FINAL ACS TO BE USED FOR TESTING. COMMISSIONING, ACS MAIN, DATA ACQ ALL DONE.

Dependencies:   FreescaleIAP mbed-rtos mbed

Fork of ACS_FULL_Flowchart_BAE by Team Fox

ACS.cpp

Committer:
sakthipriya
Date:
2015-12-24
Revision:
0:7b4c00e3912f
Child:
3:07e15677a75c

File content as of revision 0:7b4c00e3912f:

/*------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/
#include <mbed.h>
#include <math.h>

#include "pni.h" //pni header file
#include "pin_config.h"
#include "ACS.h"


//********************************flags******************************************//
extern uint32_t BAE_STATUS;
extern uint32_t BAE_ENABLE;
extern char ACS_INIT_STATUS;
extern char ACS_DATA_ACQ_STATUS;
extern char ACS_ATS_STATUS;
extern char ACS_MAIN_STATUS;
extern char ACS_STATUS;

extern char ACS_ATS_ENABLE;
extern char ACS_DATA_ACQ_ENABLE;
extern char ACS_STATE;

DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod
DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod
DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod

extern PwmOut PWM1; //x                         //Functions used to generate PWM signal 
extern PwmOut PWM2; //y
extern PwmOut PWM3; //z                         //PWM output comes from pins p6

int g_err_flag_TR_x=0;       // setting x-flag to zero
int g_err_flag_TR_y=0;       // setting y-flag to zero
int g_err_flag_TR_z=0;       // setting z-flag to zero

extern float data[6];


//DigitalOut gpo1(PTC0); // enable of att sens2 switch
//DigitalOut gpo2(PTC16); // enable of att sens switch


Serial pc_acs(USBTX,USBRX); //for usb communication
void inverse(float mat[3][3],float inv[3][3]);
  
int ctrl_count = 0;
float bcopy[3];
float moment[3];
 ///////algo working well
void FCTN_ACS_CNTRLALGO(float b[3],float omega[3])
{
    float db[3];
    float bb[3]={0,0,0};
    float d[3]={0,0,0};
    float Jm[3][3]={{0.2730,0,0},{0,0.3018,0},{0,0,0.3031}};
    float den=0,den2;
    int i,j;                   //temporary variables
    float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0};           //outputs
    float invJm[3][3];
    float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4;
    
    //................. calculating db values...........................
    if(ctrl_count!=0)
    {
        for(i=0;i<3;i++)
        db[i]= (b[i]-bcopy[i])/10;
    }
    else
    {
        for(i=0;i<3;i++)
        db[i]= 0;
    }
    ctrl_count++;
    //..................................................................
    printf("\n\r Entered cntrl algo\n\r");
    for(int i=0; i<3; i++) 
        {
        printf("%f\t",omega[i]);
        }
    for(int i=0; i<3; i++) 
        {
        printf("%f\t",b[i]);
        }

    //.........................algo......................................
    den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2]));
    den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]);
    for(i=0;i<3;i++)
    {
        db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3));
        //db[i]/=den*den*den;
    }
    for(i=0;i<3;i++)
    {
        b[i]/=den;
    }
    // select kz, kmu, gamma
    if(b[0]>0.9||b[0]<-0.9)
    {
        kz=kz2;
        kmu=kmu2;
        gamma=gamma2;
    }
    // calculate Mu, v, dv, z, u
    for(i=0;i<2;i++)
    {
        Mu[i]=b[i+1];
        v[i]=-kmu*Mu[i];
        dv[i]=-kmu*db[i+1];
        z[i]=db[i+1]-v[i];
        u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma);
    }
    inverse(Jm,invJm);
    for(i=0;i<3;i++)
    {
        for(j=0;j<3;j++)
            bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]);
    }
    for(i=0;i<3;i++)
    {
        for(j=0;j<3;j++)
            d[i]+=bb[j]*invJm[i][j];
    }
    bb[1]=u[0]+(d[0]*b[2])-(d[2]*b[0])-(omega[0]*db[2])+(omega[2]*db[0]);
    bb[2]=u[1]-(d[0]*b[1])+(d[1]*b[0])+(omega[0]*db[1])-(omega[1]*db[0]);
    bb[0]=0;
    for(i=0;i<3;i++)
    {
        d[i]=invJm[1][i];
        invJm[1][i]=b[2]*invJm[0][i]-b[0]*invJm[2][i];
        invJm[2][i]=-b[1]*invJm[0][i]+b[0]*d[i];
        invJm[0][i]=b[i];
    }
    inverse(invJm,Jm);
    printf("\n \r calculating tauc");
    for(i=0;i<3;i++)
    {
        for(j=0;j<3;j++)
            tauc[i]+=Jm[i][j]*bb[j];            // calculating torque values
            printf(" %f \t",tauc[i]);    
    }
    //..........................tauc to moment conversion..........................
    printf("\n \r calculating moment");
    for(i=0;i<3;i++)
        bcopy[i]=b[i]*den;
    for(i=0;i<3;i++)
    {
        moment[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3];
        moment[i]/=den;
        printf(" %f \t",moment[i]); 
    }
    printf("\n\r exited control algo\n");
}
//..........................function to find inverse..................
void inverse(float mat[3][3],float inv[3][3])
{
    int i,j;
    float det=0;
    for(i=0;i<3;i++)
    { 
        for(j=0;j<3;j++)
            inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]);
    }
    det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]);
    for(i=0;i<3;i++)
    { 
        for(j=0;j<3;j++)
            inv[i][j]/=det;
    }
}


I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl  for the attitude sensors and battery gauge

void FCTN_ACS_INIT(void); //initialization of registers happens
void FCTN_ATS_DATA_ACQ(); //data is obtained
void T_OUT(); //timeout function to stop infinite loop
Timeout to; //Timeout variable to
int toFlag; 

int count =0; // Time for which the BAE uC is running (in seconds)
void T_OUT()
{
    toFlag=0; //as T_OUT function gets called the while loop gets terminated
}


//DEFINING VARIABLES
char cmd[2];
char raw_gyro[6];
char raw_mag[6];
char store,status;
int16_t bit_data;
float gyro_data[3], mag_data[3],combined_values[6];
float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps
float senstivity_mag  =32.768; //senstivity is obtained from 2^15/1000microtesla
float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0};

void  FCTN_ACS_INIT()
{
    ACS_INIT_STATUS = 's';     //set ACS_INIT_STATUS flag
    FLAG();
    pc_acs.printf("Attitude sensor init called \n \r");
    //FLAG();
    cmd[0]=RESETREQ;
    cmd[1]=BIT_RESREQ;
    i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
    wait_ms(2000); //waiting for loading configuration file stored in EEPROM
    cmd[0]=SENTRALSTATUS;
    i2c.write(SLAVE_ADDR,cmd,1);
    i2c.read(SLAVE_ADDR_READ,&store,1);
    wait_ms(100);
    //to check whether EEPROM is uploaded
    switch((int)store) { 
        case(3): {
            break;
        }
        case(11): {
            break;
        }
        default: {
            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(2000);
        }
    }
    pc_acs.printf("Sentral Status is %x\n \r",(int)store);
    cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
    cmd[1]=BIT_RUN_ENB;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
    cmd[1]=BIT_MAGODR;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
    cmd[1]=BIT_GYROODR;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values
    cmd[1]=0x00;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values
    cmd[1]=BIT_EVT_ENB;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    ACS_INIT_STATUS = 'c'; //set ACS_INIT_STATUS flag
}

void FCTN_ATS_DATA_ACQ()
{
    ACS_DATA_ACQ_STATUS = 's';        //set ACS_DATA_ACQ_STATUS flag for att sens 2
    if( ACS_ATS_ENABLE == 'e')
    {
    FLAG();
    pc_acs.printf("attitude sensor execution called \n \r");
    toFlag=1; //toFlag is set to 1 so that it enters while loop
    to.attach(&T_OUT,2); //after 2 seconds the while loop gets terminated 
    while(toFlag) {
        cmd[0]=EVT_STATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        i2c.read(SLAVE_ADDR_READ,&status,1);
        wait_ms(100);
        pc_acs.printf("Event Status is %x\n \r",(int)status);
        //if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take
        if(((int)status&40)==40) {
            cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x 
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
            cmd[0]=MAG_XOUT_H; //LSB of x
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_mag,6);
        //    pc_acs.printf("\nGyro Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating gyro LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; 
                gyro_data[i]=(float)bit_data;
                gyro_data[i]=gyro_data[i]/senstivity_gyro;
                gyro_data[i]+=gyro_error[i];
    //            pc_acs.printf("%f\t",gyro_data[i]);
            }
       //     pc_acs.printf("\nMag Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating mag LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
                mag_data[i]=(float)bit_data;
                mag_data[i]=mag_data[i]/senstivity_mag;
                mag_data[i]+=mag_error[i];
      //          pc_acs.printf("%f\t",mag_data[i]);
            }
            for(int i=0; i<3; i++) {
                data[i]=gyro_data[i];
                data[i+3]=mag_data[i];
            }
          //  return(combined_values); //returning poiter combined values
        } 
       //checking for the error
        else if (((int)status&2)==2) {
            FCTN_ACS_INIT(); //when there is any error then Again inilization is done to remove error
        }
    }
    }
    else    //ACS_DATA_ACQ_STATUS = ACS_DATA_ACQ_FAILURE
    {
       ACS_DATA_ACQ_STATUS = 'f';   
    }
    ACS_DATA_ACQ_STATUS = 'c';        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
}

void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
    printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
    
    float l_duty_cycle_x=0;    //Duty cycle of Moment in x direction
    float l_current_x=0;       //Current sent in x TR's
    float l_duty_cycle_y=0;    //Duty cycle of Moment in y direction
    float l_current_y=0;       //Current sent in y TR's
    float l_duty_cycle_z=0;    //Duty cycle of Moment in z direction
    float l_current_z=0;       //Current sent in z TR's
 
    
    for(int i = 0 ; i<3;i++)
    {
     //   printf(" %f \t ",Moment[i]);  // taking the moment values from control algorithm as inputs
    }
    
    //-----------------------------  x-direction TR  --------------------------------------------//
    
    
    float l_moment_x = Moment[0];         //Moment in x direction
    
    phase_TR_x = 1;  // setting the default current direction
    if (l_moment_x <0)
    {
        phase_TR_x = 0;    // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_x = abs(l_moment_x);
    }
    
    l_current_x = l_moment_x * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    pc_acs.printf("current in trx is %f \r \n",l_current_x);
    if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_x =  6*1000000*pow(l_current_x,4) - 377291*pow(l_current_x,3) + 4689.6*pow(l_current_x,2) + 149.19*l_current_x - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation 
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;
    }
    else if( l_current_x >= 0.006 && l_current_x < 0.0116)
    { 
        l_duty_cycle_x = 1*100000000*pow(l_current_x,4) - 5*1000000*pow(l_current_x,3) + 62603*pow(l_current_x,2) - 199.29*l_current_x + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;             
    }
    else if (l_current_x >= 0.0116 && l_current_x < 0.0624)
    {
        l_duty_cycle_x = 212444*pow(l_current_x,4) - 33244*pow(l_current_x,3) + 1778.4*pow(l_current_x,2) + 120.91*l_current_x + 0.3878; // calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x >= 0.0624 && l_current_x < 0.555)
    {
        l_duty_cycle_x =  331.15*pow(l_current_x,4) - 368.09*pow(l_current_x,3) + 140.43*pow(l_current_x,2) + 158.59*l_current_x + 0.0338; // calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x==0)
    {
        printf("\n \r l_current_x====0");
        l_duty_cycle_x = 0;      // default value of duty cycle
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else                                           //not necessary
    {
        g_err_flag_TR_x = 1;
    } 
         
    //------------------------------------- y-direction TR--------------------------------------//
    
     
    float l_moment_y = Moment[1];         //Moment in y direction
    
    phase_TR_y = 1;  // setting the default current direction
    if (l_moment_y <0)
    {
        phase_TR_y = 0;   //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high  
        l_moment_y = abs(l_moment_y);
    }
    
    
    l_current_y = l_moment_y * TR_CONSTANT ;        //Moment and Current always have the linear relationship
     pc_acs.printf("current in try is %f \r \n",l_current_y);
    if( l_current_y>0 && l_current_y < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_y =  6*1000000*pow(l_current_y,4) - 377291*pow(l_current_y,3) + 4689.6*pow(l_current_y,2) + 149.19*l_current_y - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;
    }
    else if( l_current_y >= 0.006 && l_current_y < 0.0116)
    { 
        l_duty_cycle_y = 1*100000000*pow(l_current_y,4) - 5*1000000*pow(l_current_y,3) + 62603*pow(l_current_y,2) - 199.29*l_current_y + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;             
    }
    else if (l_current_y >= 0.0116&& l_current_y < 0.0624)
    {
        l_duty_cycle_y = 212444*pow(l_current_y,4) - 33244*pow(l_current_y,3) + 1778.4*pow(l_current_y,2) + 120.91*l_current_y + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y >= 0.0624 && l_current_y < 0.555)
    {
        l_duty_cycle_y =  331.15*pow(l_current_y,4) - 368.09*pow(l_current_y,3) + 140.43*pow(l_current_y,2) + 158.59*l_current_y + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y==0)
    {
        printf("\n \r l_current_y====0");
        l_duty_cycle_y = 0; // default value of duty cycle
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else                               // not necessary
    {
      g_err_flag_TR_y = 1;
    } 
             
    //----------------------------------------------- z-direction TR -------------------------//  
    
      
    float l_moment_z = Moment[2];         //Moment in z direction
    
    phase_TR_z = 1;   // setting the default current direction
    if (l_moment_z <0)
    {
        phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_z = abs(l_moment_z);
    }
    
    
    l_current_z = l_moment_z * TR_CONSTANT ;        //Moment and Current always have the linear relationship
     pc_acs.printf("current in trz is %f \r \n",l_current_z);
    if( l_current_z>0 && l_current_z < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_z =  6*1000000*pow(l_current_z,4) - 377291*pow(l_current_z,3) + 4689.6*pow(l_current_z,2) + 149.19*l_current_z - 0.0008;// calculating upto 0.1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;
    }
    else if( l_current_z >= 0.006 && l_current_z < 0.0116)
    { 
        l_duty_cycle_z = 1*100000000*pow(l_current_z,4) - 5*1000000*pow(l_current_z,3) + 62603*pow(l_current_z,2) - 199.29*l_current_z + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;             
    }
    else if (l_current_z >= 0.0116 && l_current_z < 0.0624)
    {
        l_duty_cycle_z = 212444*pow(l_current_z,4) - 33244*pow(l_current_z,3) + 1778.4*pow(l_current_z,2) + 120.91*l_current_z + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z >= 0.0624 && l_current_z < 0.555)
    {
        l_duty_cycle_z =  331.15*pow(l_current_z,4) - 368.09*pow(l_current_z,3) + 140.43*pow(l_current_z,2) + 158.59*l_current_z + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z==0)
    {
        printf("\n \r l_current_z====0");
        l_duty_cycle_z = 0; // default value of duty cycle
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else                               // not necessary
    {
        g_err_flag_TR_z = 1;
    }   
    
    //-----------------------------------------exiting the function-----------------------------------//
    
    printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
 
}