Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed QEI HIDScope biquadFilter MODSERIAL FastPWM
main.cpp
- Committer:
- JonaVonk
- Date:
- 2019-10-29
- Revision:
- 5:5082d694e643
- Parent:
- 4:55e6707949dd
- Child:
- 6:105b306350c6
File content as of revision 5:5082d694e643:
#include "mbed.h"
//#include "HIDScope.h"
#include "QEI.h"
#include "MODSERIAL.h"
//#include "BiQuad.h"
//#include "FastPWM.h"
#include <vector>
using std::vector;
double Pi = 3.14159265359;
QEI Enc1(D12, D13, NC, 32);
QEI Enc2(D10, D11, NC, 32);
DigitalOut M1(D4);
DigitalOut M2(D7);
PwmOut E1(D5);
PwmOut E2(D6);
double initRot1 = 0;
double initRot2 = (48.5 + 90)/360;
MODSERIAL pc(USBTX, USBRX);
void moveMotorTo(DigitalOut *M, PwmOut *E, QEI *Enc, double rotDes);
double calcRot1(double xDes, double yDes);
double calcRot2(double xDes, double yDes);
void plotPath(double xStart, double yStart, double xEnd, double yEnd, double *xPath[], double *yPath[]);
void moveAlongPath(double xStart, double yStart, double xEnd, double yEnd);
// main() runs in its own thread in the OS
int main()
{
pc.baud(115200);
pc.printf("Start\n\r");
moveAlongPath(7, 13, 0, 20);
pc.printf("End");
}
//function to mave a motor to a certain number of rotations, counted from the start of the program.
//parameters:
//DigitalOut *M = pointer to direction cpntol pin of motor
//PwmOut *E = pointer to speed contorl pin of motor
//QEI *Enc = pointer to encoder of motor
//double rotDes = desired rotation
void moveMotorTo(DigitalOut *M, PwmOut *E, QEI *Enc, double initRot, double dir, double rotDes)
{
double pErrorC;
double pErrorP = 0;
double iError = 0;
double dError;
double Kp = 1;
double Ki = 0;
double Kd = 0.0;
double U_p;
double U_i;
double U_d;
double rotC = Enc->getPulses()/(32*131.25) + initRot;
double MotorPWM;
pc.printf("rotDes: %f\n\r", rotDes);
Timer t;
double tieme = 0;
t.start();
do {
pErrorP = pErrorC;
rotC = Enc->getPulses()/(32*131.25) + initRot;
pErrorC = rotDes - rotC;
tieme = t.read();
t.reset();
iError = iError + pErrorC*tieme;
dError = (pErrorC - pErrorP)/tieme;
U_p = pErrorC*Kp;
U_i = iError*Ki;
U_d = dError*Kd;
MotorPWM = (U_p + U_i + U_d)*dir;
if(MotorPWM > 0) {
*M = 0;
*E = MotorPWM;
} else {
*M = 1;
*E = -MotorPWM;
}
//printf("U_p: %f U_i: %f U_d: %f motorPWM: %f\n\r", pErrorC, iError, dError, MotorPWM);
} while (abs(MotorPWM)>0.001); //pErrorC > 0.02 || pErrorC < -0.02 ||dError > 0.01 || dError < -0.01);
*E = 0;
pc.printf("U_p: %f U_i: %f U_d: %f motorPWM: %f\n\r", pErrorC, iError, dError, MotorPWM);
t.stop();
}
void moveMotorTo1(DigitalOut *M, PwmOut *E, QEI *Enc, double initRot, double dir, double rotDes)
{
double pErrorC;
double pErrorP = 0;
double iError = 0;
double dError;
double Kp = 1;
double Ki = 0;
double Kd = 0.0;
double U_p;
double U_i;
double U_d;
double rotC = Enc->getPulses()/(32*131.25) + initRot;
double MotorPWM;
pc.printf("rotDes: %f\n\r", rotDes);
Timer t;
double tieme = 0;
t.start();
do {
pErrorP = pErrorC;
rotC = Enc->getPulses()/(32*131.25) + initRot;
pErrorC = rotDes - rotC;
tieme = t.read();
t.reset();
iError = iError + pErrorC*tieme;
dError = (pErrorC - pErrorP)/tieme;
U_p = pErrorC*Kp;
U_i = iError*Ki;
U_d = dError*Kd;
MotorPWM = (U_p + U_i + U_d)*dir;
if(MotorPWM > 0) {
*M = 0;
*E = MotorPWM;
} else {
*M = 1;
*E = -MotorPWM;
}
//printf("U_p: %f U_i: %f U_d: %f motorPWM: %f\n\r", pErrorC, iError, dError, MotorPWM);
} while (abs(MotorPWM)>0.001); //pErrorC > 0.02 || pErrorC < -0.02 ||dError > 0.01 || dError < -0.01);
*E = 0;
pc.printf("U_p: %f U_i: %f U_d: %f motorPWM: %f\n\r", pErrorC, iError, dError, MotorPWM);
t.stop();
}
//double that calculates the rotation of one arm.
//parameters:
//double xDes = ofset of the arm's shaft in cm in the x direction
//double yDes = ofset of the arm's shaft in cm in the y direction
double calcRot1(double xDes, double yDes)
{
return 6*((atan(yDes/xDes) - 0.5*(Pi - acos((pow(xDes, 2.0) + pow(yDes, 2.0) - 2*pow(20.0, 2.0))/(-2*pow(20.0, 2.0)))))/(2*Pi));
};
//double that calculates the rotation of the other arm.
//parameters:
//double xDes = ofset of the arm's shaft in cm in the x direction
//double yDes = ofset of the arm's shaft in cm in the y direction
double calcRot2(double xDes, double yDes)
{
return 6*((atan(yDes/xDes) + 0.5*(Pi - acos((pow(xDes, 2.0) + pow(yDes, 2.0) - 2*pow(20.0, 2.0))/(-2*pow(20.0, 2.0)))))/(2*Pi));
};
void plotPath(double xStart, double yStart, double xEnd, double yEnd, vector<double> *xPath, vector<double> *yPath)
{
double lPath = sqrt(pow(xEnd-xStart, 2.0) + pow(yEnd-yStart, 2.0));
int noSteps = int(lPath/0.01);
double xStep = (xEnd - xStart)/double(noSteps);
double yStep = (yEnd - yStart)/double(noSteps);
for(int i = 0; i<=noSteps; i++) {
xPath->push_back(xStart + i*xStep);
yPath->push_back(yStart + i*yStep);
}
}
void moveAlongPath(double xStart, double yStart, double xEnd, double yEnd)
{
vector<double> xPath;
vector<double> yPath;
vector<double> rot1Path;
vector<double> rot2Path;
plotPath(xStart, yStart, xEnd, yEnd, &xPath, &yPath);
for(int i = 0; i < xPath.size(); i++) {
rot1Path.push_back(calcRot1(xPath.at(i), yPath.at(i)));
rot2Path.push_back(calcRot2(xPath.at(i), yPath.at(i)));
}
for(int i = 0; i < xPath.size(); i++) {
moveMotorTo(&M1, &E1, &Enc1, initRot1, 1, rot1Path.at(i));
moveMotorTo1(&M2, &E2, &Enc2, initRot2, -1, rot2Path.at(i));
}
}