FINAL ACS TO BE USED FOR TESTING. COMMISSIONING, ACS MAIN, DATA ACQ ALL DONE.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_FULL_Flowchart_BAE by
main.cpp
- Committer:
- Bragadeesh153
- Date:
- 2016-06-13
- Revision:
- 18:21740620c65e
- Parent:
- 17:1e1955f3db75
- Child:
- 19:403cb36e22ed
File content as of revision 18:21740620c65e:
#include "mbed.h" #include "rtos.h" #include "pin_config.h" #include "ACS.h" #include "EPS.h" #include "BCN.h" #include "TCTM.h" #define tm_len 135 #define tc_len 11 #define batt_heat_low 20 //***************************************************** flags *************************************************************// uint32_t BAE_STATUS = 0x00000000; uint32_t BAE_ENABLE = 0xFFFFFFFF; //i2c// char data_send_flag = 'h'; //.........ACS...............// uint8_t ACS_INIT_STATUS = 0; uint8_t ACS_DATA_ACQ_STATUS = 0; uint8_t ACS_ATS_STATUS = 0x60; uint8_t ACS_MAIN_STATUS = 0; uint8_t ACS_STATUS = 0; uint8_t ACS_DETUMBLING_ALGO_TYPE = 0; uint8_t ACS_TR_Z_SW_STATUS=1; uint8_t ACS_TR_XY_SW_STATUS=1; uint8_t ACS_ATS_ENABLE = 1; uint8_t ACS_DATA_ACQ_ENABLE = 1; uint8_t ACS_STATE = 7; //.....................EPS...................// //eps init uint8_t EPS_INIT_STATUS = 0; uint8_t EPS_BATTERY_GAUGE_STATUS = 0; //eps main uint8_t EPS_MAIN_STATUS = 0; uint8_t EPS_BATTERY_TEMP_STATUS = 0; uint8_t EPS_STATUS = 7; //invalid status uint8_t EPS_BATTERY_HEAT_ENABLE = 0; //.......................global variables..................................................................// new hk structure- everything has to changed based on this uint8_t BAE_data[74]; char BAE_chardata[74]; //*************************************Global declarations************************************************// const int addr = 0x20; //slave address Timer t_rfsilence; Timer t_start; Timer t_tc; Timer t_tm; Serial pc(USBTX, USBRX); int power_flag_dummy=2; extern float gyro_data[3]; extern float mag_data[3]; extern float moment[3]; extern float b_old[3]; // Unit: Tesla extern float db[3]; extern uint8_t flag_firsttime; extern uint8_t BCN_FEN; extern BAE_HK_actual actual_data; extern BAE_HK_quant quant_data; extern BAE_HK_min_max bae_HK_minmax; extern BAE_HK_arch arch_data; int write_ack = 1; int read_ack = 1; char telecommand[tc_len]; extern uint8_t telemetry[135]; bool pf1check = 0; bool pf2check = 0; bool if1check = 0; bool if2check = 0; //*****************************************************Assigning pins******************************************************// DigitalOut ATS1_SW_ENABLE(PTC0); // enable of att sens2 switch DigitalOut ATS2_SW_ENABLE(PTC16); // enable of att sens switch InterruptIn irpt_4m_mstr(PIN38); //I2c interrupt from CDMS DigitalOut irpt_2_mstr(PIN4); //I2C interrupt to CDMS I2CSlave slave (PIN1,PIN2);///pin1 pin2 DigitalOut batt_heat(PIN96); //ATS1_SW_ENABLE = 0; PwmOut PWM1(PIN93); //x //Functions used to generate PWM signal PwmOut PWM2(PIN94); //y PwmOut PWM3(PIN95); //z //PWM output comes from pins p6 //........faults //Polled Faults DigitalIn pf1(PIN5);//Attitude Sensor 1 OC bar fault signal DigitalIn pf2(PIN97);//Attitude Sensor 2 OC bar fault signal DigitalIn pf3(PIN83);//Fault Bar for TRXY driver //Interrupt based faults //InterruptIn ir1(PIN73);//Battery Gauge - Alert Bar Signal InterruptIn ir2(PIN72);//TRXY Driver TR switch Fault InterruptIn ir3(PIN89);//TRZ Driver Fault Bar InterruptIn ir4(PIN91);//TRZ Driver TR switch Fault InterruptIn ir5(PIN79);//CDMS - Switch Fault InterruptIn ir6(PIN80);//Beacon- Switch OC bar InterruptIn ir7(PIN42);//Charger IC - Fault Bar DigitalOut TRXY_SW(PIN71); //TR XY Switch DigitalOut DRV_Z_EN(PIN88); //Sleep pin of driver z DigitalOut TRZ_SW(PIN40); //TR Z Switch DigitalOut CDMS_RESET(PIN7); // CDMS RESET DigitalOut BCN_SW(PIN14); //Beacon switch DigitalOut DRV_XY_EN(PIN82); /*****************************************************************Threads USed***********************************************************************************/ Thread *ptr_t_i2c; /*********************************************************FCTN HEADERS***********************************************************************************/ void FCTN_ISR_I2C(); void FCTN_TM(); void F_ACS(); void F_EPS(); void F_BCN(); //*******************************************ACS THREAD**************************************************// uint8_t iterP1; uint8_t iterP2; uint8_t iterI1; uint8_t iterI2; extern float max_array(float arr[3]); void F_ACS() { pc.printf("Entered ACS.\n\r"); ACS_MAIN_STATUS = 1; //set ACS_MAIN_STATUS flag PWM1 = 0; //clear pwm pins PWM2 = 0; //clear pwm pins PWM3 = 0; //clear pwm pins ACS_DATA_ACQ_STATUS = (uint8_t) FCTN_ATS_DATA_ACQ(); //printing the angular speed and magnetic field values pc.printf("gyro values\n\r"); for(int i=0; i<3; i++) { printf("%f\n\r",actual_data.AngularSpeed_actual[i]); } pc.printf("mag values\n\r"); for(int i=0; i<3; i++) { pc.printf("%f\n\r",actual_data.Bvalue_actual[i]); } for(int i=0;i<3;i++) { mag_data[i] = actual_data.Bvalue_actual[i]/1000000; gyro_data[i] = actual_data.AngularSpeed_actual[i]*3.14159/180; } if(ACS_STATE == 0) // check ACS_STATE = ACS_CONTROL_OFF? { printf("\n\r acs control off\n"); ACS_STATUS = 0; // set ACS_STATUS = ACS_CONTROL_OFF ACS_MAIN_STATUS = 0; return; } else if(actual_data.power_mode<2) { printf("\n\r Low Power \n\r"); DRV_Z_EN = 0; DRV_XY_EN = 0; ACS_STATUS = 1; // set ACS_STATUS = ACS_LOW_POWER ACS_MAIN_STATUS = 0; return; } else if(ACS_TR_Z_SW_STATUS != 1) { DRV_Z_EN = 0; DRV_XY_EN = 0; ACS_STATUS = 2; // set ACS_STAUS = ACS_TRZ_DISABLED ACS_MAIN_STATUS = 0; return; } else if(ACS_TR_XY_SW_STATUS != 1) { DRV_Z_EN = 1; DRV_XY_EN = 0; ACS_STATUS = 3; // set ACS_STAUS = ACS_TRXY_DISABLED , Z axis only moment[0] = 0; moment[1] = 0; moment[2] =1.3; // is a dummy value FCTN_ACS_GENPWM_MAIN(moment) ; ACS_MAIN_STATUS = 0; return; } else if(ACS_DATA_ACQ_STATUS == 1) { DRV_Z_EN = 1; DRV_XY_EN = 0; ACS_STATUS = 3; // set Set ACS_STATUS = ACS_DATA_ACQN_FAILURE , Z axis only moment[0] = 0; moment[1] = 0; moment[2] =1.3; // is a dummy value FCTN_ACS_GENPWM_MAIN(moment) ; ACS_MAIN_STATUS = 0; return; } else if(ACS_STATE == 5) { DRV_Z_EN = 1; DRV_XY_EN = 0; ACS_STATUS = 3; // set ACS_STAUS = ACS_TRXY_DISABLED by ACS_STATE i.e Z axis only moment[0] = 0; moment[1] = 0; moment[2] =1.3; // 1.3 is a dummy value FCTN_ACS_GENPWM_MAIN(moment) ; ACS_MAIN_STATUS = 0; return; } else if(ACS_DATA_ACQ_STATUS == 2) // MM only is available { DRV_Z_EN = 1; DRV_XY_EN = 1; ACS_STATUS = 4; // set Set ACS_STATUS = ACS_BDOT_CONTROL float db[3]; if(flag_firsttime==1) { for(int i=0;i<3;i++) { db[i]=0; // Unit: Tesla/Second } flag_firsttime=0; } else { for(int i=0;i<3;i++) { db[i]= (mag_data[i]-b_old[i])/sampling_time; // Unit: Tesla/Second } } for(int i=0;i<3;i++) { moment[i]=-kdetumble*db[i]; b_old[i]= mag_data[i]; // Unit: Tesla/Second } printf("\n\r Moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; ACS_MAIN_STATUS = 0; return; } else if(ACS_STATE == 7) // Nominal mode { printf("\n\r Nominal mode \n"); DRV_Z_EN = 1; DRV_XY_EN = 1; FCTN_ACS_CNTRLALGO(mag_data,gyro_data,1); printf("\n\r Moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; ACS_STATUS = 5; // set ACS_STATUS = ACS_NOMINAL_ONLY ACS_MAIN_STATUS = 0; return; } else if(ACS_STATE == 8) // Auto Control { printf("\n\r Auto control mode \n"); DRV_Z_EN = 1; DRV_XY_EN = 1; FCTN_ACS_CNTRLALGO(mag_data,gyro_data,0); printf("\n\r Moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; // set ACS_STATUS in function ACS_MAIN_STATUS = 0; return; } else if(ACS_STATE == 9) // Detumbling { DRV_Z_EN = 1; DRV_XY_EN = 1; if(flag_firsttime==1) { for(int i=0;i<3;i++) { db[i]=0; // Unit: Tesla/Second } flag_firsttime=0; } else { for(int i=0;i<3;i++) { db[i]= (mag_data[i]-b_old[i])/sampling_time; // Unit: Tesla/Second } } if (ACS_DETUMBLING_ALGO_TYPE == 0) { for(int i=0;i<3;i++) { moment[i]=-kdetumble*(mag_data[(i+1)%3]*gyro_data[(i+2)%3]-mag_data[(i+2)%3]*gyro_data[(i+1)%3]); // Unit: Ampere*Meter^2 } ACS_STATUS = 6; // set ACS_STATUS = ACS_BOMEGA_CONTROL } else if(ACS_DETUMBLING_ALGO_TYPE == 1) { for(int i=0;i<3;i++) { moment[i]=-kdetumble*db[i]; // Unit: Ampere*Meter^2 } ACS_STATUS = 4; // set ACS_STATUS = ACS_BDOT_CONTROL } for(int i=0;i<3;i++) { b_old[i]= mag_data[i]; // Unit: Tesla/Second } printf("\n\r Moment values returned by control algo \n"); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FCTN_ACS_GENPWM_MAIN(moment) ; ACS_MAIN_STATUS = 0; return; } ACS_STATUS = 7; //INVALID_STATE DRV_Z_EN = 0; DRV_XY_EN = 0; ACS_MAIN_STATUS = 0; //clear ACS_MAIN_STATUS flag } //***************************************************EPS THREAD***********************************************// void F_EPS() { pc.printf("\n\rEntered EPS %f\n",t_start.read()); EPS_MAIN_STATUS = 1; // Set EPS main status FCTN_BATT_TEMP_SENSOR_MAIN(actual_data.Batt_temp_actual); pc.printf("\n\r Battery temperature %f %f" ,actual_data.Batt_temp_actual[0], actual_data.Batt_temp_actual[1]); EPS_BATTERY_TEMP_STATUS = 1; //set EPS_BATTERY_TEMP_STATUS if(EPS_BATTERY_HEAT_ENABLE == 1) { if((actual_data.Batt_temp_actual[0] < batt_heat_low) && (actual_data.Batt_temp_actual[1] < batt_heat_low)) // to confirm { batt_heat = 1; //turn on battery heater } else { batt_heat = 0; //turn off battery heater } } else if(EPS_BATTERY_HEAT_ENABLE == 0) { EPS_STATUS = 1;//EPS_STATUS = EPS_BATTERY_HEATER_DISABLED } FCTN_BATTERYGAUGE_MAIN(actual_data.Batt_gauge_actual); if (actual_data.Batt_gauge_actual[1] == 200) //data not received { actual_data.power_mode = 1; EPS_BATTERY_GAUGE_STATUS = 0; //clear EPS_BATTERY_GAUGE_STATUS } else { FCTN_EPS_POWERMODE(actual_data.Batt_gauge_actual[1]); //updating power level EPS_BATTERY_GAUGE_STATUS = 1; //set EPS_BATTERY_GAUGE_STATUS } // if( Temperature data received) //{ // } // else // { // Set battery temp to XX // EPS_BATTERY_TEMP_STATUS = 0; //clear EPS_BATTERY_TEMP_STATUS // EPS_STATUS = EPS_ERR_BATTERY_TEMP; // } FCTN_HK_MAIN(); // printf("\n\r here"); FCTN_APPEND_HKDATA(); minMaxHkData(); //printf("\n\r here"); EPS_MAIN_STATUS = 0; // clear EPS main status } //**************************************************BCN THREAD*******************************************************************// void F_BCN() { pc.printf("\n\rEntered BCN %f\n",t_start.read()); FCTN_BCN_TX_MAIN(); } //**************************************************TCTM THREAD*******************************************************************// void T_TC(void const * args) { while(1) { Thread::signal_wait(0x4); wait_us(200); //printf("\n\rreached\n"); // can be between 38 to 15700 if( slave.receive() == 0) {slave.stop(); //printf("\n\rnot send\n"); } else if( slave.receive() == 1) // slave writes to master { if(data_send_flag == 'h') { //FCTN_APPEND_HKDATA(); // pc.printf("\n\r here"); write_ack=slave.write(BAE_chardata,74); if(write_ack==0) {irpt_2_mstr = 0; printf("\n\rgot interrupt\n"); } } else if(data_send_flag == 't') { write_ack=slave.write((char*)telemetry,tm_len); data_send_flag = 'h'; if(write_ack==0) irpt_2_mstr = 0; } } else if( slave.receive()==3 || slave.receive()==2) // slave read { read_ack=slave.read(telecommand,tc_len); t_tc.start(); //pc.printf("\n\rTELECOMMAND received from CDMS is %s \n",telecommand); pc.printf("\n\r Executing Telecommand \n"); // FCTN_TC_DECODE((uint8_t*) telecommand); FCTN_BAE_TM_TC((uint8_t*) telecommand); //telemetry = (char*)temp; FCTN_TM(); t_tc.stop(); printf("\n\r time taken %d",t_tc.read_us()); t_tc.reset(); // for(int i = 0; i<134; i++) //pc.printf("%c", telemetry[i]); } } } void FCTN_TM() { //irpt_2_mstr = 0; data_send_flag = 't'; pc.printf("\n\r Telemetry Generation \n"); irpt_2_mstr = 1; } //******************************************************* I2C *******************************************************************// void FCTN_I2C_ISR() { ptr_t_i2c->signal_set(0x4); } //***********************************************************FAULTS***************************************************************// /*void ir1clear() { actual_data.faultIr_status |= 0x01; // alert }*/ void ir2clear() { actual_data.faultIr_status |= 0x02; TRXY_SW = 0; // Switch off TR XY if1check = 1; } void ir3clear() { actual_data.faultIr_status |= 0x04; DRV_Z_EN = 0; wait_us(1); DRV_Z_EN = 1; } void ir4clear() { if2check = 1; actual_data.faultIr_status |= 0x08; TRZ_SW = 0; } void ir5clear() { actual_data.faultIr_status |= 0x10; CDMS_RESET = 0; wait_us(1); CDMS_RESET = 1; } void ir6clear() { actual_data.faultIr_status |= 0x20; BCN_SW = 0; wait_us(1); BCN_SW = 1; } void ir7clear() { actual_data.faultIr_status |= 0x40; } uint8_t iter2=0,iter4 = 0; void pollfault() { if (pf1==0) // OC_ATS1 { pf1check=1; actual_data.faultPoll_status |=0x01 ; ATS1_SW_ENABLE = 1; // turn off ats1 // to be turned on next cycle in ACS } else actual_data.faultPoll_status &= 0xFE; if (pf2==0) { pf2check=1; actual_data.faultPoll_status |=0x02 ; ATS2_SW_ENABLE = 1; // turn off ats2 // turn on in ACS } else actual_data.faultPoll_status &= 0xFD; if (pf3==0) { actual_data.faultPoll_status |=0x04 ; DRV_XY_EN = 0; wait_us(1); DRV_XY_EN = 1; } else actual_data.faultPoll_status &= 0xFB; /*if (ir1==1) { actual_data.faultIr_status &=0xFE; }*/ if (ir2==1) { actual_data.faultIr_status &=0xFD; } if (ir3==1) { actual_data.faultIr_status &=0xFB; } if (ir4==1) { actual_data.faultIr_status &=0xF7; } if (ir5==1) { actual_data.faultIr_status &=0xEF; } if (ir6==1) { actual_data.faultIr_status &=0xDF; }if (ir7==1) { actual_data.faultIr_status &=0xBF; } } //------------------------------------------------------------------------------------------------------------------------------------------------ //SCHEDULER //------------------------------------------------------------------------------------------------------------------------------------------------ uint8_t schedcount=1; void T_SC(void const *args) { printf("\n\r in scheduler"); if(schedcount == 7) //to reset the counter { schedcount = 1; } if(schedcount%1==0) { pc.printf("\n\r\r\r\r \t\t******ACS******\r\r\r\r\r"); pc.printf("ACSSTATE IS !!!!!! = %x !!\n\r",ACS_STATE); float acs_start = (float) t_start.read(); F_ACS(); float acs_end = float( t_start.read() - acs_start ) ; printf("\nTime taken for ACS is:\t %f\n\r",acs_end); pc.printf("\n\r\r\r\r \t\t******ACS EXIT******\r\r\r\r\r"); } if(schedcount%2==0) { // F_EPS(); } if(schedcount%1==0) { F_BCN(); } schedcount++; printf("\n\r exited scheduler"); } Timer t_flag; void FLAG() { //.............acs..................// if(ACS_INIT_STATUS == 1) BAE_STATUS = BAE_STATUS | 0x00000080; //set ACS_INIT_STATUS flag else if(ACS_INIT_STATUS == 0) BAE_STATUS &= 0xFFFFFF7F; //clear ACS_INIT_STATUS flag if(ACS_DATA_ACQ_STATUS == 1) BAE_STATUS =BAE_STATUS | 0x00000100; //set ACS_DATA_ACQ_STATUS flag else if(ACS_DATA_ACQ_STATUS == 0) BAE_STATUS &= 0xFFFFFEFF; //clear ACS_DATA_ACQ_STATUS flag if(ACS_ATS_ENABLE == 1) BAE_ENABLE |= 0x00000004; else if(ACS_ATS_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFFFB | 0x00000004; if(ACS_DATA_ACQ_STATUS == 'f') BAE_STATUS |= 0x00000200; if(ACS_MAIN_STATUS == 1) BAE_STATUS = (BAE_STATUS | 0x00001000); //set ACS_MAIN_STATUS flag else if(ACS_MAIN_STATUS == 0) BAE_STATUS &= 0xFFFFEFFF; //clear ACS_MAIN_STATUS flag if(ACS_STATUS == '0') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF); // set ACS_STATUS = ACS_CONTROL_OFF else if(ACS_STATUS == '1') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x00002000; // set ACS_STATUS = ACS_LOW_POWER else if(ACS_STATUS == '2') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF)| 0x00004000; // set ACS_STATUS = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATUS == '3') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00006000; // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATUS == '4') BAE_STATUS = (BAE_STATUS & 0xFFFF1FFF) | 0x00008000; // set ACS_STATUS = ACS_NOMINAL_ONLY else if(ACS_STATUS == '5') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000A000; // set ACS_STATUS = ACS_AUTO_CONTROL else if(ACS_STATUS == '6') BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000C000; // set ACS_STATUS = ACS_DETUMBLING_ONLY else BAE_STATUS =(BAE_STATUS & 0xFFFF1FFF) | 0x0000E000; // set ACS_STATUS = INVALID STATE if(ACS_STATE == '0') BAE_ENABLE = (BAE_ENABLE & 0xFFFFFF8F); //ACS_STATE = ACS_CONTROL_OFF else if(ACS_STATE == '2') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000020); // ACS_STATE = ACS_ZAXIS_MOMENT_ONLY else if(ACS_STATE == '3') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000030); // set ACS_STATUS = ACS_DATA_ACQ_FAILURE else if(ACS_STATE == '4') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000040); // ACS_STATE = ACS_NOMINAL_ONLY else if(ACS_STATE == '5') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000050); // ACS_STATE = ACS_AUTO_CONTROL else if(ACS_STATE == '6') BAE_ENABLE = ((BAE_ENABLE & 0xFFFFFF8F)| 0x00000060); //ACS_STATE = ACS_DETUMBLING_CONTROL //...............eps......................// if (EPS_INIT_STATUS==1) // Set EPS_INIT_STATUS BAE_STATUS |= 0x00010000; else if(EPS_INIT_STATUS==0) // Clear BAE_STATUS &= 0xFFFEFFFF; if (EPS_MAIN_STATUS==1) // Set EPS_MAIIN_STATUS BAE_STATUS |= 0x00040000; else if(EPS_MAIN_STATUS==0) // Clear BAE_STATUS &= 0xFFFBFFFF; if (EPS_BATTERY_GAUGE_STATUS==1) // Set EPS_BATTERY_GAUGE_STATUS BAE_STATUS |= 0x00020000; else if(EPS_BATTERY_GAUGE_STATUS==0) // Clear BAE_STATUS &= 0xFFFDFFFF; if (EPS_BATTERY_TEMP_STATUS==1) // Set EPS_BATTERY_TEMP_STATUS BAE_STATUS |= 0x00080000; else if(EPS_BATTERY_TEMP_STATUS==0) // Clear BAE_STATUS &= 0xFFF7FFFF; if (EPS_STATUS==0) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF); // Set EPS_ERR_BATTERY_TEMP else if (EPS_STATUS==1) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00010000; // Set EPS_BATTERY_HEATER_DISABLED else if (EPS_STATUS==2) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00020000; // Set EPS_ERR_HEATER_SWITCH_OFF else if (EPS_STATUS==3) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00030000; // Set EPS_ERR_HEATER_SWITCH_ON else if (EPS_STATUS==4) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00040000; // Set EPS_BATTERY_HEATER_OFF else if (EPS_STATUS==5) BAE_STATUS = (BAE_STATUS & 0xFF8FFFFF)|0x00050000; // Set EPS_BATTERY_HEATER_ON if(EPS_BATTERY_HEAT_ENABLE == 1) BAE_ENABLE |= 0x00000080; else if(EPS_BATTERY_HEAT_ENABLE == 0) BAE_ENABLE = BAE_ENABLE &0xFFFFFF7; pc.printf("\n\r BAE status %x BAE ENABLE %x ",BAE_STATUS,BAE_ENABLE); } void FCTN_BAE_INIT() { printf("\n\r Initialising BAE "); //..........intial status....// ACS_STATE = 8; ACS_ATS_ENABLE = 1; ACS_DATA_ACQ_ENABLE = 1; EPS_BATTERY_HEAT_ENABLE = 1; actual_data.power_mode=3; //............intializing pins................// ATS2_SW_ENABLE = 1; ATS1_SW_ENABLE = 1; wait_ms(5); ATS1_SW_ENABLE = 0; ACS_ATS_STATUS = 0x60; //Set Sensor 1 working , Sensor2 working and powered off by default DRV_XY_EN = 1; DRV_Z_EN = 1; TRZ_SW = 1; TRXY_SW = 1; //............................// FCTN_ACS_INIT(); // FCTN_EPS_INIT(); //FCTN_BCN_INIT(); FLAG(); } int main() { pc.printf("\n\r BAE Activated. Testing Version 1.1 \n"); CDMS_RESET = 1; /*if (BCN_FEN == 0) //dummy implementation { pc.printf("\n\r RF silence "); FCTN_BCN_FEN(); t_rfsilence.start();//Start the timer for RF_Silence while(t_rfsilence.read() < RF_SILENCE_TIME); } */ //ACS_INIT_STATUS = 0; //ACS_DATA_ACQ_STATUS = 0; //FLAG(); FCTN_BAE_INIT(); //...i2c.. //strcpy(telemetry,"This is telemetry THis is sample telemetry. ffffffffffffffffffffffffffffff end"); slave.address(addr); irpt_2_mstr = 0; ptr_t_i2c = new Thread(T_TC); ptr_t_i2c->set_priority(osPriorityHigh); irpt_4m_mstr.enable_irq(); irpt_4m_mstr.rise(&FCTN_I2C_ISR); // ir1.fall(&ir1clear); //Battery Gauge - Alert Bar Signal /* ir2.fall(&ir2clear); //TRXY Driver TR switch Fault ir3.fall(&ir3clear); //TRZ Driver Fault Bar ir4.fall(&ir4clear); //TRZ Driver TR switch Fault ir5.fall(&ir5clear); //CDMS - Switch Fault ir6.fall(&ir6clear); //Beacon- Switch OC bar ir7.fall(&ir7clear); //Charger IC - Fault Bar */ RtosTimer t_sc_timer(T_SC,osTimerPeriodic); // Initiating the scheduler thread t_sc_timer.start(10000); t_start.start(); pc.printf("\n\rStarted scheduler %f\n\r",t_start.read()); //FCTN_BAE_INIT(); while(1); //required to prevent main from terminating }