FINAL ACS TO BE USED FOR TESTING. COMMISSIONING, ACS MAIN, DATA ACQ ALL DONE.
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_FULL_Flowchart_BAE by
ACS.cpp
- Committer:
- Bragadeesh153
- Date:
- 2016-06-13
- Revision:
- 18:21740620c65e
- Parent:
- 17:1e1955f3db75
- Child:
- 19:403cb36e22ed
File content as of revision 18:21740620c65e:
/*------------------------------------------------------------------------------------------------------------------------------------------------------ -------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/ #include <mbed.h> #include <math.h> #include "pni.h" //pni header file #include "pin_config.h" #include "ACS.h" #include "EPS.h" //********************************flags******************************************// extern uint32_t BAE_STATUS; extern uint32_t BAE_ENABLE; extern uint8_t ACS_INIT_STATUS; extern uint8_t ACS_DATA_ACQ_STATUS; extern uint8_t ACS_ATS_STATUS; extern uint8_t ACS_MAIN_STATUS; extern uint8_t ACS_STATUS; extern uint8_t ACS_DETUMBLING_ALGO_TYPE; extern DigitalOut ATS1_SW_ENABLE; // enable of att sens2 switch extern DigitalOut ATS2_SW_ENABLE; // enable of att sens switch extern uint8_t ACS_ATS_ENABLE; extern uint8_t ACS_DATA_ACQ_ENABLE; extern uint8_t ACS_STATE; DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod extern PwmOut PWM1; //x //Functions used to generate PWM signal extern PwmOut PWM2; //y extern PwmOut PWM3; //z //PWM output comes from pins p6 int g_err_flag_TR_x=0; // setting x-flag to zero int g_err_flag_TR_y=0; // setting y-flag to zero int g_err_flag_TR_z=0; // setting z-flag to zero extern float data[6]; extern BAE_HK_actual actual_data; Serial pc_acs(USBTX,USBRX); //for usb communication //CONTROL_ALGO float moment[3]; // Unit: Ampere*Meter^2 float b_old[3]={1.15e-5,-0.245e-5,1.98e-5}; // Unit: Tesla float db[3]; uint8_t flag_firsttime=1, alarmmode=0; void controlmodes(float b[3], float db[3], float omega[3], uint8_t controlmode1); float max_array(float arr[3]); void inverse(float mat[3][3],float inv[3][3]); //CONTROLALGO PARAMETERS void FCTN_ACS_CNTRLALGO ( float b[3] , float omega[3],int nominal) { float normalising_fact; float b_copy[3], omega_copy[3], db_copy[3]; int i; if(flag_firsttime==1) { for(i=0;i<3;i++) { db[i]=0; // Unit: Tesla/Second } flag_firsttime=0; } else { for(i=0;i<3;i++) { db[i]= (b[i]-b_old[i])/sampling_time; // Unit: Tesla/Second } } if(nominal == 0) { if(max_array(omega)<(0.8*OmegaMax) && alarmmode==1) { alarmmode=0; } else if(max_array(omega)>OmegaMax&& alarmmode==0) { alarmmode=1; } } for (i=0;i<3;i++) { b_copy[i]=b[i]; db_copy[i]=db[i]; omega_copy[i]=omega[i]; } if((alarmmode==0)|| (nominal == 1)) { controlmodes(b,db,omega,0); for (i=0;i<3;i++) { b[i]=b_copy[i]; db[i]=db_copy[i]; omega[i]=omega_copy[i]; } if(max_array(moment)>MmntMax) { controlmodes(b,db,omega,1); for (i=0;i<3;i++) { b[i]=b_copy[i]; db[i]=db_copy[i]; omega[i]=omega_copy[i]; } if(max_array(moment)>MmntMax) { normalising_fact=max_array(moment)/MmntMax; for(i=0;i<3;i++) { moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 } } } ACS_STATUS = 5; } else { controlmodes(b,db,omega,1); for (i=0;i<3;i++) { b[i]=b_copy[i]; db[i]=db_copy[i]; omega[i]=omega_copy[i]; } if(max_array(moment)>MmntMax) { normalising_fact=max_array(moment)/MmntMax; for(i=0;i<3;i++) { moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 } } } for (i=0;i<3;i++) { b_old[i]=b[i]; } } void inverse(float mat[3][3],float inv[3][3],int &singularity_flag) { int i,j; float det=0; for(i=0;i<3;i++) { for(j=0;j<3;j++) { inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]); } } det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]); if (det==0) { singularity_flag=1; } else { singularity_flag=0; for(i=0;i<3;i++) { for(j=0;j<3;j++) { inv[i][j]/=det; } } } } float max_array(float arr[3]) { int i; float temp_max=fabs(arr[0]); for(i=1;i<3;i++) { if(fabs(arr[i])>temp_max) { temp_max=fabs(arr[i]); } } return temp_max; } void controlmodes(float b[3], float db[3], float omega[3], uint8_t controlmode1) { float bb[3]={0,0,0}; float d[3]={0,0,0}; float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure float den=0,den2; float bcopy[3]; int i, j;//temporary variables float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs float invJm[3][3]; float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4; int singularity_flag=0; if(controlmode1==0) { den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2])); den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]); if (den==0) { singularity_flag=1; } if (singularity_flag==0) { for(i=0;i<3;i++) { db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1) } for(i=0;i<3;i++) { b[i]/=den; // Mormalized b. Hence no unit. } if(b[2]>0.9 || b[2]<-0.9) { kz=kz2; kmu=kmu2; gamma=gamma2; } for(i=0;i<2;i++) { Mu[i]=b[i]; v[i]=-kmu*Mu[i]; dv[i]=-kmu*db[i]; z[i]=db[i]-v[i]; u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma); } inverse(Jm,invJm,singularity_flag); for(i=0;i<3;i++) { for(j=0;j<3;j++) { bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]); } } for(i=0;i<3;i++) { for(j=0;j<3;j++) { d[i]+=bb[j]*invJm[i][j]; } } bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]); bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]); bb[0]=0; for(i=0;i<3;i++) { d[i]=invJm[2][i]; invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i]; invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i]; invJm[0][i]=b[i]; } inverse(invJm,Jm,singularity_flag); if (singularity_flag==0) { for(i=0;i<3;i++) { for(j=0;j<3;j++) { tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2 } } for(i=0;i<3;i++) { bcopy[i]=b[i]*den; } for(i=0;i<3;i++) { Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3]; Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2 } } } if (singularity_flag==1) { for (i=0;i<3;i++) { Mmnt[i]=2*MmntMax; } } } else if(controlmode1==1) { if (ACS_DETUMBLING_ALGO_TYPE==0) // BOmega Algo { for(i=0;i<3;i++) { Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2 } ACS_STATUS = 6; } else if(ACS_DETUMBLING_ALGO_TYPE==1) // BDot Algo { for(i=0;i<3;i++) { Mmnt[i]=-kdetumble*db[i]; } ACS_STATUS = 4; } } for(i=0;i<3;i++) { moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2 } } I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl for the attitude sensors and battery gauge int FCTN_ACS_INIT(); //initialization of registers happens int SENSOR_INIT(); int FCTN_ATS_DATA_ACQ(); //data is obtained int SENSOR_DATA_ACQ(); void T_OUT(); //timeout function to stop infinite loop int CONFIG_UPLOAD(); Timeout to; //Timeout variable to int toFlag; int count =0; // Time for which the BAE uC is running (in seconds) void T_OUT() { toFlag=0; //as T_OUT function gets called the while loop gets terminated } //DEFINING VARIABLES char cmd[2]; char raw_gyro[6]; char raw_mag[6]; char reg_data[24]; char store,status; int16_t bit_data; uint16_t time_data; float gyro_data[3], mag_data[3]; float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0}; int CONFIG_UPLOAD() { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up wait_ms(600); //Verify magic number cmd[0]=HOST_CTRL; //0x02 is written in HOST CONTROL register to enable upload cmd[1]=BIT_HOST_UPLD_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=UPLOAD_ADDR; //0x02 is written in HOST CONTROL register to enable upload cmd[1]=0x0000; i2c.write(SLAVE_ADDR,cmd,3); wait_ms(100); cmd[0]=HOST_CTRL; //0x00 is written in HOST CONTROL register to free upload cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); return 0; } int SENSOR_INIT() { pc_acs.printf("Entered sensor init\n \r"); cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up wait_ms(600); //waiting for loading configuration file stored in EEPROM cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); pc_acs.printf("Sentral Status is %x\n \r",(int)store); //to check whether EEPROM is uploaded properly switch((int)store) { case(3): { break; } case(11): { break; } default: { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); wait_ms(100); pc_acs.printf("Sentral Status is %x\n \r",(int)store); } } int manual=0; if( ((int)store != 11 )&&((int)store != 11)) { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); manual = CONFIG_UPLOAD(); if(manual == 0) { //MANUAL CONFIGURATION FAILED return 0; } } cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors cmd[1]=BIT_RUN_ENB; i2c.write(SLAVE_ADDR,cmd,2); cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer cmd[1]=BIT_MAGODR; i2c.write(SLAVE_ADDR,cmd,2); cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope cmd[1]=BIT_GYROODR; i2c.write(SLAVE_ADDR,cmd,2); cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register , to scaled sensor values cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); cmd[0]=ENB_EVT; //Enabling the CPU reset , error,gyro values and magnetometer values cmd[1]=BIT_EVT_ENB; i2c.write(SLAVE_ADDR,cmd,2); cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); pc_acs.printf("Sentral Status after initialising is %x\n \r",(int)store); if( (int)store == 3) //Check if initialised properly and not in idle state { pc_acs.printf("Exited sensor init successfully\n \r"); return 1; } else if((int)store == 11) { cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors cmd[1]=BIT_RUN_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer cmd[1]=BIT_MAGODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope cmd[1]=BIT_GYROODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer cmd[1]=0x00; wait_ms(100); i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values cmd[1]=BIT_EVT_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); wait_ms(100); pc_acs.printf("Sentral Status after trying again is %x\n \r",(int)store); if( (int)store != 3) { pc_acs.printf("Problem with initialising\n \r"); return 0; } } pc_acs.printf("Sensor init failed \n \r") ; return 0; } int FCTN_ACS_INIT() { ACS_INIT_STATUS = 1; //set ACS_INIT_STATUS flag int working=0; pc_acs.printf("Attitude sensor init called \n \r"); pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); if(( (ACS_ATS_STATUS & 0xC0) != 0xC0)&&( (ACS_ATS_STATUS & 0xC0) != 0x80)) //Sensor1 status is not 10 or 11 { pc_acs.printf("Sensor 1 marked working \n \r"); working = SENSOR_INIT(); if(working ==1) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60; pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); //Sensor 1 INIT successful pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 1\n \r"); ACS_INIT_STATUS = 0; return 1; } pc_acs.printf("Sensor 1 not working.Powering off.\n \r"); //Sensor 1 INIT failure and power off ATS1_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; } pc_acs.printf("Sensor 1 not working. Trying Sensor 2\n \r"); if(( (ACS_ATS_STATUS & 0x0C) != 0x0C)&&( (ACS_ATS_STATUS & 0x0C) != 0x08)) //Sensor1 status is not 10 or 11 { ATS2_SW_ENABLE = 0; wait_ms(5); working = SENSOR_INIT(); if(working ==1) { pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 2\n \r"); //Sensor2 INIT successful ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06; ACS_INIT_STATUS = 0; return 2; } } pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("Sensor 2 also not working.Exit init.\n \r"); ATS2_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag //Sensor 2 also not working return 0; } int SENSOR_DATA_ACQ() { int mag_only=0; pc_acs.printf("Entering Sensor data acq.\n \r"); char status; int sentral; int event; int sensor; int error; int init; int ack1; int ack2; cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); //wait_ms(100); event = (int)status; cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); printf("Ack1: %d Ack2 : %d\n",ack1,ack2); if((ack1!=0)||(ack2!=0)) { cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); //wait_ms(100); cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); if((ack1!=0)||(ack2!=0)) { for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //acknowledgement failed actual_data.Bvalue_actual[i] = 0; } return 1; } } sentral = (int) status; pc_acs.printf("Event Status is %x\n \r",event); pc_acs.printf("Sentral Status is %x\n \r",sentral); if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 )|| (sentral!= 3)) //check for any error in event status register { init = SENSOR_INIT(); int ack1,ack2; cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); //wait_ms(100); event = (int)status; cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); sentral = (int)status; if((ack1!=0)||(ack2!=0)) { cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); event = (int)status; wait_ms(100); cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); sentral = (int)status; wait_ms(100); if((ack1!=0)||(ack2!=0)) { for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //acknowledgement failed actual_data.Bvalue_actual[i] = 0; } return 1; } } pc_acs.printf("Event Status after resetting and init is %x\n \r",event); if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 ) || (init == 0)||(sentral != 3)) //check for any error in event status { int ack1,ack2; char status; cmd[0]=ERROR; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); error = (int)status; cmd[0]=SENSORSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); sensor = (int)status; if((ack1!=0)||(ack2!=0)) { cmd[0]=ERROR; i2c.write(SLAVE_ADDR,cmd,1); ack1 = i2c.read(SLAVE_ADDR_READ,&status,1); error = (int)status; wait_ms(100); cmd[0]=SENSORSTATUS; i2c.write(SLAVE_ADDR,cmd,1); ack2 = i2c.read(SLAVE_ADDR_READ,&status,1); sensor = (int)status; wait_ms(100); if((ack1!=0)||(ack2!=0)) { for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //acknowledgement failed actual_data.Bvalue_actual[i] = 0; } return 1; } } if((error!=0) || (sensor!=0)) { if( (error&1 == 1) || (sensor&1 == 1) || (sensor&16 == 16) ) { if( (error&4 == 4) || (sensor&4 == 4) || (sensor&64 == 64) ) { for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 actual_data.Bvalue_actual[i] = 0; } pc_acs.printf("error in both sensors.Exiting.\n \r"); return 1; } pc_acs.printf("error in gyro alone.Exiting.\n \r"); for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 } mag_only = 1; //return 2; } if(mag_only!= 1){ pc_acs.printf("error in something else.Exiting.\n \r"); for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 actual_data.Bvalue_actual[i] = 0; } return 1; } } if((event & 1 == 1 )) { pc_acs.printf("error in CPU Reset.\n \r"); for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 actual_data.Bvalue_actual[i] = 0; } return 1; } if((event & 8 != 8 )||(event & 32 != 32 )) { pc_acs.printf("Data not ready waiting...\n \r"); //POLL wait_ms(1000); cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); if((event & 8 != 8 )||(event & 32 != 32 )) { if(event & 32 != 32 ) { if(event & 8 != 8 ) { pc_acs.printf("Both data still not ready.Exiting..\n \r"); for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 actual_data.Bvalue_actual[i] = 0; } return 1; } pc_acs.printf("Mag data only ready.Read..\n \r"); mag_only = 1; //return 2; } } } } if(mag_only !=1) { if(mag_only!= 1){ pc_acs.printf("Error in something else.Exiting.\n \r"); for(int i=0; i<3; i++) { actual_data.AngularSpeed_actual[i] = 0; //Set values to 0 actual_data.Bvalue_actual[i] = 0; } return 1; } } } cmd[0]=MAG_XOUT_H; //LSB of x i2c.write(SLAVE_ADDR,cmd,1); //Read gryo and mag registers together ack1 = i2c.read(SLAVE_ADDR_READ,reg_data,24); if(ack1 != 0) { wait_ms(100); cmd[0]=MAG_XOUT_H; //LSB of x i2c.write(SLAVE_ADDR,cmd,1); //Read gryo and mag registers together ack1 = i2c.read(SLAVE_ADDR_READ,reg_data,24); wait_ms(100); if(ack1 !=1) { for(int i=0;i<3;i++) { actual_data.Bvalue_actual[i] = 0; actual_data.AngularSpeed_actual[i] = 0; } return 1; } } // pc_acs.printf("\nGyro Values:\n"); for(int i=0; i<3; i++) { //concatenating gyro LSB and MSB to get 16 bit signed data values bit_data= ((int16_t)reg_data[16+2*i+1]<<8)|(int16_t)reg_data[16+2*i]; gyro_data[i]=(float)bit_data; gyro_data[i]=gyro_data[i]/senstivity_gyro; gyro_data[i]+=gyro_error[i]; } for(int i=0; i<3; i++) { //concatenating mag LSB and MSB to get 16 bit signed data values Extract data bit_data= ((int16_t)reg_data[2*i+1]<<8)|(int16_t)reg_data[2*i]; mag_data[i]=(float)bit_data; mag_data[i]=mag_data[i]/senstivity_mag; mag_data[i]+=mag_error[i]; } for(int i=0; i<3; i++) { // data[i]=gyro_data[i]; actual_data.AngularSpeed_actual[i] = gyro_data[i]; actual_data.Bvalue_actual[i] = mag_data[i]; } if(mag_only == 0) { pc_acs.printf("Reading data successful.\n \r"); return 0; } else if(mag_only == 1) { for(int i=0;i<3;i++) { actual_data.AngularSpeed_actual[i] = 0; } pc_acs.printf("Reading data partial success.\n \r"); return 2; } pc_acs.printf("Reading data success.\n \r"); return 0; } int FCTN_ATS_DATA_ACQ() { int acq; pc_acs.printf("DATA_ACQ called \n \r"); pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); // 0 success //1 full failure //2 partial failure if(( (ACS_ATS_STATUS & 0xC0) == 0x40)) { acq = SENSOR_DATA_ACQ(); if(acq == 0) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60; ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf(" Sensor 1 data acq successful.Exit Data ACQ\n \r"); return 0; } else if(acq == 2) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40; pc_acs.printf(" Sensor 1 data partial success.Exiting.\n \r"); return 2; /*if((ACS_ATS_STATUS & 0x0F == 0x00)) { pc_acs.printf(" Sensor 1 data acq partial success.Trying Sensor 2\n \r"); ATS1_SW_ENABLE = 1; ATS2_SW_ENABLE = 0; wait_ms(5); ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x20; int acq; acq = SENSOR_DATA_ACQ(); if(acq == 0) { ACS_DATA_ACQ_STATUS = 0; pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r"); return 0; } else if(acq == 2) { ACS_DATA_ACQ_STATUS = 2; pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r"); return 2; } else if(acq == 1) { int acq; pc_acs.printf(" Sensor 2 data acq failure.Go to sensor 1 again.\n \r"); ATS2_SW_ENABLE = 1; ATS1_SW_ENABLE = 0; wait_ms(5); acq = SENSOR_DATA_ACQ(); if(acq == 0) { pc_acs.printf(" Sensor 1 data acq success.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 0; return 0; } else if(acq == 2) { pc_acs.printf(" Sensor 1 data acq partial success.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 2; return 2; } else { pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r"); ATS1_SW_ENABLE = 0; ACS_DATA_ACQ_STATUS = 1; return 1; } pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r"); ATS1_SW_ENABLE = 0; ACS_DATA_ACQ_STATUS = 1; return 1; } } else { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40; pc_acs.printf(" Sensor 1 data partial success.Sensor 2 marked not working.Exiting.\n \r"); return 2; }*/ } else if(acq == 1) { pc_acs.printf(" Sensor 1 data acq failure.Try sensor 2.\n \r"); ATS1_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; } } ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; if(( (ACS_ATS_STATUS & 0x0C) == 0x04)) { ATS2_SW_ENABLE = 0; wait_ms(5); acq = SENSOR_DATA_ACQ(); if(acq == 0) { pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r"); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06; ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 return 0; } else if(acq == 2) { pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r"); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x04; ACS_DATA_ACQ_STATUS = 2; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 return 2; } else if(acq == 1) { pc_acs.printf(" Sensor 2 data acq failure.Exiting.\n \r"); ATS2_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; //Sensor 2 also not working } } ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf(" Both sensors data acq failure.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 1; //set ACS_DATA_ACQ_STATUS flag for att sens 2 return 1; } void FCTN_ACS_GENPWM_MAIN(float Moment[3]) { printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function float l_duty_cycle_x=0; //Duty cycle of Moment in x direction float l_current_x=0; //Current sent in x TR's float l_duty_cycle_y=0; //Duty cycle of Moment in y direction float l_current_y=0; //Current sent in y TR's float l_duty_cycle_z=0; //Duty cycle of Moment in z direction float l_current_z=0; //Current sent in z TR's printf("\r\r"); //----------------------------- x-direction TR --------------------------------------------// float l_moment_x = Moment[0]; //Moment in x direction phase_TR_x = 1; // setting the default current direction if (l_moment_x <0) { phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_x = abs(l_moment_x); } l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in trx is %f \r \n",l_current_x); if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_x = 3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if (l_current_x >= 0.0016 && l_current_x < 0.0171) { l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x >= 0.0171 && l_current_x < 0.1678) { l_duty_cycle_x = 275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x==0) { printf("\n \r l_current_x====0"); l_duty_cycle_x = 0; // default value of duty cycle printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else //not necessary { g_err_flag_TR_x = 1; } //------------------------------------- y-direction TR--------------------------------------// float l_moment_y = Moment[1]; //Moment in y direction phase_TR_y = 1; // setting the default current direction if (l_moment_y <0) { phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_y = abs(l_moment_y); } l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in try is %f \r \n",l_current_y); if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_y = 3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if (l_current_y >= 0.0016 && l_current_y < 0.0171) { l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y >= 0.0171 && l_current_y < 0.1678) { l_duty_cycle_y = 275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y==0) { printf("\n \r l_current_y====0"); l_duty_cycle_y = 0; // default value of duty cycle printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else // not necessary { g_err_flag_TR_y = 1; } //----------------------------------------------- z-direction TR -------------------------// float l_moment_z = Moment[2]; //Moment in z direction phase_TR_z = 1; // setting the default current direction if (l_moment_z <0) { phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_z = abs(l_moment_z); } l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in trz is %f \r \n",l_current_z); if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_z = 3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if (l_current_z >= 0.0016 && l_current_z < 0.0171) { l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z >= 0.0171 && l_current_z < 0.1678) { l_duty_cycle_z = 275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z==0) { printf("\n \r l_current_z====0"); l_duty_cycle_z = 0; // default value of duty cycle printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else // not necessary { g_err_flag_TR_z = 1; } //-----------------------------------------exiting the function-----------------------------------// printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function }