FINAL ACS TO BE USED FOR TESTING. COMMISSIONING, ACS MAIN, DATA ACQ ALL DONE.

Dependencies:   FreescaleIAP mbed-rtos mbed

Fork of ACS_FULL_Flowchart_BAE by Team Fox

ACS.cpp

Committer:
Bragadeesh153
Date:
2016-06-13
Revision:
18:21740620c65e
Parent:
17:1e1955f3db75
Child:
19:403cb36e22ed

File content as of revision 18:21740620c65e:

/*------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/
#include <mbed.h>
#include <math.h>

#include "pni.h" //pni header file
#include "pin_config.h"
#include "ACS.h"
#include "EPS.h"

//********************************flags******************************************//
extern uint32_t BAE_STATUS;
extern uint32_t BAE_ENABLE;
extern uint8_t ACS_INIT_STATUS;
extern uint8_t ACS_DATA_ACQ_STATUS;
extern uint8_t ACS_ATS_STATUS;
extern uint8_t ACS_MAIN_STATUS;
extern uint8_t ACS_STATUS;
extern uint8_t ACS_DETUMBLING_ALGO_TYPE;

extern DigitalOut ATS1_SW_ENABLE; // enable of att sens2 switch
extern DigitalOut ATS2_SW_ENABLE; // enable of att sens switch

extern uint8_t ACS_ATS_ENABLE;
extern uint8_t ACS_DATA_ACQ_ENABLE;
extern uint8_t ACS_STATE;

DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod
DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod
DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod

extern PwmOut PWM1; //x                         //Functions used to generate PWM signal 
extern PwmOut PWM2; //y
extern PwmOut PWM3; //z                         //PWM output comes from pins p6

int g_err_flag_TR_x=0;       // setting x-flag to zero
int g_err_flag_TR_y=0;       // setting y-flag to zero
int g_err_flag_TR_z=0;       // setting z-flag to zero

extern float data[6];
extern BAE_HK_actual actual_data;


Serial pc_acs(USBTX,USBRX); //for usb communication
//CONTROL_ALGO

float moment[3]; // Unit: Ampere*Meter^2
float b_old[3]={1.15e-5,-0.245e-5,1.98e-5};  // Unit: Tesla
float db[3];
uint8_t flag_firsttime=1, alarmmode=0;




void controlmodes(float b[3], float db[3], float omega[3], uint8_t controlmode1);
float max_array(float arr[3]);
void inverse(float mat[3][3],float inv[3][3]);

//CONTROLALGO PARAMETERS




void FCTN_ACS_CNTRLALGO ( float b[3] , float omega[3],int nominal)
{

    float normalising_fact;
    float b_copy[3], omega_copy[3], db_copy[3];
    int i;
    if(flag_firsttime==1)
        {
            for(i=0;i<3;i++)
        {
                db[i]=0; // Unit: Tesla/Second
        }
            flag_firsttime=0;
        }
    else
    {
        for(i=0;i<3;i++)
        {
            db[i]= (b[i]-b_old[i])/sampling_time; // Unit: Tesla/Second
        }
    }
    
        if(nominal == 0)
        
        {
    
                if(max_array(omega)<(0.8*OmegaMax) && alarmmode==1)
            {
                    alarmmode=0;
            }
                else if(max_array(omega)>OmegaMax&& alarmmode==0)
            {
                    alarmmode=1;
            }
            
        }
        
    


    for (i=0;i<3;i++)
    {
        b_copy[i]=b[i];
        db_copy[i]=db[i];
        omega_copy[i]=omega[i];
    }

    if((alarmmode==0)|| (nominal == 1))
        {
            controlmodes(b,db,omega,0);
        for (i=0;i<3;i++)
        {
            b[i]=b_copy[i];
            db[i]=db_copy[i];
            omega[i]=omega_copy[i];
        }
            if(max_array(moment)>MmntMax)
            {
                controlmodes(b,db,omega,1);
            for (i=0;i<3;i++)
            {
                b[i]=b_copy[i];
                db[i]=db_copy[i];
                omega[i]=omega_copy[i];
            }
                if(max_array(moment)>MmntMax)
                {
                    normalising_fact=max_array(moment)/MmntMax;
                    for(i=0;i<3;i++)
                {
                        moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
                }
                }
            }
            ACS_STATUS = 5;
        }
        else
        {   
            controlmodes(b,db,omega,1);
        for (i=0;i<3;i++)
        {
            b[i]=b_copy[i];
            db[i]=db_copy[i];
            omega[i]=omega_copy[i];
        }
            if(max_array(moment)>MmntMax)
            {
                normalising_fact=max_array(moment)/MmntMax;
                for(i=0;i<3;i++)
            {
                    moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
            }
            }
        
        }
    for (i=0;i<3;i++)
    {
        b_old[i]=b[i];
    }
}

void inverse(float mat[3][3],float inv[3][3],int &singularity_flag)
{
    int i,j;
    float det=0;
    for(i=0;i<3;i++)
    { 
        for(j=0;j<3;j++)
        {
            inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]);
        }
    }
    det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]);
    if (det==0)
    {
        singularity_flag=1;
    }
    else
    {
        singularity_flag=0;
        for(i=0;i<3;i++)
        {
            for(j=0;j<3;j++)
            {
                inv[i][j]/=det;
            }
        }
    }
}

float max_array(float arr[3])
{
    int i;
    float temp_max=fabs(arr[0]);
    for(i=1;i<3;i++)
    {
        if(fabs(arr[i])>temp_max)
        {
            temp_max=fabs(arr[i]);
        }
    }
    return temp_max;
}


void controlmodes(float b[3], float db[3], float omega[3], uint8_t controlmode1)
{
    float bb[3]={0,0,0};
    float d[3]={0,0,0};
    float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure
    float den=0,den2;
    float bcopy[3];
    int i, j;//temporary variables
    float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs
    float invJm[3][3];
    float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4;
    int singularity_flag=0;
    
    if(controlmode1==0)
    {
        den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2]));
        den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]);
        if (den==0)
        {
            singularity_flag=1;
        }
        if (singularity_flag==0)
        {
            for(i=0;i<3;i++)
            {
                db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1)
            }
            for(i=0;i<3;i++)
            {
                b[i]/=den; // Mormalized b. Hence no unit.
            }
            if(b[2]>0.9 || b[2]<-0.9)
            {
                kz=kz2;
                kmu=kmu2;
                gamma=gamma2;
            }
            for(i=0;i<2;i++)
            {
                Mu[i]=b[i];
                v[i]=-kmu*Mu[i];
                dv[i]=-kmu*db[i];
                z[i]=db[i]-v[i];
                u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma);
            }
            inverse(Jm,invJm,singularity_flag);
            for(i=0;i<3;i++)
            {
                for(j=0;j<3;j++)
                {
                    bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]);
                }
            }
            for(i=0;i<3;i++)
            {
                for(j=0;j<3;j++)
                {
                    d[i]+=bb[j]*invJm[i][j];
                }
            }
            bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]);
            bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]);
            bb[0]=0;
            for(i=0;i<3;i++)
            {
                d[i]=invJm[2][i];
                invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i];
                invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i];
                invJm[0][i]=b[i];
            }
            inverse(invJm,Jm,singularity_flag);
            if (singularity_flag==0)
            {
                for(i=0;i<3;i++)
                {
                    for(j=0;j<3;j++)
                    {
                        tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2
                    }
                }
                for(i=0;i<3;i++)
                {
                    bcopy[i]=b[i]*den;
                }
                for(i=0;i<3;i++)
                {
                    Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3];
                    Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2
                }
            }
        }
        if (singularity_flag==1)
        {
            for (i=0;i<3;i++)
            {
                Mmnt[i]=2*MmntMax;
            }
        }
    }
    else if(controlmode1==1)
    {
        if (ACS_DETUMBLING_ALGO_TYPE==0) // BOmega Algo
        {
            for(i=0;i<3;i++)
            {
                Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2
            }
            ACS_STATUS = 6;
        }
        else if(ACS_DETUMBLING_ALGO_TYPE==1) // BDot Algo
        {
            for(i=0;i<3;i++)
            {
                Mmnt[i]=-kdetumble*db[i];
            }
            ACS_STATUS = 4;
        }
    }
    for(i=0;i<3;i++)
    {
        moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2
    }
}

I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl  for the attitude sensors and battery gauge

int FCTN_ACS_INIT(); //initialization of registers happens
int SENSOR_INIT();
int FCTN_ATS_DATA_ACQ(); //data is obtained
int SENSOR_DATA_ACQ();
void T_OUT(); //timeout function to stop infinite loop

int CONFIG_UPLOAD();
Timeout to; //Timeout variable to
int toFlag; 

int count =0; // Time for which the BAE uC is running (in seconds)
void T_OUT()
{
    toFlag=0; //as T_OUT function gets called the while loop gets terminated
}


//DEFINING VARIABLES
char cmd[2];
char raw_gyro[6];
char raw_mag[6];
char reg_data[24];
char store,status;
int16_t bit_data;
uint16_t time_data;
float gyro_data[3], mag_data[3];
float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0};

int CONFIG_UPLOAD()
{
    cmd[0]=RESETREQ;
    cmd[1]=BIT_RESREQ;
    i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
    wait_ms(600);
    
    //Verify magic number
    
    cmd[0]=HOST_CTRL; //0x02 is written in HOST CONTROL register to enable upload
    cmd[1]=BIT_HOST_UPLD_ENB;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    
    cmd[0]=UPLOAD_ADDR; //0x02 is written in HOST CONTROL register to enable upload
    cmd[1]=0x0000;
    i2c.write(SLAVE_ADDR,cmd,3);
    wait_ms(100);
    
    
    
    
    cmd[0]=HOST_CTRL; //0x00 is written in HOST CONTROL register to free upload
    cmd[1]=0x00;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    
    return 0;
    
}

int SENSOR_INIT()
{
    
    pc_acs.printf("Entered sensor init\n \r");
    cmd[0]=RESETREQ;
    cmd[1]=BIT_RESREQ;
    i2c.write(SLAVE_ADDR,cmd,2);                                //When 0x01 is written in reset request register Emulates a hard power down/power up
    wait_ms(600);                                               //waiting for loading configuration file stored in EEPROM
    cmd[0]=SENTRALSTATUS;
    i2c.write(SLAVE_ADDR,cmd,1);
    i2c.read(SLAVE_ADDR_READ,&store,1);
    
    pc_acs.printf("Sentral Status is %x\n \r",(int)store);
    
    //to check whether EEPROM is uploaded properly
    switch((int)store) { 
        case(3): {
            break;
        }
        case(11): {
            break;
        }
        default: {
            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            
            cmd[0]=SENTRALSTATUS;
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,&store,1);
            wait_ms(100);
            pc_acs.printf("Sentral Status is %x\n \r",(int)store);
            
        }
    }

    
    int manual=0;
    if( ((int)store != 11 )&&((int)store != 11))
    {

            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            
            manual = CONFIG_UPLOAD();
            
            if(manual == 0)
            {
                //MANUAL CONFIGURATION FAILED
                return 0;
            }
                     
    }
    
        cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
        cmd[1]=BIT_RUN_ENB;
        i2c.write(SLAVE_ADDR,cmd,2);
        
        cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
        cmd[1]=BIT_MAGODR;
        i2c.write(SLAVE_ADDR,cmd,2);
        
        cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
        cmd[1]=BIT_GYROODR;
        i2c.write(SLAVE_ADDR,cmd,2);
        
        cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
        cmd[1]=0x00;
        
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register , to scaled sensor values
        cmd[1]=0x00;
        i2c.write(SLAVE_ADDR,cmd,2);
        
        cmd[0]=ENB_EVT; //Enabling the CPU reset , error,gyro values and magnetometer values
        cmd[1]=BIT_EVT_ENB;
        i2c.write(SLAVE_ADDR,cmd,2);
        
        cmd[0]=SENTRALSTATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        i2c.read(SLAVE_ADDR_READ,&store,1);
        pc_acs.printf("Sentral Status after initialising is %x\n \r",(int)store);
        
        if( (int)store == 3)      //Check if initialised properly and not in idle state
        {
            pc_acs.printf("Exited sensor init successfully\n \r");  
            return 1;
        }
        
        else if((int)store == 11)
        {
            cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
            cmd[1]=BIT_RUN_ENB;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            
            cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
            cmd[1]=BIT_MAGODR;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
            cmd[1]=BIT_GYROODR;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
            cmd[1]=0x00;
            wait_ms(100);
            
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values
            cmd[1]=0x00;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            
            cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values
            cmd[1]=BIT_EVT_ENB;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(100);
            
            cmd[0]=SENTRALSTATUS;
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,&store,1);
            wait_ms(100);
            pc_acs.printf("Sentral Status after trying again is %x\n \r",(int)store);
            
            if( (int)store != 3)
                {
                    pc_acs.printf("Problem with initialising\n \r");
                    return 0;
                }
        }
        
        pc_acs.printf("Sensor init failed \n \r") ;
        return 0;
}

int FCTN_ACS_INIT()
{
    ACS_INIT_STATUS = 1;     //set ACS_INIT_STATUS flag

    
    int working=0;

    pc_acs.printf("Attitude sensor init called \n \r");
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    
    
    if((  (ACS_ATS_STATUS & 0xC0) != 0xC0)&&(  (ACS_ATS_STATUS & 0xC0) != 0x80))                  //Sensor1 status is not 10 or 11
    {

        pc_acs.printf("Sensor 1 marked working \n \r");
        working = SENSOR_INIT();
        if(working ==1)
            {
                ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
                pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);                     //Sensor 1 INIT successful
                pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 1\n \r");
                ACS_INIT_STATUS = 0;
                return 1;
            }
            
            
            
            pc_acs.printf("Sensor 1 not working.Powering off.\n \r");                             //Sensor 1 INIT failure and power off
            ATS1_SW_ENABLE = 1;
            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
  
    }
    
    pc_acs.printf("Sensor 1 not working. Trying Sensor 2\n \r");
    
    if((  (ACS_ATS_STATUS & 0x0C) != 0x0C)&&(  (ACS_ATS_STATUS & 0x0C) != 0x08))                //Sensor1 status is not 10 or 11
    {
                        
            
            ATS2_SW_ENABLE = 0;
            wait_ms(5);
            working = SENSOR_INIT();
            if(working ==1)
            {
                pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
                pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 2\n \r");    //Sensor2 INIT successful
                ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
                ACS_INIT_STATUS = 0;
                return 2;
            }
        
        
    }
    
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    pc_acs.printf("Sensor 2 also not working.Exit init.\n \r");
    
    
    
    ATS2_SW_ENABLE = 1;
    ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
    ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag                                                              //Sensor 2 also not working
    return 0;
}


int SENSOR_DATA_ACQ()
{
        int mag_only=0;
        pc_acs.printf("Entering Sensor data acq.\n \r");
        char status;
        
        int sentral;
        int event;
        int sensor;
        int error;
        int init;
        
        int ack1;
        int ack2;
        
        cmd[0]=EVT_STATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
        //wait_ms(100);
        event = (int)status; 
        
        cmd[0]=SENTRALSTATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
        
        printf("Ack1:  %d   Ack2 : %d\n",ack1,ack2);
        
        if((ack1!=0)||(ack2!=0))
        {
                cmd[0]=EVT_STATUS;
                i2c.write(SLAVE_ADDR,cmd,1);
                ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
                //wait_ms(100);
                cmd[0]=SENTRALSTATUS;
                i2c.write(SLAVE_ADDR,cmd,1);
                ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
                if((ack1!=0)||(ack2!=0))
                    {           
                        for(int i=0; i<3; i++) {
                            actual_data.AngularSpeed_actual[i] = 0;        //acknowledgement failed
                            actual_data.Bvalue_actual[i] = 0;
                         }
                        
                        return 1;
                    }
        }
        
        sentral = (int) status;
        
        pc_acs.printf("Event Status is %x\n \r",event);
        pc_acs.printf("Sentral Status is %x\n \r",sentral);
          
        
        
        if  ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 )|| (sentral!= 3))    //check for any error in event status register
        {
            
            
            init = SENSOR_INIT();
            
            
            int ack1,ack2;
            cmd[0]=EVT_STATUS;
            i2c.write(SLAVE_ADDR,cmd,1);
            ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
            //wait_ms(100);
            event = (int)status; 
            
            cmd[0]=SENTRALSTATUS;
            i2c.write(SLAVE_ADDR,cmd,1);
            ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
            sentral = (int)status;
            
            if((ack1!=0)||(ack2!=0))
            {
                    cmd[0]=EVT_STATUS;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
                    event = (int)status; 
                    wait_ms(100);
                    cmd[0]=SENTRALSTATUS;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
                    sentral = (int)status;
                    wait_ms(100);
                    
                    if((ack1!=0)||(ack2!=0))
                        {           
                            for(int i=0; i<3; i++) {
                                actual_data.AngularSpeed_actual[i] = 0;        //acknowledgement failed
                                actual_data.Bvalue_actual[i] = 0;
                             }
                            
                            return 1;
                        }
            }
            
            pc_acs.printf("Event Status after resetting and init is %x\n \r",event);
            
            if  ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 ) || (init == 0)||(sentral != 3))    //check for any error in event status     
            {
                
                    int ack1,ack2;
                    char status;
                    cmd[0]=ERROR;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
                    error = (int)status; 

                    cmd[0]=SENSORSTATUS;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
                    sensor = (int)status;

                    
                    if((ack1!=0)||(ack2!=0))
                    {
                        cmd[0]=ERROR;
                        i2c.write(SLAVE_ADDR,cmd,1);
                        ack1 = i2c.read(SLAVE_ADDR_READ,&status,1);
                        error = (int)status; 
                        wait_ms(100);
                        
                        cmd[0]=SENSORSTATUS;
                        i2c.write(SLAVE_ADDR,cmd,1);
                        ack2 = i2c.read(SLAVE_ADDR_READ,&status,1);
                        sensor = (int)status;
                        wait_ms(100);
                        
                        if((ack1!=0)||(ack2!=0))
                            {           
                                for(int i=0; i<3; i++) {
                                    actual_data.AngularSpeed_actual[i] = 0;        //acknowledgement failed
                                    actual_data.Bvalue_actual[i] = 0;
                                 }
                                
                                return 1;
                            }
                    }
                    
                    
                    
                    if((error!=0) || (sensor!=0))
                     {
                                if( (error&1 == 1) || (sensor&1 == 1) || (sensor&16 == 16)  )
                                     {
                                                
                                            if( (error&4 == 4) || (sensor&4 == 4) || (sensor&64 == 64)  )
                                                  {
                                                         
                                                        for(int i=0; i<3; i++) {
                                                            actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                                                            actual_data.Bvalue_actual[i] = 0;
                                                         }
                                                         
                                                         pc_acs.printf("error in both sensors.Exiting.\n \r");
                                                         return 1;
                                                  }
                                             pc_acs.printf("error in gyro alone.Exiting.\n \r");
                            
                                            for(int i=0; i<3; i++) {
                                                actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                                                }
                                            
                                            mag_only = 1; 
                                            //return 2;
                                      }  
                                      
                                      if(mag_only!= 1){
                                        pc_acs.printf("error in something else.Exiting.\n \r");  
                                        for(int i=0; i<3; i++) {
                                                actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                                                actual_data.Bvalue_actual[i] = 0;
                                            }
                                        return 1;  
                                        }                     
                     }
                     
                     if((event & 1 == 1 ))
                     {
                         pc_acs.printf("error in CPU Reset.\n \r");
                        for(int i=0; i<3; i++) {
                            actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                            actual_data.Bvalue_actual[i] = 0;
                            }
                            return 1;
                         
                      }
                      
                    if((event & 8 != 8 )||(event & 32 != 32 ))
                        {
                            pc_acs.printf("Data not ready waiting...\n \r");
                            //POLL
                            wait_ms(1000);
                            cmd[0]=EVT_STATUS;
                            i2c.write(SLAVE_ADDR,cmd,1);
                            i2c.read(SLAVE_ADDR_READ,&status,1);
                            wait_ms(100);
                            if((event & 8 != 8 )||(event & 32 != 32 ))
                            {

                                if(event & 32 != 32 )
                                {
                                    if(event & 8 != 8 )
                                    {
                                        pc_acs.printf("Both data still not ready.Exiting..\n \r");
                                        
                                        for(int i=0; i<3; i++) {
                                        actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                                        actual_data.Bvalue_actual[i] = 0;
                                         }
                                        return 1;
                                    }
                                    
                                    pc_acs.printf("Mag data only ready.Read..\n \r");
                                    mag_only = 1;
                                    //return 2;
                                    
                                }
                                
                                
                            }
                            
                                             
                        } 
                        
     
            }
            
                if(mag_only !=1)
                {
                        if(mag_only!= 1){
                        pc_acs.printf("Error in something else.Exiting.\n \r");  
                        for(int i=0; i<3; i++) {
                                actual_data.AngularSpeed_actual[i] = 0;        //Set values to 0
                                actual_data.Bvalue_actual[i] = 0;
                            }
                        return 1;  
                } 
                
            }
            
            
            
                    
            
        }
        
            
            
            cmd[0]=MAG_XOUT_H; //LSB of x
            i2c.write(SLAVE_ADDR,cmd,1);                        //Read gryo and mag registers together
            ack1 = i2c.read(SLAVE_ADDR_READ,reg_data,24);
            
            if(ack1 != 0)
            {
                wait_ms(100);
                cmd[0]=MAG_XOUT_H; //LSB of x
                i2c.write(SLAVE_ADDR,cmd,1);                        //Read gryo and mag registers together
                ack1 = i2c.read(SLAVE_ADDR_READ,reg_data,24);
                wait_ms(100);
                if(ack1 !=1)
                {
                        for(int i=0;i<3;i++)
                        {
                            actual_data.Bvalue_actual[i] = 0;
                            actual_data.AngularSpeed_actual[i] = 0;
                        }
                        return 1;
                }
                
            }
            
            
        //    pc_acs.printf("\nGyro Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating gyro LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)reg_data[16+2*i+1]<<8)|(int16_t)reg_data[16+2*i]; 
                gyro_data[i]=(float)bit_data;
                gyro_data[i]=gyro_data[i]/senstivity_gyro;
                gyro_data[i]+=gyro_error[i];
            }
            
            for(int i=0; i<3; i++) {
                //concatenating mag LSB and MSB to get 16 bit signed data values                      Extract data
                bit_data= ((int16_t)reg_data[2*i+1]<<8)|(int16_t)reg_data[2*i]; 
                mag_data[i]=(float)bit_data;
                mag_data[i]=mag_data[i]/senstivity_mag;
                mag_data[i]+=mag_error[i];
            }
            for(int i=0; i<3; i++) {
               // data[i]=gyro_data[i];
                actual_data.AngularSpeed_actual[i] = gyro_data[i];
                actual_data.Bvalue_actual[i] = mag_data[i];
            }
                

       
        if(mag_only == 0)
        {
 
          pc_acs.printf("Reading data successful.\n \r");
          return 0;
        }
        else if(mag_only == 1)
        {
                
                for(int i=0;i<3;i++)
                {
                    actual_data.AngularSpeed_actual[i] = 0;
                }
                
                
                pc_acs.printf("Reading data partial success.\n \r");
                return 2;
        }
        
            pc_acs.printf("Reading data success.\n \r");
            return 0;
        
}



int FCTN_ATS_DATA_ACQ()
{
    
    int acq;
    
    pc_acs.printf("DATA_ACQ  called \n \r");
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    
    // 0 success //1 full failure //2 partial failure

    
    
    if(( (ACS_ATS_STATUS & 0xC0) == 0x40))
    {

        acq = SENSOR_DATA_ACQ();
        if(acq == 0)
            {
                
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
                 
                 ACS_DATA_ACQ_STATUS = 0;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
                 pc_acs.printf(" Sensor 1 data acq successful.Exit Data ACQ\n \r");
                 return 0;
            }
        else if(acq == 2)
            {
                    ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
                    pc_acs.printf(" Sensor 1 data partial success.Exiting.\n \r");
                    return 2;
                    
                    /*if((ACS_ATS_STATUS & 0x0F == 0x00))
                        {
                            pc_acs.printf(" Sensor 1 data acq partial success.Trying Sensor 2\n \r");
                            ATS1_SW_ENABLE = 1;
                            ATS2_SW_ENABLE = 0;
                            wait_ms(5);
                            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x20;
                            
                            int acq;
                            acq = SENSOR_DATA_ACQ();
                            
                            if(acq == 0)
                                {
                                ACS_DATA_ACQ_STATUS = 0;
                                 pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
                                return 0;
                                
                                }
                            else if(acq == 2)
                                {
                                ACS_DATA_ACQ_STATUS = 2;
                                pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
                                return 2;
                                }
                            
                            else if(acq == 1)
                                {
                                    
                                        int acq;
                                        pc_acs.printf(" Sensor 2 data acq failure.Go to sensor 1 again.\n \r");
                                        ATS2_SW_ENABLE = 1;
                                        ATS1_SW_ENABLE = 0;
                                        wait_ms(5);
                                        acq = SENSOR_DATA_ACQ();
                                        if(acq == 0)
                                            {   
                                                pc_acs.printf(" Sensor 1 data acq success.Exiting.\n \r");
                                                ACS_DATA_ACQ_STATUS = 0;
                                                return 0;
                                            }
                                        else if(acq == 2)
                                            {
                                                pc_acs.printf(" Sensor 1 data acq partial success.Exiting.\n \r");
                                                ACS_DATA_ACQ_STATUS = 2;
                                                return 2;
                                            }
                                        else
                                            {
                                                pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
                                                ATS1_SW_ENABLE = 0;
                                                ACS_DATA_ACQ_STATUS = 1;
                                                return 1;
                                            }
                                            
                                                pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
                                                ATS1_SW_ENABLE = 0;
                                                ACS_DATA_ACQ_STATUS = 1;
                                                return 1;
        
                                }
                        
                        }
                        
                        else
                        {
                            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
                            pc_acs.printf(" Sensor 1 data partial success.Sensor 2 marked not working.Exiting.\n \r");
                            return 2;
                            
                            
                        }*/

            }
            
        else if(acq == 1)
            {
                 pc_acs.printf(" Sensor 1 data acq failure.Try sensor 2.\n \r");
                 ATS1_SW_ENABLE = 1;
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
            }
            

  
    }
    
        
        
                               
        ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
    
      
    if(( (ACS_ATS_STATUS & 0x0C) == 0x04))
    {
        ATS2_SW_ENABLE = 0;
        wait_ms(5); 
        
        acq = SENSOR_DATA_ACQ();
        if(acq == 0)
            {
                 pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
                 ACS_DATA_ACQ_STATUS = 0;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 return 0;
            }
        else if(acq == 2)
            {
                 
                 pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
                 
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x04;
                 ACS_DATA_ACQ_STATUS = 2;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 return 2;

            }
            
            else if(acq == 1)
            {
                pc_acs.printf(" Sensor 2 data acq failure.Exiting.\n \r");
                ATS2_SW_ENABLE = 1;
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
                //Sensor 2 also not working
            }
            
            
            

       
    }
    

    
         ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
         
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    pc_acs.printf(" Both sensors data acq failure.Exiting.\n \r");
    
    ACS_DATA_ACQ_STATUS = 1;        //set ACS_DATA_ACQ_STATUS flag for att sens 2
    return 1;
}

void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
    printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
    
    float l_duty_cycle_x=0;    //Duty cycle of Moment in x direction
    float l_current_x=0;       //Current sent in x TR's
    float l_duty_cycle_y=0;    //Duty cycle of Moment in y direction
    float l_current_y=0;       //Current sent in y TR's
    float l_duty_cycle_z=0;    //Duty cycle of Moment in z direction
    float l_current_z=0;       //Current sent in z TR's
 
    
    printf("\r\r");
    
    //-----------------------------  x-direction TR  --------------------------------------------//
    
    
    float l_moment_x = Moment[0];         //Moment in x direction
    
    phase_TR_x = 1;  // setting the default current direction
    if (l_moment_x <0)
    {
        phase_TR_x = 0;    // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_x = abs(l_moment_x);
    }
    
    l_current_x = l_moment_x * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    printf("current in trx is %f \r \n",l_current_x);
    if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_x =  3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;
    }
    else if (l_current_x >= 0.0016 && l_current_x < 0.0171)
    {
        l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x >= 0.0171 && l_current_x < 0.1678)
    {
        l_duty_cycle_x =  275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x==0)
    {
        printf("\n \r l_current_x====0");
        l_duty_cycle_x = 0;      // default value of duty cycle
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else                                           //not necessary
    {
        g_err_flag_TR_x = 1;
    } 
         
    //------------------------------------- y-direction TR--------------------------------------//
    
     
    float l_moment_y = Moment[1];         //Moment in y direction
    
    phase_TR_y = 1;  // setting the default current direction
    if (l_moment_y <0)
    {
        phase_TR_y = 0;   //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high  
        l_moment_y = abs(l_moment_y);
    }
    
    
    l_current_y = l_moment_y * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    printf("current in try is %f \r \n",l_current_y);
    if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_y =  3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;
    }
    else if (l_current_y >= 0.0016 && l_current_y < 0.0171)
    {
        l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y >= 0.0171 && l_current_y < 0.1678)
    {
        l_duty_cycle_y =  275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }        
    else if(l_current_y==0)
    {
        printf("\n \r l_current_y====0");
        l_duty_cycle_y = 0; // default value of duty cycle
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else                               // not necessary
    {
      g_err_flag_TR_y = 1;
    } 
             
    //----------------------------------------------- z-direction TR -------------------------//  
    
    
     
    float l_moment_z = Moment[2];         //Moment in z direction
    
    phase_TR_z = 1;  // setting the default current direction
    if (l_moment_z <0)
    {
        phase_TR_z = 0;   //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high  
        l_moment_z = abs(l_moment_z);
    }
    
    
    l_current_z = l_moment_z * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    printf("current in trz is %f \r \n",l_current_z);
    if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_z =  3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;
    }
    else if (l_current_z >= 0.0016 && l_current_z < 0.0171)
    {
        l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z >= 0.0171 && l_current_z < 0.1678)
    {
        l_duty_cycle_z =  275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }        
    else if(l_current_z==0)
    {
        printf("\n \r l_current_z====0");
        l_duty_cycle_z = 0; // default value of duty cycle
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else                               // not necessary
    {
      g_err_flag_TR_z = 1;
    } 
    
    //-----------------------------------------exiting the function-----------------------------------//
    
    printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
 
}