS == 1) BAE_STATUS = BAE_STATUS | 0x00000080; //set ACS_INIT_STATUS flag else if(ACS_INIT_STATUS == 0) BAE_STATUS &= 0xFFFFFF7F; //clear ACS_INIT_STATUS flag if(ACS_DATA_ACQ_STATUS == 1) BAE_STATUS =BAE_STATUS | 0x00000100; //set ACS_DATA_ACQ_STATUS flag else if(ACS_DATA_ACQ_STATUS == 0) BAE_STATUS &= 0xFFFFFEFF; //clear ACS_DATA_ACQ_STATUS flag if(ACS_ATS_ENABLE == 1) BAE_ENABLE |= 0x00000004; else if(ACS_ATS_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFFFB | 0x00000004; if(ACS_DATA_ACQ_STATUS == 'f') BAE_STATUS |= 0x00000200; if(ACS_MAIN_STATUS == 1) BAE_STATUS = (BAE_STATUS | 0x00001000); //set ACS_MAIN_STATUS flag else if(ACS_MAIN_STATUS == 0) BAE_STATUS &= 0xFFFFEFFF; //clear ACS_MAIN_STATUS flag if(ACS_STATUS == '0') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF); // set ACS_STATUS = ACS_CONTROL_OFF else if(ACS_STATUS == '1') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x00002000; // set ACS_STATUS = ACS_LOW_POWER else if(ACS_STATUS == '2') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF)| 0x00004000; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATUS == '3') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00006000; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATUS == '4') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00008000; // set ACS_STATUS = ACS_NOMINAL_ONLY else if(ACS_STATUS == '5') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000A000; // set ACS_STATUS = ACS_AUTO_CONTROL else if(ACS_STATUS == '6') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000C000; // set ACS_STATUS = ACS_DETUMBLING_ONLY else BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000E000; // set ACS_STATUS = INVALID STATE if(ACS_STATE == '0') BAE_ENABLE = (BAE_ENABLE & 0xFFFFFF8F); //ACS_STATE = ACS_CONTROL_OFF else if(ACS_STATE == '2') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000020); // ACS_STATE = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATE == '3') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000030); // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATE == '4') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000040); // ACS_STATE = ACS_NOMINAL_ONLY else if(ACS_STATE == '5') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000050); // ACS_STATE = ACS_AUTO_CONTROL else if(ACS_STATE == '6') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000060); //ACS_STATE = ACS_DETUMBLING_CONTROL //...............eps......................// if (EPS_INIT_STATUS==1) // Set EPS_INIT_STATUS BAE_STATUS |= 0x00010000; else if(EPS_INIT_STATUS==0) // Clear BAE_STATUS &= 0xFFFEFFFF; if (EPS_MAIN_STATUS==1) // Set EPS_MAIIN_STATUS BAE_STATUS |= 0x00040000; else if(EPS_MAIN_STATUS==0) // Clear BAE_STATUS &= 0xFFFBFFFF; if (EPS_BATTERY_GAUGE_STATUS==1) // Set EPS_BATTERY_GAUGE_STATUS BAE_STATUS |= 0x00020000; else if(EPS_BATTERY_GAUGE_STATUS==0) // Clear BAE_STATUS &= 0xFFFDFFFF; if (EPS_BATTERY_TEMP_STATUS==1) // Set EPS_BATTERY_TEMP_STATUS BAE_STATUS |= 0x00080000; else if(EPS_BATTERY_TEMP_STATUS==0) // Clear BAE_STATUS &= 0xFFF7FFFF; if (EPS_STATUS==0) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF); // Set EPS_ERR_BATTERY_TEMP else if (EPS_STATUS==1) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00010000; // Set EPS_BATTERY_HEATER_DISABLED else if (EPS_STATUS==2) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00020000; // Set EPS_ERR_HEATER_SWITCH_OFF else if (EPS_STATUS==3) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00030000; // Set EPS_ERR_HEATER_SWITCH_ON else if (EPS_STATUS==4) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00040000; // Set EPS_BATTERY_HEATER_OFF else if (EPS_STATUS==5) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00050000; // Set EPS_BATTERY_HEATER_ON if(EPS_BATTERY_HEAT_ENABLE == 1) BAE_ENABLE |= 0x00000080; else if(EPS_BATTERY_HEAT_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFF7; pc.printf("\n\r BAE status %x BAE ENABLE %x ",BAE_STATUS,BAE_ENABLE); } void FCTN_BAE_INIT() { printf("\n\r Initialising BAE "); //..........intial status....// ACS_STATE = '4'; ACS_ATS_ENABLE = 1; ACS_DATA_ACQ_ENABLE = 1; EPS_BATTERY_HEAT_ENABLE = 1; //............intializing pins................// ATS1_SW_ENABLE = 0; ATS2_SW_ENABLE = 1; //............................// FCTN_ACS_INIT(); FCTN_EPS_INIT(); FCTN_BCN_INIT(); FLAG(); } int main() { pc.printf("\n\r BAE Activated. Testing Version 1.1 \n"); /* if (BCN_FEN == 0) //dummy implementation { pc.printf("\n\r RF silence "); FCTN_BCN_FEN(); t_rfsilence.start();//Start the timer for RF_Silence while(t_rfsilence.read() < RF_SILENCE_TIME); } */ //ACS_INIT_STATUS = 0; //ACS_DATA_ACQ_STATUS = 0; FLAG(); FCTN_BAE_INIT(); //...i2c.. //strcpy(telemetry,"This is telemetry THis is sample telemetry. ffffffffffffffffffffffffffffff end"); slave.address(addr); irpt_2_mstr = 0; ptr_t_i2c = new Thread(T_TC); ptr_t_i2c->set_priority(osPriorityHigh); irpt_4m_mstr.enable_irq(); irpt_4m_mstr.rise(&FCTN_I2C_ISR); // ir1.fall(&ir1clear); //Battery Gauge - Alert Bar Signal ir2.fall(&ir2clear); //TRXY Driver TR switch Fault ir3.fall(&ir3clear); //TRZ Driver Fault Bar ir4.fall(&ir4clear); //TRZ Driver TR switch Fault ir5.fall(&ir5clear); //CDMS - Switch Fault ir6.fall(&ir6clear); //Beacon- Switch OC bar ir7.fall(&ir7clear); //Charger IC - Fault Bar RtosTimer t_sc_timer(T_SC,osTimerPeriodic); // Initiating the scheduler thread t_sc_timer.start(10000); t_start.start(); pc.printf("\n\rStarted scheduler %f\n\r",t_start.read()); ATS1_SW_ENABLE = 0; // att sens2 switch is enabled //FCTN_BAE_INIT(); while(1); //required to prevent main from terminating }