Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: VL53L0X.cpp
- Revision:
- 0:0e577ce96b2f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/VL53L0X.cpp Sat Feb 08 09:48:46 2020 +0000
@@ -0,0 +1,4532 @@
+/**
+ ******************************************************************************
+ * @file VL53L0X_class.cpp
+ * @author IMG
+ * @version V0.0.1
+ * @date 28-June-2016
+ * @brief Implementation file for the VL53L0X driver class
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+*/
+
+/*
+Simplifications versus the original library:
+
+Replace:
+ * "MicroSeconds" or "micro_seconds" by "us" or "_us"
+ * "MilliSeconds" or "milli_seconds" by "ms" or "_ms"
+ * "MegaCps" or "MCps" or "_mega_cps" by "MHz" or "_MHz"
+ * "MicroMeter" by "um" or "_um"
+ * "FIXEDPNT" by "FP"
+
+Everything related to histogram_mode seems completely not implemented, so all definitions removed.
+
+Everything related to x_talk_compensation seems also not implemented, all removed
+
+Some example regular expressinos used to simplify the code:
+b) Search for: \QRead_Byte(\E([A-Za-z_\d]+)[[:punct:]](\s*)\Q&\E([A-Za-z\d_]+)\Q);\E
+ Replace by: \3 = Read_Byte\(\1\);
+ to replace: Read_Byte(0x90,&module_id);
+ by this: module_id = Read_Byte(0x90);
+
+c) Search for: ([A-Za-z_\d]+)\Q(\E\r\n(\s*)
+ Replace by: \1\(
+ To join lines where the first line has an open bracket, and the next line starts listing the parameters.
+ for example: Status = VL53L0X_UpdateByte(V
+ L53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
+ becomes: Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
+
+*/
+
+/* Includes */
+#include <stdlib.h>
+#include "VL53L0X.h"
+
+void Report_Range_Infos(VL53L0X_RangingMeasurementData_t RangeResults, Serial *aSerial )
+{
+ aSerial->printf("\n\r Reporting All Fields of VL53L0X_RangingMeasurementData_t structure \n\r" );
+ aSerial->printf(" .Range_mm = %dmm; Ranged distance. \n\r", RangeResults.Range_mm );
+ aSerial->printf(" .RangeDMax_mm = %dmm; maximum detection distance in current setup and environment conditions \n\r", RangeResults.RangeDMax_mm );
+ aSerial->printf(" .SignalRateRtn_MHz = %3.3fMHz; effectively a measure of target reflectance \n\r", RangeResults.SignalRateRtn_MHz / 65535.01);
+ aSerial->printf(" .AmbientRateRtn_MHz = %3.3fMHz; effectively a measure of the ambient light \n\r", RangeResults.AmbientRateRtn_MHz / 65535.01 );
+ aSerial->printf(" .EffectiveSpadRtnCount = %3.3f; effective SPAD count for the return signal \n\r", RangeResults.EffectiveSpadRtnCount / 256.001 );
+ aSerial->printf(" .RangeFractionalPart = %d; Fractional part of range distance. \n\r", RangeResults.RangeFractionalPart >> 6 );
+ aSerial->printf(" .RangeStatus = %d[u8]; Status for the current measurement, 0 = value is valid \n\r", RangeResults.RangeStatus );
+ aSerial->printf(" .SigmaEstimate = %3.2f; Estimated Sigma - based on ambient & VCSEL rates and signal_total_events \n\r", RangeResults.SigmaEstimate/ 65535.01 );
+};
+
+void Report_Deep_Infos(VL53L0X TOF1, Serial *aSerial)
+{
+ aSerial->printf("\n\r Reporting All Top Level Infos of the class \n\r" );
+ aSerial->printf("I2cDevAddr = %d. \n\r", TOF1.I2cDevAddr );
+ aSerial->printf("comms_type = %d. Type of comms: 1=VL53L0X_COMMS_I2C or VL53L0X_COMMS_SPI \n\r", TOF1.comms_type );
+ aSerial->printf("comms_speed = %d. Communication speed [kHz] : typically 400kHz for I2C \n\r", TOF1.comms_speed_khz );
+
+ aSerial->printf("\n\r Reporting All Infos of the Device_Info structure: \n\r" );
+ aSerial->printf("Device_Info.ProductType = 0x%2X. VL53L0X = 1, VL53L1 = 2 \n\r", TOF1.Device_Info.ProductType );
+ aSerial->printf("Device_Info.ProductRevision = %d.%d. Revision NR, major.minor \n\r",
+ TOF1.Device_Info.ProductRevisionMajor, TOF1.Device_Info.ProductRevisionMinor );
+ aSerial->printf("Device_Info.Name = %s. Name of Device e.g. Left_Distance\n\r", TOF1.Device_Info.Name );
+ aSerial->printf("Device_Info.Type = %s. Type of Device e.g VL53L0X \n\r", TOF1.Device_Info.Type );
+ aSerial->printf("Device_Info.ProductId = %s. Product Identifier String \n\r", TOF1.Device_Info.ProductId );
+
+ aSerial->printf("\n\r Reporting All Fields of CurrentParameters \n\r" );
+ aSerial->printf(" .DeviceMode = %d. Defines type of measurement to be done for the next measurement \n\r",
+ TOF1.CurrentParameters.DeviceMode );
+ aSerial->printf(" .Measure_Time_Budget_us= %dus. Allowed total time for a single measurement \n\r",
+ TOF1.CurrentParameters.MeasurementTimingBudget_us );
+ aSerial->printf(" .Measure_Period_ms = %dms. Time between two consecutive measurements \n\r",
+ TOF1.CurrentParameters.InterMeasurementPeriod_ms );
+ aSerial->printf(" .XTalk_Compens_En = %d. Crosstalk compensation enable or not (0, default) \n\r",
+ TOF1.CurrentParameters.XTalkCompensationEnable );
+ aSerial->printf(" .XTalk_CompRange_mm = %dmm. CrossTalk compensation range, seems never used \n\r",
+ TOF1.CurrentParameters.XTalkCompensationRange_mm );
+ aSerial->printf(" .XTalk_CompRate_MHz = %3.2fMHz. CrossTalk compensation rate . \n\r",
+ (float) TOF1.CurrentParameters.XTalkCompensationRate_MHz / 65536);
+ aSerial->printf(" .RangeOffset_um = %d. Range offset adjustment (um) last programmed.\n\r",
+ TOF1.CurrentParameters.RangeOffset_um );
+ aSerial->printf(" .LimitChecks ... = SIGMA_FINAL, SIGNAL_RATE_FINAL, SIGNAL_REF_CLIP, IGNORE_THRESHOLD, SIGNAL_RATE_MSRC, SIGNAL_RATE_PRE.\n\r");
+ aSerial->printf(" .LimitChecksEnable[x] = %d %d %d %d %d %d. The Limit Checks enabled or not.\n\r",
+ TOF1.CurrentParameters.LimitChecksEnable[0],TOF1.CurrentParameters.LimitChecksEnable[1] ,TOF1.CurrentParameters.LimitChecksEnable[2],
+ TOF1.CurrentParameters.LimitChecksEnable[3],TOF1.CurrentParameters.LimitChecksEnable[4] ,TOF1.CurrentParameters.LimitChecksEnable[5] );
+ aSerial->printf(" .LimitChecksStatus[x] = %d %d %d %d %d %d. Status of checks of last measurement.\n\r",
+ TOF1.CurrentParameters.LimitChecksStatus[0],TOF1.CurrentParameters.LimitChecksStatus[1] ,TOF1.CurrentParameters.LimitChecksStatus[2],
+ TOF1.CurrentParameters.LimitChecksStatus[3],TOF1.CurrentParameters.LimitChecksStatus[4] ,TOF1.CurrentParameters.LimitChecksStatus[5] );
+ aSerial->printf(" .LimitChecksValue[x] = %d %d %d %d %d %d [FP1616]. The Limit Check values \n\r",
+ TOF1.CurrentParameters.LimitChecksValue[0],TOF1.CurrentParameters.LimitChecksValue[1] ,TOF1.CurrentParameters.LimitChecksValue[2],
+ TOF1.CurrentParameters.LimitChecksValue[3],TOF1.CurrentParameters.LimitChecksValue[4] ,TOF1.CurrentParameters.LimitChecksValue[5] );
+ aSerial->printf(" .WrapAroundCheckEnable = %d. Wrap Around Check enabled or not \n\r",
+ TOF1.CurrentParameters.WrapAroundCheckEnable );
+
+ aSerial->printf("\n\r Reporting All Fields of VL53L0X_DevData_t Data structure \n\r" );
+ aSerial->printf(" .OscFrequency_MHz = %3.2fMHz; Frequency used \n\r", (float) TOF1.Data.OscFrequency_MHz/65536 );
+ aSerial->printf(" .LastEncodedTimeout = %d[u16]; Last encoded Time out used for timing budget \n\r", TOF1.Data.LastEncodedTimeout );
+ aSerial->printf(" .Pin0GpioFunctionality = %d[u8]; functionality of the GPIO: pin0 \n\r", TOF1.Data.Pin0GpioFunctionality );
+ aSerial->printf(" .FinalRangeTimeout_us = %d[u32]; Execution time of the final ranging \n\r", TOF1.Data.FinalRangeTimeout_us );
+ aSerial->printf(" .FinalRangeVcselPulsePeriod= %d[u8]; Vcsel pulse period (pll clocks) for the final range measurement \n\r", TOF1.Data.FinalRangeVcselPulsePeriod );
+ aSerial->printf(" .PreRangeTimeout_us = %d[u32]; Execution time of the final range \n\r", TOF1.Data.PreRangeTimeout_us );
+ aSerial->printf(" .PreRangeVcselPulsePeriod = %d[u8]; Vcsel pulse period (pll clocks) for the pre-range measurement \n\r", TOF1.Data.PreRangeVcselPulsePeriod );
+ aSerial->printf(" .ReadDataFromDeviceDone = %2d; reads from device has been done (>0) or not. \n\r", TOF1.Data.ReadDataFromDeviceDone );
+ aSerial->printf(" .ModuleId = %X; Module ID \n\r", TOF1.Data.ModuleId );
+ aSerial->printf(" .Revision = %d[u8]; test Revision \n\r", TOF1.Data.Revision );
+ aSerial->printf(" .ProductId = %s[char*]; Product Identifier String \n\r", TOF1.Data.ProductId );
+ aSerial->printf(" .ReferenceSpadCount = %d[u8]; used for ref spad management \n\r", TOF1.Data.ReferenceSpadCount );
+ aSerial->printf(" .ReferenceSpadType = %d[u8]; used for ref spad management \n\r", TOF1.Data.ReferenceSpadType );
+ aSerial->printf(" .RefSpadsInitialised = %d[u8]; reports if ref spads are initialised. \n\r", TOF1.Data.RefSpadsInitialised );
+ aSerial->printf(" .PartUIDUpper = %d[u32]; Unique Part ID Upper \n\r", TOF1.Data.PartUIDUpper );
+ aSerial->printf(" .PartUIDLower = %d[u32]; Unique Part ID Lower \n\r", TOF1.Data.PartUIDLower );
+ aSerial->printf(" .SignalRateMeasFixed400mm = %3.3f; Peak Signal rate at 400 mm \n\r", 1.0 / 65535.0 * TOF1.Data.SignalRateMeasFixed400mm );
+ aSerial->printf(" .RefSpadEnables[x] = %X %X %X %X %X %X[hex8]; Reference Spad Enables \n\r",
+ TOF1.Data.RefSpadEnables[0], TOF1.Data.RefSpadEnables[1], TOF1.Data.RefSpadEnables[2],
+ TOF1.Data.RefSpadEnables[3], TOF1.Data.RefSpadEnables[4], TOF1.Data.RefSpadEnables[5] );
+ aSerial->printf(" .RefGoodSpadMap[x] = %X %X %X %X %X %X[hex8]; Reference Spad Good Spad Map\n\r",
+ TOF1.Data.RefGoodSpadMap[0], TOF1.Data.RefGoodSpadMap[1], TOF1.Data.RefGoodSpadMap[2],
+ TOF1.Data.RefGoodSpadMap[3], TOF1.Data.RefGoodSpadMap[4], TOF1.Data.RefGoodSpadMap[5] );
+ aSerial->printf(" .Part2PartOffsetNVM_um = %d[i32]; backed up NVM value \n\r", TOF1.Data.Part2PartOffsetNVM_um );
+ aSerial->printf(" .Part2PartOffsetAdjustNVM_um= %d[i32]; backed up NVM value of additional offset adjustment \n\r", TOF1.Data.Part2PartOffsetAdjustNVM_um );
+ aSerial->printf(" .SequenceConfig = %d[u8]; Internal value for the sequence config \n\r", TOF1.Data.SequenceConfig );
+ aSerial->printf(" .RangeFractionalEnable = %d[u8]; Enable/Disable fractional part of range data \n\r", TOF1.Data.RangeFractionalEnable);
+ aSerial->printf(" .PalState = %d[u8]; Current state of the PAL \n\r", TOF1.Data.PalState );
+ aSerial->printf(" .PowerMode = %d[u8]; Current Power Mode; Stdby1/2, Idle1/2 \n\r", TOF1.Data.PowerMode );
+ aSerial->printf(" .SigmaEstRefArray = %d[u16]; Reference array sigma value in 1/100th of [mm] \n\r", TOF1.Data.SigmaEstRefArray );
+ aSerial->printf(" .SigmaEstEffPulseWidth = %d[u16]; Effective Pulse width for sigma estimate in 1/100th of ns \n\r", TOF1.Data.SigmaEstEffPulseWidth );
+ aSerial->printf(" .SigmaEstEffAmbWidth = %d. Effective Ambient width for sigma estimate in 1/100th of ns \n\r", TOF1.Data.SigmaEstEffAmbWidth );
+ aSerial->printf(" .StopVariable = %d[u8]; StopVariable used during the stop sequence \n\r", TOF1.Data.StopVariable );
+ aSerial->printf(" .targetRefRate = %d. Target Ambient Rate for Ref spad management \n\r", TOF1.Data.targetRefRate );
+ aSerial->printf(" .LastSignalRef_MHz = %3.3fMHz; Latest Signal ref \n\r", TOF1.Data.LastSignalRef_MHz / 65535.01 );
+ aSerial->printf(" .UseInternalTuningSetting = %d[u8]; Indicate if we use Tuning Settings table \n\r", TOF1.Data.UseInternalTuningSettings );
+ aSerial->printf(" .LinearityCorrectiveGain = %d[u8]; Linearity Corrective Gain value in x1000 \n\r", TOF1.Data.LinearityCorrectiveGain );
+ aSerial->printf(" .DmaxCalRange_mm = %dmm; Dmax Calibration Range \n\r", TOF1.Data.DmaxCalRange_mm );
+ aSerial->printf(" .DmaxCalSignalRateRtn_MHz = %3.3fMHz; Dmax Calibration Signal Rate Return \n\r", TOF1.Data.DmaxCalSignalRateRtn_MHz / 65535.01 );
+}
+
+int VL53L0X::read_id(uint8_t *id)
+{ int status = 0;
+ uint16_t rl_id = 0;
+
+ status = VL53L0X_read_word(VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
+ if (rl_id == 0xEEAA) {
+ return status;
+ }
+ return -1;
+}
+
+int VL53L0X::init_sensor(uint8_t new_addr)
+{ int status;
+
+ VL53L0X_off();
+ VL53L0X_on();
+
+ // Verify if the device is actually present
+ uint8_t id = 0;
+ status = read_id(&id);
+ if (status != 0) {
+ //aSerial->printf("VL53L0X sensor is not present!\n\r");
+ return 99; } // device is not present
+
+ status = VL53L0X_data_init();
+ if (status != VL53L0X_ERROR_NONE) {
+ //aSerial->printf("Failed to init VL53L0X sensor!\n\r");
+ return status;
+ }
+
+ // deduce silicon version
+ status = VL53L0X_get_device_info();
+
+ status = prepare();
+ if (status != VL53L0X_ERROR_NONE) {
+ //aSerial->printf("Failed to prepare VL53L0X!\n\r");
+ return status;
+ }
+
+ if (new_addr != VL53L0X_DEFAULT_ADDRESS) {
+ status = set_device_address(new_addr);
+ if (status) {
+ //aSerial->printf("Failed to change I2C address!\n\r");
+ return status;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_data_init(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceParameters_t CurrentParameters;
+ int i;
+ uint8_t StopVariable;
+
+ /* by default the I2C is running at 1V8 if you want to change it you
+ * need to include this define at compilation level. */
+#ifdef USE_I2C_2V8
+ Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,0xFE,0x01);
+#endif
+
+ /* Set I2C standard mode */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0x88, 0x00); }
+
+ Data.ReadDataFromDeviceDone = 0;
+ Data.ReadDataFromDeviceDone = 0;
+
+#ifdef USE_IQC_STATION
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_apply_offset_adjustment();
+ }
+#endif
+
+ /* Default value is 1000 for Linearity Corrective Gain */
+ Data.LinearityCorrectiveGain = 1000;
+
+ /* Dmax default Parameter */
+ Data.DmaxCalRange_mm = 400;
+ Data.DmaxCalSignalRateRtn_MHz = (FixPoint1616_t)((0x00016B85)); /* 1.42 No Cover Glass*/
+
+ /* Set Default static parameters
+ *set first temporary values 9.44_MHz * 65536 = 618660 */
+ Data.OscFrequency_MHz = 618660;
+
+ /* Set Default XTalkCompensationRate_MHz to 0 */
+ CurrentParameters.XTalkCompensationRate_MHz = 0;
+
+ /* Get default parameters */
+ status = VL53L0X_get_device_parameters( &CurrentParameters);
+ if (status == VL53L0X_ERROR_NONE) {
+ /* initialize PAL values */
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
+ CurrentParameters = CurrentParameters;
+ }
+
+ /* Sigma estimator variable */
+ Data.SigmaEstRefArray = 100;
+ Data.SigmaEstEffPulseWidth = 900;
+ Data.SigmaEstEffAmbWidth = 500;
+ Data.targetRefRate = 0x0A00; /* 20 MHz in 9:7 format */
+
+ /* Use internal default settings */
+ Data.UseInternalTuningSettings = 1;
+
+ status |= VL53L0X_write_byte( 0x80, 0x01);
+ status |= VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x00);
+ status |= VL53L0X_read_byte( 0x91, &StopVariable);
+ Data.StopVariable = StopVariable;
+ status |= VL53L0X_write_byte( 0x00, 0x01);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+ status |= VL53L0X_write_byte( 0x80, 0x00);
+
+ /* Enable all check */
+ for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+ if (status == VL53L0X_ERROR_NONE) {
+ status |= VL53L0X_set_limit_check_enable( i, 1);
+ } else { break; }
+ }
+
+ /* Disable the following checks */
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
+
+ /* Limit default values */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ (FixPoint1616_t)(18 * 65536));
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+ (FixPoint1616_t)(25 * 65536 / 100)); /* 0.25 * 65536 */
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ (FixPoint1616_t)(35 * 65536));
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ (FixPoint1616_t)(0 * 65536));
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = 0xFF;
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,0xFF);
+
+ /* Set PAL state to tell that we are waiting for call to VL53L0X_StaticInit */
+ Data.PalState = VL53L0X_STATE_WAIT_STATICINIT;
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.RefSpadsInitialised = 0;
+ }
+
+ return status;
+}
+
+int VL53L0X::prepare()
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t ref_spad_count;
+ uint8_t is_aperture_spads;
+ uint8_t vhv_settings;
+ uint8_t phase_cal;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_static_init(); // Device Initialization
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_ref_calibration(&vhv_settings, &phase_cal); // Device Initialization
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_ref_spad_management(&ref_spad_count, &is_aperture_spads); // Device Initialization
+ }
+
+ return status;
+}
+
+int VL53L0X::start_measurement(OperatingMode operating_mode, void (*fptr)(void),
+ VL53L0X_RangingConfig rangingConfig)
+{ int Status = VL53L0X_ERROR_NONE;
+ int ClrStatus;
+
+ uint8_t VhvSettings;
+ uint8_t PhaseCal;
+ // default settings, for normal range.
+ FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25 * 65536);
+ FixPoint1616_t sigmaLimit = (FixPoint1616_t)(25 * 65536);
+ uint32_t timingBudget = 33000;
+ uint8_t preRangeVcselPeriod = 14;
+ uint8_t finalRangeVcselPeriod = 10;
+
+ if (operating_mode == range_continuous_interrupt) {
+ if (_gpio1Int == NULL) {
+ //aSerial->printf("GPIO1 Error\r\n");
+ return 1;
+ }
+
+ Status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
+
+// Status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
+
+ Status = VL53L0X_set_gpio_config(0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
+ VL53L0X_INTERRUPTPOLARITY_HIGH);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ attach_interrupt_measure_detection_irq(fptr);
+ enable_interrupt_measure_detection_irq();
+ }
+
+ ClrStatus = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
+ if (ClrStatus) { Status = 97; } // VL53L0X_ClearErrorInterrupt fail
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
+ Status = VL53L0X_start_measurement();
+ }
+ }
+
+ if (operating_mode == range_single_shot_polling) {
+ // singelshot, polled ranging
+ if (Status == VL53L0X_ERROR_NONE) {
+ // no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING; // Setup in single ranging mode
+ // Enable/Disable Sigma and Signal check
+ Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
+ }
+
+ /* Preselected Ranging configurations */
+ switch(rangingConfig) {
+ case Range_Config_DEFAULT:
+ // default settings, for normal range.
+ signalLimit = (FixPoint1616_t)(0.25 * 65536);
+ sigmaLimit = (FixPoint1616_t)(16 * 65536);
+ timingBudget = 33000;
+ preRangeVcselPeriod = 14;
+ finalRangeVcselPeriod = 10;
+ break;
+ case Range_Config_LONG_RANGE: // *** from mass market cube expansion v1.1, ranging with satellites.
+ signalLimit = (FixPoint1616_t)(0.1 * 65536);
+ sigmaLimit = (FixPoint1616_t)(60 * 65536);
+ timingBudget = 33000;
+ preRangeVcselPeriod = 18;
+ finalRangeVcselPeriod = 14;
+ break;
+ case Range_Config_HIGH_ACCURACY:
+ signalLimit = (FixPoint1616_t)(0.25*65536);
+ sigmaLimit = (FixPoint1616_t)(18*65536);
+ timingBudget = 200000;
+ preRangeVcselPeriod = 14;
+ finalRangeVcselPeriod = 10;
+ break;
+ case Range_Config_HIGH_SPEED:
+ signalLimit = (FixPoint1616_t)(0.25*65536);
+ sigmaLimit = (FixPoint1616_t)(60*65536);
+ timingBudget = 20000;
+ preRangeVcselPeriod = 14;
+ finalRangeVcselPeriod = 10;
+ break;
+ default:
+ Status = 96; // Config Not Supported
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);}
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);}
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_measurement_timing_budget_us( timingBudget);}
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);}
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);}
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_perform_ref_calibration( &VhvSettings, &PhaseCal);}
+
+ }
+
+ if (operating_mode == range_continuous_polling) {
+ if (Status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
+ Status = VL53L0X_start_measurement();
+ }
+ }
+ return Status;
+}
+
+int VL53L0X::range_meas_int_continuous_mode(void (*fptr)(void))
+{ int status, clr_status;
+
+ status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
+
+// status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
+
+ status = VL53L0X_set_gpio_config( 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY, VL53L0X_INTERRUPTPOLARITY_HIGH);
+
+ if (!status) {
+ attach_interrupt_measure_detection_irq(fptr);
+ enable_interrupt_measure_detection_irq();
+ }
+
+ clr_status = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
+ if (clr_status!=0) { status = 98; } // VL53L0X_ClearErrorInterrupt_fail;
+
+ if (!status) {
+ status = range_start_continuous_mode();
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::wait_measurement_data_ready(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t new_dat_ready = 0;
+ uint32_t loop_nb;
+
+ // Wait until it finished
+ // use timeout to avoid deadlock
+ if (status == VL53L0X_ERROR_NONE) {
+ loop_nb = 0;
+ do {
+ status = VL53L0X_get_measurement_data_ready( &new_dat_ready);
+ if ((new_dat_ready == 0x01) || status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+ loop_nb = loop_nb + 1;
+ VL53L0X_polling_delay();
+ } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ status = VL53L0X_ERROR_TIME_OUT;
+ }
+ }
+
+ return status;
+}
+
+int VL53L0X::get_distance(uint32_t *p_data)
+{
+ int status = 0;
+ VL53L0X_RangingMeasurementData_t p_ranging_measurement_data;
+
+ status = start_measurement(range_single_shot_polling, NULL, Range_Config_DEFAULT);
+ if (!status) {
+ status = get_measurement(range_single_shot_polling, &p_ranging_measurement_data);
+ }
+ if (p_ranging_measurement_data.RangeStatus == 0) { // we have a valid range.
+ *p_data = p_ranging_measurement_data.Range_mm;
+ } else {
+ *p_data = 0;
+ status = VL53L0X_ERROR_RANGE_ERROR;
+ }
+ stop_measurement(range_single_shot_polling);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::wait_stop_completed(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t stop_completed = 0;
+ uint32_t loop_nb;
+
+ // Wait until it finished
+ // use timeout to avoid deadlock
+ if (status == VL53L0X_ERROR_NONE) {
+ loop_nb = 0;
+ do {
+ status = VL53L0X_get_stop_completed_status( &stop_completed);
+ if ((stop_completed == 0x00) || status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+ loop_nb = loop_nb + 1;
+ VL53L0X_polling_delay();
+ } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ status = VL53L0X_ERROR_TIME_OUT;
+ }
+ }
+
+ return status;
+}
+
+int VL53L0X::get_measurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *p_data)
+{ int Status = VL53L0X_ERROR_NONE;
+
+ if (operating_mode == range_single_shot_polling) {
+ Status = VL53L0X_perform_single_ranging_measurement( p_data);
+ }
+
+ if (operating_mode == range_continuous_polling) {
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_measurement_poll_for_completion();
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_get_ranging_measurement_data( p_data);
+
+ // Clear the interrupt
+ VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+ VL53L0X_polling_delay();
+ }
+ }
+
+ if (operating_mode == range_continuous_interrupt) {
+ Status = VL53L0X_get_ranging_measurement_data( p_data);
+ VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR | VL53L0X_REG_RESULT_INTERRUPT_STATUS);
+ }
+
+ return Status;
+}
+
+int VL53L0X::stop_measurement(OperatingMode operating_mode)
+{ int status = VL53L0X_ERROR_NONE;
+
+ // don't need to stop for a singleshot range!
+ if (operating_mode == range_single_shot_polling) {
+ }
+
+ if (operating_mode == range_continuous_interrupt || operating_mode == range_continuous_polling) {
+ // continuous mode
+ if (status == VL53L0X_ERROR_NONE) {
+ //aSerial->printf("Call of VL53L0X_StopMeasurement\n");
+ status = VL53L0X_stop_measurement();
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ //aSerial->printf("Wait Stop to be competed\n");
+ status = wait_stop_completed();
+ }
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_clear_interrupt_mask(VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+ }
+
+ return status;
+}
+
+int VL53L0X::handle_irq(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *data)
+{ int status;
+ status = get_measurement(operating_mode, data);
+ enable_interrupt_measure_detection_irq();
+ return status;
+}
+
+int VL53L0X::range_start_continuous_mode()
+{ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING;
+
+ return VL53L0X_start_measurement();
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t strobe;
+ uint32_t loop_nb;
+
+ status |= VL53L0X_write_byte( 0x83, 0x00);
+
+ /* polling
+ * use timeout to avoid deadlock*/
+ if (status == VL53L0X_ERROR_NONE) {
+ loop_nb = 0;
+ do {
+ status = VL53L0X_read_byte( 0x83, &strobe);
+ if ((strobe != 0x00) || status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+
+ loop_nb = loop_nb + 1;
+ } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ status = VL53L0X_ERROR_TIME_OUT;
+ }
+ }
+
+ status |= VL53L0X_write_byte( 0x83, 0x01);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device( uint8_t option)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t byte;
+ uint32_t tmp_dword;
+ uint8_t module_id;
+ uint8_t revision;
+ uint8_t reference_spad_count = 0;
+ uint8_t reference_spad_type = 0;
+ uint32_t part_uid_upper = 0;
+ uint32_t part_uid_lower = 0;
+ uint32_t offset_fixed1104_mm = 0;
+ int16_t offset_micro_meters = 0;
+ uint32_t dist_meas_tgt_fixed1104_mm = 400 << 4;
+ uint32_t dist_meas_fixed1104_400_mm = 0;
+ uint32_t signal_rate_meas_fixed1104_400_mm = 0;
+ char product_id[19];
+ char *product_id_tmp;
+ uint8_t read_data_from_device_done;
+ FixPoint1616_t signal_rate_meas_fixed400_mm_fix = 0;
+ uint8_t nvm_ref_good_spad_map[VL53L0X_REF_SPAD_BUFFER_SIZE];
+ int i;
+
+ read_data_from_device_done = Data.ReadDataFromDeviceDone;
+ read_data_from_device_done = Data.ReadDataFromDeviceDone;
+ read_data_from_device_done = Data.ReadDataFromDeviceDone;
+
+ /* This access is done only once after that a GetDeviceInfo or
+ * datainit is done*/
+ if (read_data_from_device_done != 7) {
+
+ status |= VL53L0X_write_byte( 0x80, 0x01);
+ status |= VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x00);
+ status |= VL53L0X_write_byte( 0xFF, 0x06);
+ status |= VL53L0X_read_byte ( 0x83, &byte);
+ status |= VL53L0X_write_byte( 0x83, byte | 4);
+ status |= VL53L0X_write_byte( 0xFF, 0x07);
+ status |= VL53L0X_write_byte( 0x81, 0x01);
+
+ status |= VL53L0X_polling_delay();
+
+ status |= VL53L0X_write_byte( 0x80, 0x01);
+
+ if (((option & 1) == 1) &&
+ ((read_data_from_device_done & 1) == 0)) {
+ status |= VL53L0X_write_byte( 0x94, 0x6b);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ reference_spad_count = (uint8_t)((tmp_dword >> 8) & 0x07f);
+ reference_spad_type = (uint8_t)((tmp_dword >> 15) & 0x01);
+
+ status |= VL53L0X_write_byte( 0x94, 0x24);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ nvm_ref_good_spad_map[0] = (uint8_t)((tmp_dword >> 24) & 0xff);
+ nvm_ref_good_spad_map[1] = (uint8_t)((tmp_dword >> 16) & 0xff);
+ nvm_ref_good_spad_map[2] = (uint8_t)((tmp_dword >> 8) & 0xff);
+ nvm_ref_good_spad_map[3] = (uint8_t)(tmp_dword & 0xff);
+
+ status |= VL53L0X_write_byte( 0x94, 0x25);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ nvm_ref_good_spad_map[4] = (uint8_t)((tmp_dword >> 24) & 0xff);
+ nvm_ref_good_spad_map[5] = (uint8_t)((tmp_dword >> 16) & 0xff);
+ }
+
+ if (((option & 2) == 2) &&
+ ((read_data_from_device_done & 2) == 0)) {
+
+ status |= VL53L0X_write_byte( 0x94, 0x02);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_byte( 0x90, &module_id);
+
+ status |= VL53L0X_write_byte( 0x94, 0x7B);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_byte( 0x90, &revision);
+
+ status |= VL53L0X_write_byte( 0x94, 0x77);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ product_id[0] = (char)((tmp_dword >> 25) & 0x07f);
+ product_id[1] = (char)((tmp_dword >> 18) & 0x07f);
+ product_id[2] = (char)((tmp_dword >> 11) & 0x07f);
+ product_id[3] = (char)((tmp_dword >> 4) & 0x07f);
+
+ byte = (uint8_t)((tmp_dword & 0x00f) << 3);
+
+ status |= VL53L0X_write_byte( 0x94, 0x78);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ product_id[4] = (char)(byte +
+ ((tmp_dword >> 29) & 0x07f));
+ product_id[5] = (char)((tmp_dword >> 22) & 0x07f);
+ product_id[6] = (char)((tmp_dword >> 15) & 0x07f);
+ product_id[7] = (char)((tmp_dword >> 8) & 0x07f);
+ product_id[8] = (char)((tmp_dword >> 1) & 0x07f);
+
+ byte = (uint8_t)((tmp_dword & 0x001) << 6);
+
+ status |= VL53L0X_write_byte( 0x94, 0x79);
+
+ status |= VL53L0X_device_read_strobe();
+
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ product_id[9] = (char)(byte +
+ ((tmp_dword >> 26) & 0x07f));
+ product_id[10] = (char)((tmp_dword >> 19) & 0x07f);
+ product_id[11] = (char)((tmp_dword >> 12) & 0x07f);
+ product_id[12] = (char)((tmp_dword >> 5) & 0x07f);
+
+ byte = (uint8_t)((tmp_dword & 0x01f) << 2);
+
+ status |= VL53L0X_write_byte( 0x94, 0x7A);
+
+ status |= VL53L0X_device_read_strobe();
+
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+
+ product_id[13] = (char)(byte +
+ ((tmp_dword >> 30) & 0x07f));
+ product_id[14] = (char)((tmp_dword >> 23) & 0x07f);
+ product_id[15] = (char)((tmp_dword >> 16) & 0x07f);
+ product_id[16] = (char)((tmp_dword >> 9) & 0x07f);
+ product_id[17] = (char)((tmp_dword >> 2) & 0x07f);
+ product_id[18] = '\0';
+
+ }
+
+ if (((option & 4) == 4) &&
+ ((read_data_from_device_done & 4) == 0)) {
+
+ status |= VL53L0X_write_byte( 0x94, 0x7B);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &part_uid_upper);
+ status |= VL53L0X_write_byte( 0x94, 0x7C);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &part_uid_lower);
+
+ status |= VL53L0X_write_byte( 0x94, 0x73);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+ signal_rate_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
+
+ status |= VL53L0X_write_byte( 0x94, 0x74);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+ signal_rate_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
+
+ status |= VL53L0X_write_byte( 0x94, 0x75);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+ dist_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
+
+ status |= VL53L0X_write_byte( 0x94, 0x76);
+ status |= VL53L0X_device_read_strobe();
+ status |= VL53L0X_read_dword( 0x90, &tmp_dword);
+ dist_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
+ }
+
+ status |= VL53L0X_write_byte( 0x81, 0x00);
+ status |= VL53L0X_write_byte( 0xFF, 0x06);
+ status |= VL53L0X_read_byte( 0x83, &byte);
+ status |= VL53L0X_write_byte( 0x83, byte & 0xfb);
+ status |= VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x01);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+ status |= VL53L0X_write_byte( 0x80, 0x00);
+ }
+
+ if ((status == VL53L0X_ERROR_NONE) &&
+ (read_data_from_device_done != 7)) {
+ /* Assign to variable if status is ok */
+ if (((option & 1) == 1) &&
+ ((read_data_from_device_done & 1) == 0)) {
+ Data.ReferenceSpadCount = reference_spad_count;
+ Data.ReferenceSpadType = reference_spad_type;
+
+ for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
+ Data.RefGoodSpadMap[i] =
+ nvm_ref_good_spad_map[i];
+ }
+ }
+
+ if (((option & 2) == 2) &&
+ ((read_data_from_device_done & 2) == 0)) {
+ Data.ModuleId = module_id;
+ Data.Revision = revision;
+ product_id_tmp = Data.ProductId;
+ VL53L0X_COPYSTRING(product_id_tmp, product_id);
+ }
+
+ if (((option & 4) == 4) &&
+ ((read_data_from_device_done & 4) == 0)) {
+ Data.PartUIDUpper = part_uid_upper;
+ Data.PartUIDLower = part_uid_lower;
+ signal_rate_meas_fixed400_mm_fix =
+ VL53L0X_FP97TOFP1616(signal_rate_meas_fixed1104_400_mm);
+ Data.SignalRateMeasFixed400mm = signal_rate_meas_fixed400_mm_fix;
+
+ offset_micro_meters = 0;
+ if (dist_meas_fixed1104_400_mm != 0) {
+ offset_fixed1104_mm =
+ dist_meas_fixed1104_400_mm -
+ dist_meas_tgt_fixed1104_mm;
+ offset_micro_meters = (offset_fixed1104_mm
+ * 1000) >> 4;
+ offset_micro_meters *= -1;
+ }
+
+ Data.Part2PartOffsetAdjustNVM_um = offset_micro_meters;
+ }
+ byte = (uint8_t)(read_data_from_device_done | option);
+ Data.ReadDataFromDeviceDone = byte;
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(int32_t *p_offset_calibration_data_micro_meter)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint16_t range_offset_register;
+ int16_t c_max_offset = 2047;
+ int16_t c_offset_range = 4096;
+
+ /* Note, that offset has 10.2 format */
+ status = VL53L0X_read_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+ &range_offset_register);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ range_offset_register = (range_offset_register & 0x0fff);
+
+ /* Apply 12 bit 2's compliment conversion */
+ if (range_offset_register > c_max_offset) {
+ *p_offset_calibration_data_micro_meter =
+ (int16_t)(range_offset_register - c_offset_range) * 250;
+ } else {
+ *p_offset_calibration_data_micro_meter =
+ (int16_t)range_offset_register * 250; }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(int32_t offset_calibration_data_micro_meter)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ int32_t c_max_offset_micro_meter = 511000;
+ int32_t c_min_offset_micro_meter = -512000;
+ int16_t c_offset_range = 4096;
+ uint32_t encoded_offset_val;
+
+ if (offset_calibration_data_micro_meter > c_max_offset_micro_meter) {
+ offset_calibration_data_micro_meter = c_max_offset_micro_meter;
+ } else {
+ if (offset_calibration_data_micro_meter < c_min_offset_micro_meter) {
+ offset_calibration_data_micro_meter = c_min_offset_micro_meter;
+ }
+ }
+
+ /* The offset register is 10.2 format and units are mm
+ * therefore conversion is applied by a division of 250. */
+ if (offset_calibration_data_micro_meter >= 0) {
+ encoded_offset_val = offset_calibration_data_micro_meter / 250;
+ } else {
+ encoded_offset_val =
+ c_offset_range + offset_calibration_data_micro_meter / 250;
+ }
+
+ status = VL53L0X_write_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+ encoded_offset_val);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ int32_t corrected_offset_micro_meters;
+ int32_t current_offset_micro_meters;
+
+ /* if we run on this function we can read all the NVM info used by the API */
+ status = VL53L0X_get_info_from_device( 7);
+
+ /* Read back current device offset */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_offset_calibration_data_micro_meter(¤t_offset_micro_meters);
+ }
+
+ /* Apply Offset Adjustment derived from 400mm measurements */
+ if (status == VL53L0X_ERROR_NONE) {
+
+ /* Store initial device offset */
+ Data.Part2PartOffsetNVM_um = current_offset_micro_meters;
+
+ corrected_offset_micro_meters = current_offset_micro_meters +
+ (int32_t)Data.Part2PartOffsetAdjustNVM_um;
+
+ status = VL53L0X_set_offset_calibration_data_micro_meter(corrected_offset_micro_meters);
+
+ /* store current, adjusted offset */
+ if (status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.RangeOffset_um = corrected_offset_micro_meters;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_inter_measurement_period_ms(uint32_t *p_inter_measurement_period_ms)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint16_t osc_calibrate_val;
+ uint32_t im_period_ms;
+
+
+
+ status = VL53L0X_read_word( VL53L0X_REG_OSC_CALIBRATE_VAL,
+ &osc_calibrate_val);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_dword(VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
+ &im_period_ms);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (osc_calibrate_val != 0) {
+ *p_inter_measurement_period_ms =
+ im_period_ms / osc_calibrate_val;
+ }
+ CurrentParameters.InterMeasurementPeriod_ms = *p_inter_measurement_period_ms;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_rate_MHz(FixPoint1616_t *p_xtalk_compensation_rate_MHz)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint16_t value;
+ FixPoint1616_t temp_fix1616;
+
+ status = VL53L0X_read_word(VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MHz, (uint16_t *)&value);
+ if (status == VL53L0X_ERROR_NONE) {
+ if (value == 0) {
+ /* the Xtalk is disabled return value from memory */
+ temp_fix1616 = CurrentParameters.XTalkCompensationRate_MHz ;
+ *p_xtalk_compensation_rate_MHz = temp_fix1616;
+ CurrentParameters.XTalkCompensationEnable = 0;
+ } else {
+ temp_fix1616 = VL53L0X_FP313TOFP1616(value);
+ *p_xtalk_compensation_rate_MHz = temp_fix1616;
+ CurrentParameters.XTalkCompensationRate_MHz = temp_fix1616;
+ CurrentParameters.XTalkCompensationEnable = 1;
+ }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_value( uint16_t limit_check_id,
+ FixPoint1616_t *p_limit_check_value)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t enable_zero_value = 0;
+ uint16_t temp16;
+ FixPoint1616_t temp_fix1616;
+
+ switch (limit_check_id) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+ /* internal computation: */
+ temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE];
+ enable_zero_value = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+ status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, &temp16);
+ if (status == VL53L0X_ERROR_NONE) {
+ temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
+ }
+ enable_zero_value = 1;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+ /* internal computation: */
+ temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP];
+ enable_zero_value = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+ /* internal computation: */
+ temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD];
+ enable_zero_value = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+ status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+ &temp16);
+ if (status == VL53L0X_ERROR_NONE) {
+ temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
+ }
+
+ enable_zero_value = 0;
+ break;
+
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (enable_zero_value == 1) {
+
+ if (temp_fix1616 == 0) {
+ /* disabled: return value from memory */
+ temp_fix1616 = CurrentParameters.LimitChecksValue[limit_check_id];
+ *p_limit_check_value = temp_fix1616;
+ CurrentParameters.LimitChecksEnable[limit_check_id] = 0;
+ } else {
+ *p_limit_check_value = temp_fix1616;
+ CurrentParameters.LimitChecksValue[limit_check_id] = temp_fix1616;
+ CurrentParameters.LimitChecksEnable[limit_check_id] = 1;
+ }
+ } else { *p_limit_check_value = temp_fix1616; }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_enable( uint16_t limit_check_id,
+ uint8_t *p_limit_check_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t temp8;
+
+ if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ *p_limit_check_enable = 0;
+ } else {
+ temp8 = CurrentParameters.LimitChecksEnable[limit_check_id];
+ *p_limit_check_enable = temp8;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_wrap_around_check_enable(uint8_t *p_wrap_around_check_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t data;
+
+ status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = data;
+ if (data & (0x01 << 7)) {
+ *p_wrap_around_check_enable = 0x01;
+ } else {
+ *p_wrap_around_check_enable = 0x00;
+ }
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.WrapAroundCheckEnable = *p_wrap_around_check_enable;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_config,
+ uint8_t *p_sequence_step_enabled)
+{ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ *p_sequence_step_enabled = 0;
+
+ switch (sequence_step_id) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ *p_sequence_step_enabled = (sequence_config & 0x10) >> 4;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ *p_sequence_step_enabled = (sequence_config & 0x08) >> 3;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ *p_sequence_step_enabled = (sequence_config & 0x04) >> 2;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ *p_sequence_step_enabled = (sequence_config & 0x40) >> 6;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ *p_sequence_step_enabled = (sequence_config & 0x80) >> 7;
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_sequence_step_enables(VL53L0X_SchedulerSequenceSteps_t *p_scheduler_sequence_steps)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sequence_config = 0;
+
+ status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ &sequence_config);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_TCC, sequence_config,
+ &p_scheduler_sequence_steps->TccOn);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_DSS, sequence_config,
+ &p_scheduler_sequence_steps->DssOn);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_MSRC, sequence_config,
+ &p_scheduler_sequence_steps->MsrcOn);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_PRE_RANGE, sequence_config,
+ &p_scheduler_sequence_steps->PreRangeOn);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_FINAL_RANGE, sequence_config,
+ &p_scheduler_sequence_steps->FinalRangeOn);
+ }
+ return status;
+}
+
+uint8_t VL53L0X::VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
+{ /*! Converts the encoded VCSEL period register value into the real period in PLL clocks */
+ uint8_t vcsel_period_pclks = 0;
+
+ vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
+
+ return vcsel_period_pclks;
+}
+
+uint8_t VL53L0X::lv53l0x_encode_vcsel_period(uint8_t vcsel_period_pclks)
+{ /*! Converts the encoded VCSEL period register value into the real period in PLL clocks */
+
+ uint8_t vcsel_period_reg = 0;
+
+ vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
+
+ return vcsel_period_reg;
+}
+
+VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period_pclk)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t vcsel_period_reg;
+ uint8_t min_pre_vcsel_period_pclk = 12;
+ uint8_t max_pre_vcsel_period_pclk = 18;
+ uint8_t min_final_vcsel_period_pclk = 8;
+ uint8_t max_final_vcsel_period_pclk = 14;
+ uint32_t measurement_timing_budget_us;
+ uint32_t final_range_timeout_us;
+ uint32_t pre_range_timeout_us;
+ uint32_t msrc_timeout_us;
+ uint8_t phase_cal_int = 0;
+
+ /* Check if valid clock period requested */
+
+ if ((vcsel_pulse_period_pclk % 2) != 0) {
+ /* Value must be an even number */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
+ (vcsel_pulse_period_pclk < min_pre_vcsel_period_pclk ||
+ vcsel_pulse_period_pclk > max_pre_vcsel_period_pclk)) {
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
+ (vcsel_pulse_period_pclk < min_final_vcsel_period_pclk ||
+ vcsel_pulse_period_pclk > max_final_vcsel_period_pclk)) {
+
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ /* Apply specific settings for the requested clock period */
+
+ if (status != VL53L0X_ERROR_NONE) { return status; }
+
+ if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
+
+ /* Set phase check limits */
+ if (vcsel_pulse_period_pclk == 12) {
+
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x18);
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (vcsel_pulse_period_pclk == 14) {
+
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x30);
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (vcsel_pulse_period_pclk == 16) {
+
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x40);
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (vcsel_pulse_period_pclk == 18) {
+
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x50);
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ }
+ } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
+ if (vcsel_pulse_period_pclk == 8) {
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x10);
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
+ status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x30);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ } else if (vcsel_pulse_period_pclk == 10) {
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x28);
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
+ status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ } else if (vcsel_pulse_period_pclk == 12) {
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
+ status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ } else if (vcsel_pulse_period_pclk == 14) {
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x048);
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
+ status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ }
+ }
+
+ /* Re-calculate and apply timeouts, in macro periods */
+
+ if (status == VL53L0X_ERROR_NONE) {
+ vcsel_period_reg = lv53l0x_encode_vcsel_period((uint8_t) vcsel_pulse_period_pclk);
+
+ /* When the VCSEL period for the pre or final range is changed,
+ * the corresponding timeout must be read from the device using
+ * the current VCSEL period, then the new VCSEL period can be
+ * applied. The timeout then must be written back to the device
+ * using the new VCSEL period.
+ *
+ * For the MSRC timeout, the same applies - this timeout being
+ * dependant on the pre-range vcsel period.
+ */
+ switch (vcsel_period_type) {
+ case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &pre_range_timeout_us);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
+ &msrc_timeout_us);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+ vcsel_period_reg);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ pre_range_timeout_us);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
+ msrc_timeout_us);
+
+ Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
+ break;
+ case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ &final_range_timeout_us);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+ vcsel_period_reg);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ final_range_timeout_us);
+
+ Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
+ break;
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ /* Finally, the timing budget must be re-applied */
+ if (status == VL53L0X_ERROR_NONE) {
+ measurement_timing_budget_us = CurrentParameters.MeasurementTimingBudget_us ;
+ status = VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
+ }
+
+ /* Perform the phase calibration. This is needed after changing on
+ * vcsel period. get_data_enable = 0, restore_config = 1 */
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_perform_phase_calibration(&phase_cal_int, 0, 1);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ status = wrapped_VL53L0X_set_vcsel_pulse_period( vcsel_period_type, vcsel_pulse_period);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t *p_vcsel_pulse_period_pclk)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t vcsel_period_reg;
+
+ switch (vcsel_period_type) {
+ case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+ status = VL53L0X_read_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+ &vcsel_period_reg);
+ break;
+ case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+ status = VL53L0X_read_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+ &vcsel_period_reg);
+ break;
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ if (status == VL53L0X_ERROR_NONE)
+ *p_vcsel_pulse_period_pclk = VL53L0X_decode_vcsel_period(vcsel_period_reg);
+
+ return status;
+}
+
+uint32_t VL53L0X::VL53L0X_decode_timeout(uint16_t encoded_timeout)
+{ /*! Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1 */
+ uint32_t timeout_macro_clks = 0;
+
+ timeout_macro_clks = ((uint32_t)(encoded_timeout & 0x00FF)
+ << (uint32_t)((encoded_timeout & 0xFF00) >> 8)) + 1;
+
+ return timeout_macro_clks;
+}
+
+uint32_t VL53L0X::VL53L0X_calc_macro_period_ps( uint8_t vcsel_period_pclks)
+{ uint64_t pll_period_ps;
+ uint32_t macro_period_vclks;
+ uint32_t macro_period_ps;
+
+ /* The above calculation will produce rounding errors, therefore set fixed value*/
+ pll_period_ps = 1655;
+ macro_period_vclks = 2304;
+ macro_period_ps = (uint32_t)(macro_period_vclks
+ * vcsel_period_pclks * pll_period_ps);
+ return macro_period_ps;
+}
+
+/* To convert register value into us */
+uint32_t VL53L0X::VL53L0X_calc_timeout_us(uint16_t timeout_period_mclks,
+ uint8_t vcsel_period_pclks)
+{ uint32_t macro_period_ps;
+ uint32_t macro_period_ns;
+ uint32_t actual_timeout_period_us = 0;
+
+ macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
+ macro_period_ns = (macro_period_ps + 500) / 1000;
+
+ actual_timeout_period_us =
+ ((timeout_period_mclks * macro_period_ns) + 500) / 1000;
+
+ return actual_timeout_period_us;
+}
+
+VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
+ uint32_t *p_time_out_micro_secs)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t current_vcsel_pulse_period_p_clk;
+ uint8_t encoded_time_out_byte = 0;
+ uint32_t timeout_us = 0;
+ uint16_t pre_range_encoded_time_out = 0;
+ uint16_t msrc_time_out_m_clks;
+ uint16_t pre_range_time_out_m_clks;
+ uint16_t final_range_time_out_m_clks = 0;
+ uint16_t final_range_encoded_time_out;
+ VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
+
+ if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC) ||
+ (sequence_step_id == VL53L0X_SEQUENCESTEP_DSS) ||
+ (sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+ &encoded_time_out_byte);
+ }
+ msrc_time_out_m_clks = VL53L0X_decode_timeout(encoded_time_out_byte);
+
+ timeout_us = VL53L0X_calc_timeout_us(msrc_time_out_m_clks,
+ current_vcsel_pulse_period_p_clk);
+ } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+ /* Retrieve PRE-RANGE VCSEL Period */
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
+ if (status == VL53L0X_ERROR_NONE) {
+
+ /* Retrieve PRE-RANGE VCSEL Period */
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &pre_range_encoded_time_out);
+ }
+
+ pre_range_time_out_m_clks = VL53L0X_decode_timeout(pre_range_encoded_time_out);
+
+ timeout_us = VL53L0X_calc_timeout_us(pre_range_time_out_m_clks,
+ current_vcsel_pulse_period_p_clk);
+ }
+ } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+ VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
+ pre_range_time_out_m_clks = 0;
+
+ if (scheduler_sequence_steps.PreRangeOn) {
+ /* Retrieve PRE-RANGE VCSEL Period */
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods
+ * (MCLKS) */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &pre_range_encoded_time_out);
+ pre_range_time_out_m_clks = VL53L0X_decode_timeout(pre_range_encoded_time_out);
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Retrieve FINAL-RANGE VCSEL Period */
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+ }
+
+ /* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &final_range_encoded_time_out);
+ final_range_time_out_m_clks = VL53L0X_decode_timeout(final_range_encoded_time_out);
+ }
+
+ final_range_time_out_m_clks -= pre_range_time_out_m_clks;
+ timeout_us = VL53L0X_calc_timeout_us(final_range_time_out_m_clks,
+ current_vcsel_pulse_period_p_clk);
+ }
+
+ *p_time_out_micro_secs = timeout_us;
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_us(uint32_t *p_measurement_timing_budget_us)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
+ uint32_t final_range_timeout_us;
+ uint32_t msrc_dcc_tcc_timeout_us = 2000;
+ uint32_t start_overhead_us = 1910;
+ uint32_t end_overhead_us = 960;
+ uint32_t msrc_overhead_us = 660;
+ uint32_t tcc_overhead_us = 590;
+ uint32_t dss_overhead_us = 690;
+ uint32_t pre_range_overhead_us = 660;
+ uint32_t final_range_overhead_us = 550;
+ uint32_t pre_range_timeout_us = 0;
+
+ /* Start and end overhead times always present */
+ *p_measurement_timing_budget_us
+ = start_overhead_us + end_overhead_us;
+
+ status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
+
+ if (status != VL53L0X_ERROR_NONE) { return status; }
+
+ if (scheduler_sequence_steps.TccOn ||
+ scheduler_sequence_steps.MsrcOn ||
+ scheduler_sequence_steps.DssOn) {
+
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
+ &msrc_dcc_tcc_timeout_us);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (scheduler_sequence_steps.TccOn) {
+ *p_measurement_timing_budget_us +=
+ msrc_dcc_tcc_timeout_us + tcc_overhead_us;
+ }
+
+ if (scheduler_sequence_steps.DssOn) {
+ *p_measurement_timing_budget_us +=
+ 2 * (msrc_dcc_tcc_timeout_us + dss_overhead_us);
+ } else if (scheduler_sequence_steps.MsrcOn) {
+ *p_measurement_timing_budget_us +=
+ msrc_dcc_tcc_timeout_us + msrc_overhead_us;
+ }
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (scheduler_sequence_steps.PreRangeOn) {
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &pre_range_timeout_us);
+ *p_measurement_timing_budget_us +=
+ pre_range_timeout_us + pre_range_overhead_us;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (scheduler_sequence_steps.FinalRangeOn) {
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ &final_range_timeout_us);
+ *p_measurement_timing_budget_us +=
+ (final_range_timeout_us + final_range_overhead_us);
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.MeasurementTimingBudget_us = *p_measurement_timing_budget_us;}
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_device_parameters(VL53L0X_DeviceParameters_t *p_device_parameters)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ int i;
+
+ p_device_parameters->DeviceMode = CurrentParameters.DeviceMode;
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_get_inter_measurement_period_ms(&(p_device_parameters->InterMeasurementPeriod_ms));
+
+ if (status == VL53L0X_ERROR_NONE) {
+ p_device_parameters->XTalkCompensationEnable = 0;
+ }
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_get_x_talk_compensation_rate_MHz(&(p_device_parameters->XTalkCompensationRate_MHz));
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_get_offset_calibration_data_micro_meter(&(p_device_parameters->RangeOffset_um));
+
+ if (status == VL53L0X_ERROR_NONE) {
+ for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+ /* get first the values, then the enables.
+ * VL53L0X_GetLimitCheckValue will modify the enable
+ * flags
+ */
+ if (status == VL53L0X_ERROR_NONE) {
+ status |= VL53L0X_get_limit_check_value( i,
+ &(p_device_parameters->LimitChecksValue[i]));
+ } else {
+ break;
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ status |= VL53L0X_get_limit_check_enable( i,
+ &(p_device_parameters->LimitChecksEnable[i]));
+ } else {
+ break;
+ }
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_wrap_around_check_enable(&(p_device_parameters->WrapAroundCheckEnable));
+ }
+
+ /* Need to be done at the end as it uses VCSELPulsePeriod */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_measurement_timing_budget_us(&(p_device_parameters->MeasurementTimingBudget_us));
+ }
+
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_value( uint16_t limit_check_id,
+ FixPoint1616_t limit_check_value)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t temp8;
+
+ temp8 = CurrentParameters.LimitChecksEnable[limit_check_id];
+
+ if (temp8 == 0) { /* disabled write only internal value */
+ CurrentParameters.LimitChecksValue[limit_check_id] = limit_check_value;
+ } else {
+
+ switch (limit_check_id) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:/* internal computation: */
+ CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_value;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+ status = VL53L0X_write_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FP1616TOFP97(limit_check_value));
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
+ CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_value;
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
+ CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_value;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+ status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FP1616TOFP97(limit_check_value));
+ break;
+
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ CurrentParameters.LimitChecksValue[limit_check_id] = limit_check_value;
+ }
+ }
+ return status;
+}
+
+// instead of passing VL53L0X_DeviceInfo_t *p_VL53L0X_device_info, directly fill Device_Info
+VL53L0X_Error VL53L0X::VL53L0X_get_device_info()
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t revision_id;
+ uint8_t revision;
+ char *product_id_tmp;
+
+ status = VL53L0X_get_info_from_device( 2);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (Data.ModuleId == 0) {
+ revision = 0;
+ VL53L0X_COPYSTRING(Device_Info.ProductId, "");
+ } else {
+ revision = Data.Revision;
+ product_id_tmp = Data.ProductId;
+ VL53L0X_COPYSTRING(Device_Info.ProductId, product_id_tmp);
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (revision == 0) {
+ VL53L0X_COPYSTRING(Device_Info.Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
+ } else if ((revision <= 34) && (revision != 32)) {
+ VL53L0X_COPYSTRING(Device_Info.Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
+ } else if (revision < 39) {
+ VL53L0X_COPYSTRING(Device_Info.Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
+ } else {VL53L0X_COPYSTRING(Device_Info.Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
+ }
+
+ VL53L0X_COPYSTRING(Device_Info.Type, VL53L0X_STRING_DEVICE_INFO_TYPE);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_byte( VL53L0X_REG_IDENTIFICATION_MODEL_ID,
+ &Device_Info.ProductType);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_byte(VL53L0X_REG_IDENTIFICATION_REVISION_ID,
+ &revision_id);
+ Device_Info.ProductRevisionMajor = 1;
+ Device_Info.ProductRevisionMinor =
+ (revision_id & 0xF0) >> 4;
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_mask_status(uint32_t *p_interrupt_mask_status)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t byte;
+
+ status = VL53L0X_read_byte( VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
+ *p_interrupt_mask_status = byte & 0x07;
+
+ if (byte & 0x18) { status = VL53L0X_ERROR_RANGE_ERROR;}
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_measurement_data_ready(uint8_t *p_measurement_data_ready)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sys_range_status_register;
+ uint8_t interrupt_config;
+ uint32_t interrupt_mask;
+
+ interrupt_config = Data.Pin0GpioFunctionality;
+
+ if (interrupt_config ==
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
+ status = VL53L0X_get_interrupt_mask_status( &interrupt_mask);
+ if (interrupt_mask ==
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
+ *p_measurement_data_ready = 1;
+ } else {
+ *p_measurement_data_ready = 0;
+ }
+ } else {
+ status = VL53L0X_read_byte( VL53L0X_REG_RESULT_RANGE_STATUS,
+ &sys_range_status_register);
+ if (status == VL53L0X_ERROR_NONE) {
+ if (sys_range_status_register & 0x01) {
+ *p_measurement_data_ready = 1;
+ } else { *p_measurement_data_ready = 0; }
+ }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_polling_delay(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ // do nothing
+ VL53L0X_OsDelay();
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t new_data_ready = 0;
+ uint32_t loop_nb;
+
+ loop_nb = 0;
+
+ do {
+ status = VL53L0X_get_measurement_data_ready( &new_data_ready);
+ if (status != 0) {
+ break; /* the error is set */
+ }
+
+ if (new_data_ready == 1) {
+ break; /* done note that status == 0 */
+ }
+
+ loop_nb++;
+ if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ status = VL53L0X_ERROR_TIME_OUT;
+ break;
+ }
+
+ VL53L0X_polling_delay();
+ } while (1);
+
+ return status;
+}
+
+/* Group PAL Interrupt Functions */
+VL53L0X_Error VL53L0X::VL53L0X_clear_interrupt_mask( uint32_t interrupt_mask)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t loop_count;
+ uint8_t byte;
+
+ /* clear bit 0 range interrupt, bit 1 error interrupt */
+ loop_count = 0;
+ do {
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
+ status |= VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
+ status |= VL53L0X_read_byte(VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
+ loop_count++;
+ } while (((byte & 0x07) != 0x00)
+ && (loop_count < 3)
+ && (status == VL53L0X_ERROR_NONE));
+
+ if (loop_count >= 3) {
+ status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
+ }
+
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(uint8_t vhv_init_byte)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_START_STOP |
+ vhv_init_byte);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_measurement_poll_for_completion();}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_clear_interrupt_mask( 0);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x00);
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io( uint8_t read_not_write,
+ uint8_t vhv_settings, uint8_t phase_cal,
+ uint8_t *p_vhv_settings, uint8_t *p_phase_cal,
+ const uint8_t vhv_enable, const uint8_t phase_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t phase_calint = 0;
+
+ /* Read VHV from device */
+ status |= VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x00);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+
+ if (read_not_write) {
+ if (vhv_enable) {
+ status |= VL53L0X_read_byte( 0xCB, p_vhv_settings);}
+ if (phase_enable) {
+ status |= VL53L0X_read_byte( 0xEE, &phase_calint);}
+ } else {
+ if (vhv_enable) {
+ status |= VL53L0X_write_byte( 0xCB, vhv_settings);}
+ if (phase_enable) {
+ status |= VL53L0X_update_byte( 0xEE, 0x80, phase_cal);}
+ }
+
+ status |= VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x01);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+
+ *p_phase_cal = (uint8_t)(phase_calint & 0xEF);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(uint8_t *p_vhv_settings, const uint8_t get_data_enable,
+ const uint8_t restore_config)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sequence_config = 0;
+ uint8_t vhv_settings = 0;
+ uint8_t phase_cal = 0;
+ uint8_t phase_cal_int = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function
+ */
+
+ if (restore_config) {
+ sequence_config = Data.SequenceConfig;
+ }
+
+ /* Run VHV */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_single_ref_calibration( 0x40);}
+
+ /* Read VHV from device */
+ if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+ status = VL53L0X_ref_calibration_io( 1, vhv_settings, phase_cal, /* Not used here */
+ p_vhv_settings, &phase_cal_int, 1, 0);
+ } else {*p_vhv_settings = 0; }
+
+ if ((status == VL53L0X_ERROR_NONE) && restore_config) {
+ /* restore the previous Sequence Config */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ sequence_config);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = sequence_config; }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(uint8_t *p_phase_cal, const uint8_t get_data_enable,
+ const uint8_t restore_config)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sequence_config = 0;
+ uint8_t vhv_settings = 0;
+ uint8_t phase_cal = 0;
+ uint8_t vhv_settingsint;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function */
+
+ if (restore_config) {
+ sequence_config = Data.SequenceConfig;
+ }
+
+ /* Run PhaseCal */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_single_ref_calibration( 0x0);
+ }
+
+ /* Read PhaseCal from device */
+ if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+ status = VL53L0X_ref_calibration_io( 1,
+ vhv_settings, phase_cal, /* Not used here */
+ &vhv_settingsint, p_phase_cal,
+ 0, 1);
+ } else {
+ *p_phase_cal = 0;
+ }
+
+ if ((status == VL53L0X_ERROR_NONE) && restore_config) {
+ /* restore the previous Sequence Config */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ sequence_config);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = sequence_config;
+ }
+
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(uint8_t *p_vhv_settings, uint8_t *p_phase_cal, uint8_t get_data_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sequence_config = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function */
+
+ sequence_config = Data.SequenceConfig;
+
+ /* In the following function we don't save the config to optimize
+ * writes on device. Config is saved and restored only once. */
+ status = VL53L0X_perform_vhv_calibration(p_vhv_settings, get_data_enable, 0);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_phase_calibration(p_phase_cal, get_data_enable, 0); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* restore the previous Sequence Config */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ sequence_config);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = sequence_config; }
+ }
+
+ return status;
+}
+
+void VL53L0X::get_next_good_spad(uint8_t good_spad_array[], uint32_t size,
+ uint32_t curr, int32_t *p_next)
+{ uint32_t start_index;
+ uint32_t fine_offset;
+ uint32_t c_spads_per_byte = 8;
+ uint32_t coarse_index;
+ uint32_t fine_index;
+ uint8_t data_byte;
+ uint8_t success = 0;
+
+ /* Starting with the current good spad, loop through the array to find
+ * the next. i.e. the next bit set in the sequence.
+ *
+ * The coarse index is the byte index of the array and the fine index is
+ * the index of the bit within each byte. */
+
+ *p_next = -1;
+
+ start_index = curr / c_spads_per_byte;
+ fine_offset = curr % c_spads_per_byte;
+
+ for (coarse_index = start_index; ((coarse_index < size) && !success);
+ coarse_index++) {
+ fine_index = 0;
+ data_byte = good_spad_array[coarse_index];
+
+ if (coarse_index == start_index) {
+ /* locate the bit position of the provided current
+ * spad bit before iterating */
+ data_byte >>= fine_offset;
+ fine_index = fine_offset;
+ }
+
+ while (fine_index < c_spads_per_byte) {
+ if ((data_byte & 0x1) == 1) {
+ success = 1;
+ *p_next = coarse_index * c_spads_per_byte + fine_index;
+ break;
+ }
+ data_byte >>= 1;
+ fine_index++;
+ }
+ }
+}
+
+uint8_t VL53L0X::is_aperture(uint32_t spad_index)
+{ /* This function reports if a given spad index is an aperture SPAD by
+ * deriving the quadrant.*/
+ uint32_t quadrant;
+ uint8_t is_aperture = 1;
+ quadrant = spad_index >> 6;
+ if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0) {
+ is_aperture = 0;
+ }
+
+ return is_aperture;
+}
+
+VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spad_array[], uint32_t size,
+ uint32_t spad_index)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t c_spads_per_byte = 8;
+ uint32_t coarse_index;
+ uint32_t fine_index;
+
+ coarse_index = spad_index / c_spads_per_byte;
+ fine_index = spad_index % c_spads_per_byte;
+ if (coarse_index >= size) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ } else {
+ spad_array[coarse_index] |= (1 << fine_index);
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::set_ref_spad_map( uint8_t *p_ref_spad_array)
+{ VL53L0X_Error status = VL53L0X_i2c_write(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+ p_ref_spad_array, 6);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::get_ref_spad_map( uint8_t *p_ref_spad_array)
+{ VL53L0X_Error status = VL53L0X_read_multi(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+ p_ref_spad_array,
+ 6);
+// VL53L0X_Error status = VL53L0X_ERROR_NONE;
+// uint8_t count=0;
+
+// for (count = 0; count < 6; count++)
+// status = VL53L0X_RdByte( (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::enable_ref_spads(uint8_t aperture_spads,
+ uint8_t good_spad_array[],
+ uint8_t spad_array[],
+ uint32_t size,
+ uint32_t start,
+ uint32_t offset,
+ uint32_t spad_count,
+ uint32_t *p_last_spad)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t index;
+ uint32_t i;
+ int32_t next_good_spad = offset;
+ uint32_t current_spad;
+ uint8_t check_spad_array[6];
+
+ /*
+ * This function takes in a spad array which may or may not have SPADS
+ * already enabled and appends from a given offset a requested number
+ * of new SPAD enables. The 'good spad map' is applied to
+ * determine the next SPADs to enable.
+ *
+ * This function applies to only aperture or only non-aperture spads.
+ * Checks are performed to ensure this.
+ */
+
+ current_spad = offset;
+ for (index = 0; index < spad_count; index++) {
+ get_next_good_spad(good_spad_array, size, current_spad,
+ &next_good_spad);
+
+ if (next_good_spad == -1) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+
+ /* Confirm that the next good SPAD is non-aperture */
+ if (is_aperture(start + next_good_spad) != aperture_spads) {
+ /* if we can't get the required number of good aperture
+ * spads from the current quadrant then this is an error
+ */
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+ current_spad = (uint32_t)next_good_spad;
+ enable_spad_bit(spad_array, size, current_spad);
+ current_spad++;
+ }
+ *p_last_spad = current_spad;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = set_ref_spad_map( spad_array);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = get_ref_spad_map( check_spad_array);
+
+ i = 0;
+
+ /* Compare spad maps. If not equal report error. */
+ while (i < size) {
+ if (spad_array[i] != check_spad_array[i]) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+ i++;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_device_mode( VL53L0X_DeviceModes device_mode)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ switch (device_mode) {
+ case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+ case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
+ case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+ case VL53L0X_DEVICEMODE_GPIO_DRIVE:
+ case VL53L0X_DEVICEMODE_GPIO_OSC:
+ /* Supported modes */
+ CurrentParameters.DeviceMode = device_mode;
+ break;
+ default:
+ /* Unsupported mode */
+ status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+ }
+
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t threshold_low,
+ FixPoint1616_t threshold_high)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint16_t threshold16;
+
+
+ /* no dependency on DeviceMode for Ewok */
+ /* Need to divide by 2 because the FW will apply a x2 */
+ threshold16 = (uint16_t)((threshold_low >> 17) & 0x00fff);
+ status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_LOW, threshold16);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Need to divide by 2 because the FW will apply a x2 */
+ threshold16 = (uint16_t)((threshold_high >> 17) & 0x00fff);
+ status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
+ threshold16);
+ }
+
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t *p_threshold_low,
+ FixPoint1616_t *p_threshold_high)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint16_t threshold16;
+
+
+ /* no dependency on DeviceMode for Ewok */
+
+ status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_LOW, &threshold16);
+ /* Need to multiply by 2 because the FW will apply a x2 */
+ *p_threshold_low = (FixPoint1616_t)((0x00fff & threshold16) << 17);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
+ &threshold16);
+ /* Need to multiply by 2 because the FW will apply a x2 */
+ *p_threshold_high =
+ (FixPoint1616_t)((0x00fff & threshold16) << 17);
+ }
+
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(uint8_t *p_tuning_setting_buffer)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ int i;
+ int index;
+ uint8_t msb;
+ uint8_t lsb;
+ uint8_t select_param;
+ uint16_t number_of_writes;
+ uint8_t address;
+ uint8_t local_buffer[4]; /* max */
+ uint16_t temp16;
+
+ index = 0;
+
+ while ((*(p_tuning_setting_buffer + index) != 0) &&
+ (status == VL53L0X_ERROR_NONE)) {
+ number_of_writes = *(p_tuning_setting_buffer + index);
+ index++;
+ if (number_of_writes == 0xFF) {
+ /* internal parameters */
+ select_param = *(p_tuning_setting_buffer + index);
+ index++;
+ switch (select_param) {
+ case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
+ msb = *(p_tuning_setting_buffer + index);
+ index++;
+ lsb = *(p_tuning_setting_buffer + index);
+ index++;
+ temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ Data.SigmaEstRefArray = temp16;
+ break;
+ case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
+ msb = *(p_tuning_setting_buffer + index);
+ index++;
+ lsb = *(p_tuning_setting_buffer + index);
+ index++;
+ temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ Data.SigmaEstEffPulseWidth = temp16;
+ break;
+ case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
+ msb = *(p_tuning_setting_buffer + index);
+ index++;
+ lsb = *(p_tuning_setting_buffer + index);
+ index++;
+ temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ Data.SigmaEstEffAmbWidth = temp16;
+ break;
+ case 3: /* uint16_t targetRefRate -> 2 bytes */
+ msb = *(p_tuning_setting_buffer + index);
+ index++;
+ lsb = *(p_tuning_setting_buffer + index);
+ index++;
+ temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ Data.targetRefRate = temp16;
+ break;
+ default: /* invalid parameter */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ } else if (number_of_writes <= 4) {
+ address = *(p_tuning_setting_buffer + index);
+ index++;
+
+ for (i = 0; i < number_of_writes; i++) {
+ local_buffer[i] = *(p_tuning_setting_buffer +
+ index);
+ index++;
+ }
+
+ status = VL53L0X_i2c_write( address, local_buffer, number_of_writes);
+
+ } else { status = VL53L0X_ERROR_INVALID_PARAMS; }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_check_and_load_interrupt_settings(uint8_t start_not_stopflag)
+{ uint8_t interrupt_config;
+ FixPoint1616_t threshold_low;
+ FixPoint1616_t threshold_high;
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ interrupt_config = Data.Pin0GpioFunctionality;
+
+ if ((interrupt_config ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
+ (interrupt_config ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
+ (interrupt_config ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
+
+ status = VL53L0X_get_interrupt_thresholds(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
+ &threshold_low, &threshold_high);
+
+ if (((threshold_low > 255 * 65536) ||
+ (threshold_high > 255 * 65536)) &&
+ (status == VL53L0X_ERROR_NONE)) {
+
+ if (start_not_stopflag != 0) {
+ status = VL53L0X_load_tuning_settings(InterruptThresholdSettings);
+ } else {
+ status |= VL53L0X_write_byte( 0xFF, 0x04);
+ status |= VL53L0X_write_byte( 0x70, 0x00);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+ status |= VL53L0X_write_byte( 0x80, 0x00);
+ }
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_start_measurement(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceModes device_mode;
+ uint8_t byte;
+ uint8_t start_stop_byte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
+ uint32_t loop_nb;
+
+
+ /* Get Current DeviceMode */
+ device_mode = CurrentParameters.DeviceMode;
+
+ status = VL53L0X_write_byte( 0x80, 0x01);
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+ status = VL53L0X_write_byte( 0x00, 0x00);
+ status = VL53L0X_write_byte( 0x91, Data.StopVariable);
+ status = VL53L0X_write_byte( 0x00, 0x01);
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+ status = VL53L0X_write_byte( 0x80, 0x00);
+
+ switch (device_mode) {
+ case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x01);
+
+ byte = start_stop_byte;
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Wait until start bit has been cleared */
+ loop_nb = 0;
+ do {
+ if (loop_nb > 0)
+ status = VL53L0X_read_byte(VL53L0X_REG_SYSRANGE_START, &byte);
+ loop_nb = loop_nb + 1;
+ } while (((byte & start_stop_byte) == start_stop_byte)
+ && (status == VL53L0X_ERROR_NONE)
+ && (loop_nb < VL53L0X_DEFAULT_MAX_LOOP));
+
+ if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ status = VL53L0X_ERROR_TIME_OUT;
+ }
+ }
+
+ break;
+ case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING: /* Back-to-back mode */
+
+ /* Check if need to apply interrupt settings */
+ if (status == VL53L0X_ERROR_NONE)
+ { status = VL53L0X_check_and_load_interrupt_settings( 1); }
+
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Set PAL State to Running */
+ Data.PalState = VL53L0X_STATE_RUNNING;
+ }
+ break;
+ case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+ /* Continuous mode */
+ /* Check if need to apply interrupt settings */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_check_and_load_interrupt_settings( 1);
+ }
+
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_TIMED);
+
+ if (status == VL53L0X_ERROR_NONE)/* Set PAL State to Running */
+ { Data.PalState = VL53L0X_STATE_RUNNING; }
+ break;
+ default:
+ /* Selected mode not supported */
+ status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+ }
+
+ return status;
+}
+
+/* Group PAL Measurement Functions */
+VL53L0X_Error VL53L0X::VL53L0X_perform_single_measurement(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceModes device_mode;
+
+ /* Get Current DeviceMode */
+ device_mode = CurrentParameters.DeviceMode;
+
+ /* Start immediately to run a single ranging measurement in case of
+ * single ranging or single histogram */
+ if (status == VL53L0X_ERROR_NONE && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
+ status = VL53L0X_start_measurement(); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_measurement_poll_for_completion(); }
+
+ /* Change PAL State in case of single ranging or single histogram */
+ if (status == VL53L0X_ERROR_NONE && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
+ Data.PalState = VL53L0X_STATE_IDLE; }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_enable(uint8_t *p_x_talk_compensation_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t temp8;
+
+ temp8 = CurrentParameters.XTalkCompensationEnable ;
+ *p_x_talk_compensation_enable = temp8;
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
+ FixPoint1616_t *p_total_xtalk_rate_MHz)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ uint8_t xtalk_comp_enable;
+ FixPoint1616_t total_xtalk_MHz;
+ FixPoint1616_t xtalk_per_spad_MHz;
+
+ *p_total_xtalk_rate_MHz = 0;
+
+ status = VL53L0X_get_x_talk_compensation_enable( &xtalk_comp_enable);
+ if (status == VL53L0X_ERROR_NONE) {
+
+ if (xtalk_comp_enable) {
+
+ xtalk_per_spad_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
+
+ /* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
+ total_xtalk_MHz =
+ p_ranging_measurement_data->EffectiveSpadRtnCount *
+ xtalk_per_spad_MHz;
+
+ /* FixPoint0824 >> 8 = FixPoint1616 */
+ *p_total_xtalk_rate_MHz =
+ (total_xtalk_MHz + 0x80) >> 8;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
+ FixPoint1616_t *p_total_signal_rate_MHz)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t total_xtalk_MHz;
+
+ *p_total_signal_rate_MHz =
+ p_ranging_measurement_data->SignalRateRtn_MHz;
+
+ status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &total_xtalk_MHz);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ *p_total_signal_rate_MHz += total_xtalk_MHz; }
+
+ return status;
+}
+
+/* To convert ms into register value */
+uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(uint32_t timeout_period_us,
+ uint8_t vcsel_period_pclks)
+{ uint32_t macro_period_ps;
+ uint32_t macro_period_ns;
+ uint32_t timeout_period_mclks = 0;
+
+ macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
+ macro_period_ns = (macro_period_ps + 500) / 1000;
+
+ timeout_period_mclks = (uint32_t)(((timeout_period_us * 1000)
+ + (macro_period_ns / 2)) / macro_period_ns);
+
+ return timeout_period_mclks;
+}
+
+uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
+{ /* Implements an integer square root
+ * From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots */
+
+ uint32_t res = 0;
+ uint32_t bit = 1 << 30;
+ /* The second-to-top bit is set: 1 << 14 for 16-bits, 1 << 30 for 32 bits */
+
+ /* "bit" starts at the highest power of four <= the argument. */
+ while (bit > num) { bit >>= 2; }
+
+ while (bit != 0) {
+ if (num >= res + bit) {
+ num -= res + bit;
+ res = (res >> 1) + bit;
+ }
+ else { res >>= 1; }
+ bit >>= 2;
+ }
+ return res;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(FixPoint1616_t total_signal_rate_MHz,
+ FixPoint1616_t total_corr_signal_rate_MHz,
+ FixPoint1616_t pw_mult,
+ uint32_t sigma_estimate_p1,
+ FixPoint1616_t sigma_estimate_p2,
+ uint32_t peak_vcsel_duration_us,
+ uint32_t *pd_max_mm)
+{ const uint32_t c_sigma_limit = 18;
+ const FixPoint1616_t c_signal_limit = 0x4000; /* 0.25 */
+ const FixPoint1616_t c_sigma_est_ref = 0x00000042; /* 0.001 */
+ const uint32_t c_amb_eff_width_sigma_est_ns = 6;
+ const uint32_t c_amb_eff_width_d_max_ns = 7;
+ uint32_t dmax_cal_range_mm;
+ FixPoint1616_t dmax_cal_signal_rate_rtn_MHz;
+ FixPoint1616_t min_signal_needed;
+ FixPoint1616_t min_signal_needed_p1;
+ FixPoint1616_t min_signal_needed_p2;
+ FixPoint1616_t min_signal_needed_p3;
+ FixPoint1616_t min_signal_needed_p4;
+ FixPoint1616_t sigma_limit_tmp;
+ FixPoint1616_t sigma_est_sq_tmp;
+ FixPoint1616_t signal_limit_tmp;
+ FixPoint1616_t signal_at0_mm;
+ FixPoint1616_t dmax_dark;
+ FixPoint1616_t dmax_ambient;
+ FixPoint1616_t dmax_dark_tmp;
+ FixPoint1616_t sigma_est_p2_tmp;
+ uint32_t signal_rate_temp_MHz;
+
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ dmax_cal_range_mm = Data.DmaxCalRange_mm;
+
+ dmax_cal_signal_rate_rtn_MHz = Data.DmaxCalSignalRateRtn_MHz;
+
+ /* uint32 * FixPoint1616 = FixPoint1616 */
+ signal_at0_mm = dmax_cal_range_mm * dmax_cal_signal_rate_rtn_MHz;
+
+ /* FixPoint1616 >> 8 = FixPoint2408 */
+ signal_at0_mm = (signal_at0_mm + 0x80) >> 8;
+ signal_at0_mm *= dmax_cal_range_mm;
+
+ min_signal_needed_p1 = 0;
+ if (total_corr_signal_rate_MHz > 0) {
+
+ /* Shift by 10 bits to increase resolution prior to the division */
+ signal_rate_temp_MHz = total_signal_rate_MHz << 10;
+
+ /* Add rounding value prior to division */
+ min_signal_needed_p1 = signal_rate_temp_MHz +
+ (total_corr_signal_rate_MHz / 2);
+
+ /* FixPoint0626/FixPoint1616 = FixPoint2210 */
+ min_signal_needed_p1 /= total_corr_signal_rate_MHz;
+
+ /* Apply a factored version of the speed of light.
+ Correction to be applied at the end */
+ min_signal_needed_p1 *= 3;
+
+ /* FixPoint2210 * FixPoint2210 = FixPoint1220 */
+ min_signal_needed_p1 *= min_signal_needed_p1;
+
+ /* FixPoint1220 >> 16 = FixPoint2804 */
+ min_signal_needed_p1 = (min_signal_needed_p1 + 0x8000) >> 16;
+ }
+ min_signal_needed_p2 = pw_mult * sigma_estimate_p1;
+
+ /* FixPoint1616 >> 16 = uint32 */
+ min_signal_needed_p2 = (min_signal_needed_p2 + 0x8000) >> 16;
+
+ /* uint32 * uint32 = uint32 */
+ min_signal_needed_p2 *= min_signal_needed_p2;
+
+ /* Check sigmaEstimateP2
+ * If this value is too high there is not enough signal rate
+ * to calculate dmax value so set a suitable value to ensure
+ * a very small dmax. */
+ sigma_est_p2_tmp = (sigma_estimate_p2 + 0x8000) >> 16;
+ sigma_est_p2_tmp = (sigma_est_p2_tmp + c_amb_eff_width_sigma_est_ns / 2) /
+ c_amb_eff_width_sigma_est_ns;
+ sigma_est_p2_tmp *= c_amb_eff_width_d_max_ns;
+
+ if (sigma_est_p2_tmp > 0xffff) {
+ min_signal_needed_p3 = 0xfff00000;
+ } else {
+ /* DMAX uses a different ambient width from sigma, so apply correction.
+ * Perform division before multiplication to prevent overflow. */
+ sigma_estimate_p2 = (sigma_estimate_p2 + c_amb_eff_width_sigma_est_ns / 2) /
+ c_amb_eff_width_sigma_est_ns;
+ sigma_estimate_p2 *= c_amb_eff_width_d_max_ns;
+
+ /* FixPoint1616 >> 16 = uint32 */
+ min_signal_needed_p3 = (sigma_estimate_p2 + 0x8000) >> 16;
+ min_signal_needed_p3 *= min_signal_needed_p3;
+ }
+
+ /* FixPoint1814 / uint32 = FixPoint1814 */
+ sigma_limit_tmp = ((c_sigma_limit << 14) + 500) / 1000;
+
+ /* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
+ sigma_limit_tmp *= sigma_limit_tmp;
+
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sigma_est_sq_tmp = c_sigma_est_ref * c_sigma_est_ref;
+
+ /* FixPoint3232 >> 4 = FixPoint0428 */
+ sigma_est_sq_tmp = (sigma_est_sq_tmp + 0x08) >> 4;
+
+ /* FixPoint0428 - FixPoint0428 = FixPoint0428 */
+ sigma_limit_tmp -= sigma_est_sq_tmp;
+
+ /* uint32_t * FixPoint0428 = FixPoint0428 */
+ min_signal_needed_p4 = 4 * 12 * sigma_limit_tmp;
+
+ /* FixPoint0428 >> 14 = FixPoint1814 */
+ min_signal_needed_p4 = (min_signal_needed_p4 + 0x2000) >> 14;
+
+ /* uint32 + uint32 = uint32 */
+ min_signal_needed = (min_signal_needed_p2 + min_signal_needed_p3);
+
+ /* uint32 / uint32 = uint32 */
+ min_signal_needed += (peak_vcsel_duration_us / 2);
+ min_signal_needed /= peak_vcsel_duration_us;
+
+ /* uint32 << 14 = FixPoint1814 */
+ min_signal_needed <<= 14;
+
+ /* FixPoint1814 / FixPoint1814 = uint32 */
+ min_signal_needed += (min_signal_needed_p4 / 2);
+ min_signal_needed /= min_signal_needed_p4;
+
+ /* FixPoint3200 * FixPoint2804 := FixPoint2804*/
+ min_signal_needed *= min_signal_needed_p1;
+
+ /* Apply correction by dividing by 1000000.
+ * This assumes 10E16 on the numerator of the equation
+ * and 10E-22 on the denominator.
+ * We do this because 32bit fix point calculation can't
+ * handle the larger and smaller elements of this equation,
+ * i.e. speed of light and pulse widths.
+ */
+ min_signal_needed = (min_signal_needed + 500) / 1000;
+ min_signal_needed <<= 4;
+
+ min_signal_needed = (min_signal_needed + 500) / 1000;
+
+ /* FixPoint1616 >> 8 = FixPoint2408 */
+ signal_limit_tmp = (c_signal_limit + 0x80) >> 8;
+
+ /* FixPoint2408/FixPoint2408 = uint32 */
+ if (signal_limit_tmp != 0) {
+ dmax_dark_tmp = (signal_at0_mm + (signal_limit_tmp / 2))
+ / signal_limit_tmp;
+ } else { dmax_dark_tmp = 0; }
+
+ dmax_dark = VL53L0X_isqrt(dmax_dark_tmp);
+
+ /* FixPoint2408/FixPoint2408 = uint32 */
+ if (min_signal_needed != 0) {
+ dmax_ambient = (signal_at0_mm + min_signal_needed / 2)
+ / min_signal_needed;
+ } else { dmax_ambient = 0; }
+
+ dmax_ambient = VL53L0X_isqrt(dmax_ambient);
+
+ *pd_max_mm = dmax_dark;
+ if (dmax_dark > dmax_ambient) { *pd_max_mm = dmax_ambient; }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
+ FixPoint1616_t *p_sigma_estimate, uint32_t *p_dmax_mm)
+{ /* Expressed in 100ths of a ns, i.e. centi-ns */
+ const uint32_t c_pulse_effective_width_centi_ns = 800;
+ /* Expressed in 100ths of a ns, i.e. centi-ns */
+ const uint32_t c_ambient_effective_width_centi_ns = 600;
+ const FixPoint1616_t c_dflt_final_range_integration_time_milli_secs = 0x00190000; /* 25ms */
+ const uint32_t c_vcsel_pulse_width_ps = 4700; /* pico secs */
+ const FixPoint1616_t c_sigma_est_max = 0x028F87AE;
+ const FixPoint1616_t c_sigma_est_rtn_max = 0xF000;
+ const FixPoint1616_t c_amb_to_signal_ratio_max = 0xF0000000 /
+ c_ambient_effective_width_centi_ns;
+ /* Time Of Flight per mm (6.6 pico secs) */
+ const FixPoint1616_t c_tof_per_mm_ps = 0x0006999A;
+ const uint32_t c_16bit_rounding_param = 0x00008000;
+ const FixPoint1616_t c_max_x_talk_kcps = 0x00320000;
+ const uint32_t c_pll_period_ps = 1655;
+
+ uint32_t vcsel_total_events_rtn;
+ uint32_t final_range_timeout_micro_secs;
+ uint32_t pre_range_timeout_micro_secs;
+ uint32_t final_range_integration_time_milli_secs;
+ FixPoint1616_t sigma_estimate_p1;
+ FixPoint1616_t sigma_estimate_p2;
+ FixPoint1616_t sigma_estimate_p3;
+ FixPoint1616_t delta_t_ps;
+ FixPoint1616_t pw_mult;
+ FixPoint1616_t sigma_est_rtn;
+ FixPoint1616_t sigma_estimate;
+ FixPoint1616_t x_talk_correction;
+ FixPoint1616_t ambient_rate_kcps;
+ FixPoint1616_t peak_signal_rate_kcps;
+ FixPoint1616_t x_talk_comp_rate_MHz;
+ uint32_t x_talk_comp_rate_kcps;
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t diff1_MHz;
+ FixPoint1616_t diff2_MHz;
+ FixPoint1616_t sqr1;
+ FixPoint1616_t sqr2;
+ FixPoint1616_t sqr_sum;
+ FixPoint1616_t sqrt_result_centi_ns;
+ FixPoint1616_t sqrt_result;
+ FixPoint1616_t total_signal_rate_MHz;
+ FixPoint1616_t corrected_signal_rate_MHz;
+ FixPoint1616_t sigma_est_ref;
+ uint32_t vcsel_width;
+ uint32_t final_range_macro_pclks;
+ uint32_t pre_range_macro_pclks;
+ uint32_t peak_vcsel_duration_us;
+ uint8_t final_range_vcsel_pclks;
+ uint8_t pre_range_vcsel_pclks;
+ /*! \addtogroup calc_sigma_estimate
+ * @{
+ *
+ * Estimates the range sigma
+ */
+
+ x_talk_comp_rate_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
+
+ /*
+ * We work in kcps rather than MHz as this helps keep within the
+ * confines of the 32 Fix1616 type.
+ */
+
+ ambient_rate_kcps = (p_ranging_measurement_data->AmbientRateRtn_MHz * 1000) >> 16;
+
+ corrected_signal_rate_MHz = p_ranging_measurement_data->SignalRateRtn_MHz;
+
+ status = VL53L0X_get_total_signal_rate(p_ranging_measurement_data, &total_signal_rate_MHz);
+ status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &x_talk_comp_rate_MHz);
+
+ /* Signal rate measurement provided by device is the
+ * peak signal rate, not average.
+ */
+ peak_signal_rate_kcps = (total_signal_rate_MHz * 1000);
+ peak_signal_rate_kcps = (peak_signal_rate_kcps + 0x8000) >> 16;
+
+ x_talk_comp_rate_kcps = x_talk_comp_rate_MHz * 1000;
+
+ if (x_talk_comp_rate_kcps > c_max_x_talk_kcps) {
+ x_talk_comp_rate_kcps = c_max_x_talk_kcps;
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+
+ /* Calculate final range macro periods */
+ final_range_timeout_micro_secs = Data.FinalRangeTimeout_us;
+ final_range_vcsel_pclks = Data.FinalRangeVcselPulsePeriod;
+ final_range_macro_pclks = VL53L0X_calc_timeout_mclks( final_range_timeout_micro_secs, final_range_vcsel_pclks);
+
+ /* Calculate pre-range macro periods */
+ pre_range_timeout_micro_secs = Data.PreRangeTimeout_us;
+ pre_range_vcsel_pclks = Data.PreRangeVcselPulsePeriod;
+
+ pre_range_macro_pclks = VL53L0X_calc_timeout_mclks(pre_range_timeout_micro_secs, pre_range_vcsel_pclks);
+
+ vcsel_width = 3;
+ if (final_range_vcsel_pclks == 8) {
+ vcsel_width = 2;
+ }
+
+ peak_vcsel_duration_us = vcsel_width * 2048 *
+ (pre_range_macro_pclks + final_range_macro_pclks);
+ peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
+ peak_vcsel_duration_us *= c_pll_period_ps;
+ peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
+
+ /* Fix1616 >> 8 = Fix2408 */
+ total_signal_rate_MHz = (total_signal_rate_MHz + 0x80) >> 8;
+
+ /* Fix2408 * uint32 = Fix2408 */
+ vcsel_total_events_rtn = total_signal_rate_MHz *
+ peak_vcsel_duration_us;
+
+ /* Fix2408 >> 8 = uint32 */
+ vcsel_total_events_rtn = (vcsel_total_events_rtn + 0x80) >> 8;
+
+ /* Fix2408 << 8 = Fix1616 = */
+ total_signal_rate_MHz <<= 8;
+ }
+
+ if (status != VL53L0X_ERROR_NONE) { return status; }
+
+ if (peak_signal_rate_kcps == 0) {
+ *p_sigma_estimate = c_sigma_est_max;
+ p_ranging_measurement_data->SigmaEstimate = c_sigma_est_max;
+ *p_dmax_mm = 0;
+ } else {
+ if (vcsel_total_events_rtn < 1) { vcsel_total_events_rtn = 1; }
+
+ sigma_estimate_p1 = c_pulse_effective_width_centi_ns;
+
+ /* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
+ sigma_estimate_p2 = (ambient_rate_kcps << 16) / peak_signal_rate_kcps;
+ if (sigma_estimate_p2 > c_amb_to_signal_ratio_max) {
+ /* Clip to prevent overflow. Will ensure safe
+ * max result. */
+ sigma_estimate_p2 = c_amb_to_signal_ratio_max;
+ }
+ sigma_estimate_p2 *= c_ambient_effective_width_centi_ns;
+
+ sigma_estimate_p3 = 2 * VL53L0X_isqrt(vcsel_total_events_rtn * 12);
+
+ /* uint32 * FixPoint1616 = FixPoint1616 */
+ delta_t_ps = p_ranging_measurement_data->Range_mm * c_tof_per_mm_ps;
+
+ /* vcselRate - xtalkCompRate
+ * (uint32 << 16) - FixPoint1616 = FixPoint1616.
+ * Divide result by 1000 to convert to MHz.
+ * 500 is added to ensure rounding when integer division truncates. */
+ diff1_MHz = (((peak_signal_rate_kcps << 16) -
+ 2 * x_talk_comp_rate_kcps) + 500) / 1000;
+
+ /* vcselRate + xtalkCompRate */
+ diff2_MHz = ((peak_signal_rate_kcps << 16) + 500) / 1000;
+
+ /* Shift by 8 bits to increase resolution prior to the division */
+ diff1_MHz <<= 8;
+
+ /* FixPoint0824/FixPoint1616 = FixPoint2408 */
+ x_talk_correction = diff1_MHz / diff2_MHz;
+
+ /* FixPoint2408 << 8 = FixPoint1616 */
+ x_talk_correction <<= 8;
+
+ if (p_ranging_measurement_data->RangeStatus != 0) {
+ pw_mult = 1 << 16;
+ } else {
+ /* FixPoint1616/uint32 = FixPoint1616 */
+ pw_mult = delta_t_ps / c_vcsel_pulse_width_ps; /* smaller than 1.0f */
+
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232, however both
+ * values are small enough such that32 bits will not be exceeded. */
+ pw_mult *= ((1 << 16) - x_talk_correction);
+
+ /* (FixPoint3232 >> 16) = FixPoint1616 */
+ pw_mult = (pw_mult + c_16bit_rounding_param) >> 16;
+
+ /* FixPoint1616 + FixPoint1616 = FixPoint1616 */
+ pw_mult += (1 << 16);
+
+ /* At this point the value will be 1.xx, therefore if we square
+ * the value this will exceed 32 bits. To address this perform
+ * a single shift to the right before the multiplication. */
+ pw_mult >>= 1;
+ /* FixPoint1715 * FixPoint1715 = FixPoint3430 */
+ pw_mult = pw_mult * pw_mult;
+
+ /* (FixPoint3430 >> 14) = Fix1616 */
+ pw_mult >>= 14;
+ }
+
+ /* FixPoint1616 * uint32 = FixPoint1616 */
+ sqr1 = pw_mult * sigma_estimate_p1;
+
+ /* (FixPoint1616 >> 16) = FixPoint3200 */
+ sqr1 = (sqr1 + 0x8000) >> 16;
+
+ /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+ sqr1 *= sqr1;
+
+ sqr2 = sigma_estimate_p2;
+
+ /* (FixPoint1616 >> 16) = FixPoint3200 */
+ sqr2 = (sqr2 + 0x8000) >> 16;
+
+ /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+ sqr2 *= sqr2;
+
+ /* FixPoint64000 + FixPoint6400 = FixPoint6400 */
+ sqr_sum = sqr1 + sqr2;
+
+ /* SQRT(FixPoin6400) = FixPoint3200 */
+ sqrt_result_centi_ns = VL53L0X_isqrt(sqr_sum);
+
+ /* (FixPoint3200 << 16) = FixPoint1616 */
+ sqrt_result_centi_ns <<= 16;
+
+ /* Note that the Speed Of Light is expressed in um per 1E-10
+ * seconds (2997) Therefore to get mm/ns we have to divide by
+ * 10000
+ */
+ sigma_est_rtn = (((sqrt_result_centi_ns + 50) / 100) /
+ sigma_estimate_p3);
+ sigma_est_rtn *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
+
+ /* Add 5000 before dividing by 10000 to ensure rounding. */
+ sigma_est_rtn += 5000;
+ sigma_est_rtn /= 10000;
+
+ if (sigma_est_rtn > c_sigma_est_rtn_max) {
+ /* Clip to prevent overflow. Will ensure safe
+ * max result. */
+ sigma_est_rtn = c_sigma_est_rtn_max;
+ }
+ final_range_integration_time_milli_secs =
+ (final_range_timeout_micro_secs + pre_range_timeout_micro_secs + 500) / 1000;
+
+ /* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
+ * sqrt(FixPoint1616/int) = FixPoint2408)
+ */
+ sigma_est_ref =
+ VL53L0X_isqrt((c_dflt_final_range_integration_time_milli_secs +
+ final_range_integration_time_milli_secs / 2) /
+ final_range_integration_time_milli_secs);
+
+ /* FixPoint2408 << 8 = FixPoint1616 */
+ sigma_est_ref <<= 8;
+ sigma_est_ref = (sigma_est_ref + 500) / 1000;
+
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sqr1 = sigma_est_rtn * sigma_est_rtn;
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sqr2 = sigma_est_ref * sigma_est_ref;
+
+ /* sqrt(FixPoint3232) = FixPoint1616 */
+ sqrt_result = VL53L0X_isqrt((sqr1 + sqr2));
+ /*
+ * Note that the Shift by 4 bits increases resolution prior to
+ * the sqrt, therefore the result must be shifted by 2 bits to
+ * the right to revert back to the FixPoint1616 format.
+ */
+
+ sigma_estimate = 1000 * sqrt_result;
+
+ if ((peak_signal_rate_kcps < 1) || (vcsel_total_events_rtn < 1) ||
+ (sigma_estimate > c_sigma_est_max)) {
+ sigma_estimate = c_sigma_est_max;
+ }
+
+ *p_sigma_estimate = (uint32_t)(sigma_estimate);
+ p_ranging_measurement_data->SigmaEstimate = *p_sigma_estimate;
+ status = VL53L0X_calc_dmax(total_signal_rate_MHz,
+ corrected_signal_rate_MHz,
+ pw_mult,
+ sigma_estimate_p1,
+ sigma_estimate_p2,
+ peak_vcsel_duration_us,
+ p_dmax_mm);
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(uint8_t device_range_status,
+ FixPoint1616_t signal_rate,
+ uint16_t effective_spad_rtn_count,
+ VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
+ uint8_t *p_pal_range_status)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t none_flag;
+ uint8_t sigma_limitflag = 0;
+ uint8_t signal_ref_clipflag = 0;
+ uint8_t range_ignore_thresholdflag = 0;
+ uint8_t sigma_limit_check_enable = 0;
+ uint8_t signal_rate_final_range_limit_check_enable = 0;
+ uint8_t signal_ref_clip_limit_check_enable = 0;
+ uint8_t range_ignore_threshold_limit_check_enable = 0;
+ FixPoint1616_t sigma_estimate;
+ FixPoint1616_t sigma_limit_value;
+ FixPoint1616_t signal_ref_clip_value;
+ FixPoint1616_t range_ignore_threshold_value;
+ FixPoint1616_t signal_rate_per_spad;
+ uint8_t device_range_status_internal = 0;
+ uint16_t tmp_word = 0;
+ uint8_t temp8;
+ uint32_t dmax_mm = 0;
+ FixPoint1616_t last_signal_ref_MHz;
+
+ /* VL53L0X has a good ranging when the value of the
+ * DeviceRangeStatus = 11. This function will replace the value 0 with
+ * the value 11 in the DeviceRangeStatus.
+ * In addition, the SigmaEstimator is not included in the VL53L0X
+ * DeviceRangeStatus, this will be added in the PalRangeStatus. */
+
+ device_range_status_internal = ((device_range_status & 0x78) >> 3);
+
+ if (device_range_status_internal == 0 ||
+ device_range_status_internal == 5 ||
+ device_range_status_internal == 7 ||
+ device_range_status_internal == 12 ||
+ device_range_status_internal == 13 ||
+ device_range_status_internal == 14 ||
+ device_range_status_internal == 15
+ ) {
+ none_flag = 1;
+ } else {
+ none_flag = 0;
+ }
+
+ /* Check if Sigma limit is enabled, if yes then do comparison with limit
+ * value and put the result back into pPalRangeStatus. */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ &sigma_limit_check_enable);
+ }
+
+ if ((sigma_limit_check_enable != 0) && (status == VL53L0X_ERROR_NONE)) {
+ /* compute the Sigma and check with limit */
+ status = VL53L0X_calc_sigma_estimate(p_ranging_measurement_data, &sigma_estimate, &dmax_mm);
+ if (status == VL53L0X_ERROR_NONE) { p_ranging_measurement_data->RangeDMax_mm = dmax_mm; }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ &sigma_limit_value);
+
+ if ((sigma_limit_value > 0) && (sigma_estimate > sigma_limit_value))
+ { sigma_limitflag = 1; } /* Limit Fail */
+ }
+ }
+
+ /* Check if Signal ref clip limit is enabled, if yes then do comparison
+ * with limit value and put the result back into pPalRangeStatus. */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ &signal_ref_clip_limit_check_enable);
+ }
+
+ if ((signal_ref_clip_limit_check_enable != 0) &&
+ (status == VL53L0X_ERROR_NONE)) {
+
+ status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ &signal_ref_clip_value);
+
+ /* Read LastSignalRef_MHz from device */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+ &tmp_word);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+ }
+
+ last_signal_ref_MHz = VL53L0X_FP97TOFP1616(tmp_word);
+ Data.LastSignalRef_MHz = last_signal_ref_MHz;
+
+ if ((signal_ref_clip_value > 0) &&
+ (last_signal_ref_MHz > signal_ref_clip_value)) {
+ /* Limit Fail */
+ signal_ref_clipflag = 1;
+ }
+ }
+
+ /*
+ * Check if Signal ref clip limit is enabled, if yes then do comparison
+ * with limit value and put the result back into pPalRangeStatus.
+ * EffectiveSpadRtnCount has a format 8.8
+ * If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
+ */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ &range_ignore_threshold_limit_check_enable);
+ }
+
+ if ((range_ignore_threshold_limit_check_enable != 0) &&
+ (status == VL53L0X_ERROR_NONE)) {
+
+ /* Compute the signal rate per spad */
+ if (effective_spad_rtn_count == 0) {
+ signal_rate_per_spad = 0;
+ } else {
+ signal_rate_per_spad = (FixPoint1616_t)((256 * signal_rate)
+ / effective_spad_rtn_count);
+ }
+
+ status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ &range_ignore_threshold_value);
+
+ if ((range_ignore_threshold_value > 0) &&
+ (signal_rate_per_spad < range_ignore_threshold_value)) {
+ /* Limit Fail add 2^6 to range status */
+ range_ignore_thresholdflag = 1;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (none_flag == 1) {
+ *p_pal_range_status = 255; /* NONE */
+ } else if (device_range_status_internal == 1 ||
+ device_range_status_internal == 2 ||
+ device_range_status_internal == 3) {
+ *p_pal_range_status = 5; /* HW fail */
+ } else if (device_range_status_internal == 6 ||
+ device_range_status_internal == 9) {
+ *p_pal_range_status = 4; /* Phase fail */
+ } else if (device_range_status_internal == 8 ||
+ device_range_status_internal == 10 ||
+ signal_ref_clipflag == 1) {
+ *p_pal_range_status = 3; /* Min range */
+ } else if (device_range_status_internal == 4 ||
+ range_ignore_thresholdflag == 1) {
+ *p_pal_range_status = 2; /* Signal Fail */
+ } else if (sigma_limitflag == 1) {
+ *p_pal_range_status = 1; /* Sigma Fail */
+ } else {
+ *p_pal_range_status = 0; /* Range Valid */
+ }
+ }
+
+ /* DMAX only relevant during range error */
+ if (*p_pal_range_status == 0) {
+ p_ranging_measurement_data->RangeDMax_mm = 0;
+ }
+
+ /* fill the Limit Check Status */
+
+ status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+ &signal_rate_final_range_limit_check_enable);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if ((sigma_limit_check_enable == 0) || (sigma_limitflag == 1)) {
+ temp8 = 1;
+ } else {
+ temp8 = 0;
+ }
+ CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = temp8;
+
+ if ((device_range_status_internal == 4) ||
+ (signal_rate_final_range_limit_check_enable == 0)) {
+ temp8 = 1;
+ } else {
+ temp8 = 0;
+ }
+ CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE] = temp8;
+
+ if ((signal_ref_clip_limit_check_enable == 0) ||
+ (signal_ref_clipflag == 1)) {
+ temp8 = 1;
+ } else {
+ temp8 = 0;
+ }
+
+ CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = temp8;
+
+ if ((range_ignore_threshold_limit_check_enable == 0) ||
+ (range_ignore_thresholdflag == 1)) {
+ temp8 = 1;
+ } else {
+ temp8 = 0;
+ }
+
+ CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = temp8;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_ranging_measurement_data(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t device_range_status;
+ uint8_t range_fractional_enable;
+ uint8_t pal_range_status;
+ uint8_t x_talk_compensation_enable;
+ uint16_t ambient_rate;
+ FixPoint1616_t signal_rate;
+ uint16_t x_talk_compensation_rate_MHz;
+ uint16_t effective_spad_rtn_count;
+ uint16_t tmpuint16;
+ uint16_t xtalk_range_milli_meter;
+ uint16_t linearity_corrective_gain;
+ uint8_t localBuffer[12];
+
+ /* use multi read even if some registers are not useful, result will
+ * be more efficient start reading at 0x14 dec20
+ * end reading at 0x21 dec33 total 14 bytes to read */
+ status = VL53L0X_read_multi( 0x14, localBuffer, 12);
+
+ if (status == VL53L0X_ERROR_NONE) {
+
+ tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
+ /* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
+ *(format 11.2) else no fractional */
+
+ signal_rate = VL53L0X_FP97TOFP1616(VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
+ /* peak_signal_count_rate_rtn_MHz */
+ p_ranging_measurement_data->SignalRateRtn_MHz = signal_rate;
+
+ ambient_rate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
+ p_ranging_measurement_data->AmbientRateRtn_MHz =
+ VL53L0X_FP97TOFP1616(ambient_rate);
+
+ effective_spad_rtn_count = VL53L0X_MAKEUINT16(localBuffer[3],
+ localBuffer[2]);
+ /* EffectiveSpadRtnCount is 8.8 format */
+ p_ranging_measurement_data->EffectiveSpadRtnCount =
+ effective_spad_rtn_count;
+
+ device_range_status = localBuffer[0];
+
+ /* Get Linearity Corrective Gain */
+ linearity_corrective_gain = Data.LinearityCorrectiveGain;
+
+ /* Get ranging configuration */
+ range_fractional_enable = Data.RangeFractionalEnable;
+
+ if (linearity_corrective_gain != 1000) {
+
+ tmpuint16 = (uint16_t)((linearity_corrective_gain * tmpuint16 + 500) / 1000);
+
+ /* Implement Xtalk */
+ x_talk_compensation_rate_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
+ x_talk_compensation_enable = CurrentParameters.XTalkCompensationEnable ;
+
+ if (x_talk_compensation_enable) {
+
+ if ((signal_rate
+ - ((x_talk_compensation_rate_MHz
+ * effective_spad_rtn_count) >> 8))
+ <= 0) {
+ if (range_fractional_enable) {
+ xtalk_range_milli_meter = 8888;
+ } else {
+ xtalk_range_milli_meter = 8888 << 2;
+ }
+ } else {
+ xtalk_range_milli_meter =
+ (tmpuint16 * signal_rate)
+ / (signal_rate
+ - ((x_talk_compensation_rate_MHz
+ * effective_spad_rtn_count)
+ >> 8));
+ }
+ tmpuint16 = xtalk_range_milli_meter;
+ }
+ }
+
+ if (range_fractional_enable) {
+ p_ranging_measurement_data->Range_mm =
+ (uint16_t)((tmpuint16) >> 2);
+ p_ranging_measurement_data->RangeFractionalPart =
+ (uint8_t)((tmpuint16 & 0x03) << 6);
+ } else {
+ p_ranging_measurement_data->Range_mm = tmpuint16;
+ p_ranging_measurement_data->RangeFractionalPart = 0;
+ }
+
+ /* For a standard definition of RangeStatus, this should
+ * return 0 in case of good result after a ranging
+ * The range status depends on the device so call a device
+ * specific function to obtain the right Status.
+ */
+ status |= VL53L0X_get_pal_range_status( device_range_status,
+ signal_rate, effective_spad_rtn_count,
+ p_ranging_measurement_data, &pal_range_status);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ p_ranging_measurement_data->RangeStatus = pal_range_status;}
+
+ }
+
+ if (status == VL53L0X_ERROR_NONE) { /* Copy last read data into Device buffer */
+ LastRangeMeasure.Range_mm = p_ranging_measurement_data->Range_mm;
+ LastRangeMeasure.RangeFractionalPart = p_ranging_measurement_data->RangeFractionalPart;
+ LastRangeMeasure.RangeDMax_mm = p_ranging_measurement_data->RangeDMax_mm;
+ LastRangeMeasure.SignalRateRtn_MHz = p_ranging_measurement_data->SignalRateRtn_MHz;
+ LastRangeMeasure.AmbientRateRtn_MHz = p_ranging_measurement_data->AmbientRateRtn_MHz;
+ LastRangeMeasure.EffectiveSpadRtnCount = p_ranging_measurement_data->EffectiveSpadRtnCount;
+ LastRangeMeasure.RangeStatus = p_ranging_measurement_data->RangeStatus;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_single_ranging_measurement(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ /* This function will do a complete single ranging
+ * Here we fix the mode! */
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_single_measurement(); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_ranging_measurement_data(p_ranging_measurement_data); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_clear_interrupt_mask( 0);}
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::perform_ref_signal_measurement(uint16_t *p_ref_signal_rate)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_RangingMeasurementData_t ranging_measurement_data;
+
+ uint8_t sequence_config = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function*/
+ sequence_config = Data.SequenceConfig;
+
+ /*
+ * This function performs a reference signal rate measurement.
+ */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_single_ranging_measurement(&ranging_measurement_data); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x01); }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+ p_ref_signal_rate);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x00);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* restore the previous Sequence Config */
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ sequence_config);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = sequence_config;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::wrapped_VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count,
+ uint8_t *is_aperture_spads)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t last_spad_array[6];
+ uint8_t start_select = 0xB4;
+ uint32_t minimum_spad_count = 3;
+ uint32_t max_spad_count = 44;
+ uint32_t current_spad_index = 0;
+ uint32_t last_spad_index = 0;
+ int32_t next_good_spad = 0;
+ uint16_t target_ref_rate = 0x0A00; /* 20 MHz in 9:7 format */
+ uint16_t peak_signal_rate_ref;
+ uint32_t need_apt_spads = 0;
+ uint32_t index = 0;
+ uint32_t spad_array_size = 6;
+ uint32_t signal_rate_diff = 0;
+ uint32_t last_signal_rate_diff = 0;
+ uint8_t complete = 0;
+ uint8_t vhv_settings = 0;
+ uint8_t phase_cal = 0;
+ uint32_t ref_spad_count_int = 0;
+ uint8_t is_aperture_spads_int = 0;
+
+ /*
+ * The reference SPAD initialization procedure determines the minimum
+ * amount of reference spads to be enables to achieve a target reference
+ * signal rate and should be performed once during initialization.
+ *
+ * Either aperture or non-aperture spads are applied but never both.
+ * Firstly non-aperture spads are set, begining with 5 spads, and
+ * increased one spad at a time until the closest measurement to the
+ * target rate is achieved.
+ *
+ * If the target rate is exceeded when 5 non-aperture spads are enabled,
+ * initialization is performed instead with aperture spads.
+ *
+ * When setting spads, a 'Good Spad Map' is applied.
+ *
+ * This procedure operates within a SPAD window of interest of a maximum
+ * 44 spads.
+ * The start point is currently fixed to 180, which lies towards the end
+ * of the non-aperture quadrant and runs in to the adjacent aperture
+ * quadrant.
+ */
+ target_ref_rate = Data.targetRefRate;
+
+ /*
+ * Initialize Spad arrays.
+ * Currently the good spad map is initialised to 'All good'.
+ * This is a short term implementation. The good spad map will be
+ * provided as an input.
+ * Note that there are 6 bytes. Only the first 44 bits will be used to
+ * represent spads.
+ */
+ for (index = 0; index < spad_array_size; index++) {
+ Data.RefSpadEnables[index] = 0;
+ }
+
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+ start_select);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
+ }
+
+ /* Perform ref calibration */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_perform_ref_calibration( &vhv_settings,
+ &phase_cal, 0);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Enable Minimum NON-APERTURE Spads */
+ current_spad_index = 0;
+ last_spad_index = current_spad_index;
+ need_apt_spads = 0;
+ status = enable_ref_spads(need_apt_spads,
+ Data.RefGoodSpadMap,
+ Data.RefSpadEnables,
+ spad_array_size,
+ start_select,
+ current_spad_index,
+ minimum_spad_count,
+ &last_spad_index);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ current_spad_index = last_spad_index;
+
+ status = perform_ref_signal_measurement(&peak_signal_rate_ref);
+ if ((status == VL53L0X_ERROR_NONE) &&
+ (peak_signal_rate_ref > target_ref_rate)) {
+ /* Signal rate measurement too high,
+ * switch to APERTURE SPADs */
+
+ for (index = 0; index < spad_array_size; index++) {
+ Data.RefSpadEnables[index] = 0;
+ }
+
+ /* Increment to the first APERTURE spad */
+ while ((is_aperture(start_select + current_spad_index)
+ == 0) && (current_spad_index < max_spad_count)) {
+ current_spad_index++;
+ }
+
+ need_apt_spads = 1;
+
+ status = enable_ref_spads(need_apt_spads,
+ Data.RefGoodSpadMap,
+ Data.RefSpadEnables,
+ spad_array_size,
+ start_select,
+ current_spad_index,
+ minimum_spad_count,
+ &last_spad_index);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ current_spad_index = last_spad_index;
+ status = perform_ref_signal_measurement(&peak_signal_rate_ref);
+
+ if ((status == VL53L0X_ERROR_NONE) &&
+ (peak_signal_rate_ref > target_ref_rate)) {
+ /* Signal rate still too high after
+ * setting the minimum number of
+ * APERTURE spads. Can do no more
+ * therefore set the min number of
+ * aperture spads as the result.
+ */
+ is_aperture_spads_int = 1;
+ ref_spad_count_int = minimum_spad_count;
+ }
+ }
+ } else {
+ need_apt_spads = 0;
+ }
+ }
+
+ if ((status == VL53L0X_ERROR_NONE) &&
+ (peak_signal_rate_ref < target_ref_rate)) {
+ /* At this point, the minimum number of either aperture
+ * or non-aperture spads have been set. Proceed to add
+ * spads and perform measurements until the target
+ * reference is reached.
+ */
+ is_aperture_spads_int = need_apt_spads;
+ ref_spad_count_int = minimum_spad_count;
+
+ memcpy(last_spad_array, Data.RefSpadEnables,
+ spad_array_size);
+ last_signal_rate_diff = abs(peak_signal_rate_ref -
+ target_ref_rate);
+ complete = 0;
+
+ while (!complete) {
+ get_next_good_spad(Data.RefGoodSpadMap,
+ spad_array_size, current_spad_index,
+ &next_good_spad);
+
+ if (next_good_spad == -1) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+
+ /* Cannot combine Aperture and Non-Aperture spads, so
+ * ensure the current spad is of the correct type.
+ */
+ if (is_aperture((uint32_t)start_select + next_good_spad) !=
+ need_apt_spads) {
+ /* At this point we have enabled the maximum
+ * number of Aperture spads.
+ */
+ complete = 1;
+ break;
+ }
+
+ (ref_spad_count_int)++;
+
+ current_spad_index = next_good_spad;
+ status = enable_spad_bit(Data.RefSpadEnables,
+ spad_array_size, current_spad_index);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ current_spad_index++;
+ /* Proceed to apply the additional spad and
+ * perform measurement. */
+ status = set_ref_spad_map(Data.RefSpadEnables);
+ }
+
+ if (status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+
+ status = perform_ref_signal_measurement(&peak_signal_rate_ref);
+
+ if (status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+
+ signal_rate_diff = abs(peak_signal_rate_ref - target_ref_rate);
+
+ if (peak_signal_rate_ref > target_ref_rate) {
+ /* Select the spad map that provides the
+ * measurement closest to the target rate,
+ * either above or below it.
+ */
+ if (signal_rate_diff > last_signal_rate_diff) {
+ /* Previous spad map produced a closer
+ * measurement, so choose this. */
+ status = set_ref_spad_map(last_spad_array);
+ memcpy(Data.RefSpadEnables,
+ last_spad_array, spad_array_size);
+ (ref_spad_count_int)--;
+ }
+ complete = 1;
+ } else {
+ /* Continue to add spads */
+ last_signal_rate_diff = signal_rate_diff;
+ memcpy(last_spad_array,
+ Data.RefSpadEnables,
+ spad_array_size);
+ }
+
+ } /* while */
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ *ref_spad_count = ref_spad_count_int;
+ *is_aperture_spads = is_aperture_spads_int;
+ Data.RefSpadsInitialised = 1;
+ Data.ReferenceSpadCount = (uint8_t)(*ref_spad_count);
+ Data.ReferenceSpadType = *is_aperture_spads;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(uint32_t count, uint8_t is_aperture_spads)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t current_spad_index = 0;
+ uint8_t start_select = 0xB4;
+ uint32_t spad_array_size = 6;
+ uint32_t max_spad_count = 44;
+ uint32_t last_spad_index;
+ uint32_t index;
+
+ /*
+ * This function applies a requested number of reference spads, either
+ * aperture or
+ * non-aperture, as requested.
+ * The good spad map will be applied.
+ */
+
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+ start_select);
+ }
+
+ for (index = 0; index < spad_array_size; index++) {
+ Data.RefSpadEnables[index] = 0;
+ }
+
+ if (is_aperture_spads) {
+ /* Increment to the first APERTURE spad */
+ while ((is_aperture(start_select + current_spad_index) == 0) &&
+ (current_spad_index < max_spad_count)) {
+ current_spad_index++;
+ }
+ }
+ status = enable_ref_spads(is_aperture_spads,
+ Data.RefGoodSpadMap,
+ Data.RefSpadEnables,
+ spad_array_size,
+ start_select,
+ current_spad_index,
+ count,
+ &last_spad_index);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.RefSpadsInitialised = 1;
+ Data.ReferenceSpadCount = (uint8_t)(count);
+ Data.ReferenceSpadType = is_aperture_spads;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration( uint8_t *p_vhv_settings,
+ uint8_t *p_phase_cal)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ status = VL53L0X_perform_ref_calibration( p_vhv_settings, p_phase_cal, 1);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count, uint8_t *is_aperture_spads)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ status = wrapped_VL53L0X_perform_ref_spad_management( ref_spad_count,
+ is_aperture_spads);
+
+ return status;
+}
+
+/* Group PAL Init Functions */
+VL53L0X_Error VL53L0X::VL53L0X_set_device_address( uint8_t device_address)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ status = VL53L0X_write_byte( VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
+ device_address / 2);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_gpio_config( uint8_t pin,
+ VL53L0X_DeviceModes device_mode, VL53L0X_GpioFunctionality functionality,
+ VL53L0X_InterruptPolarity polarity)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t data;
+
+ if (pin != 0) {
+ status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
+ } else if (device_mode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
+ if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
+ data = 0x10;
+ } else {data = 1;}
+
+ status = VL53L0X_write_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
+
+ } else {
+ if (device_mode == VL53L0X_DEVICEMODE_GPIO_OSC) {
+
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x00);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ status |= VL53L0X_write_byte( 0x80, 0x01);
+ status |= VL53L0X_write_byte( 0x85, 0x02);
+ status |= VL53L0X_write_byte( 0xff, 0x04);
+ status |= VL53L0X_write_byte( 0xcd, 0x00);
+ status |= VL53L0X_write_byte( 0xcc, 0x11);
+ status |= VL53L0X_write_byte( 0xff, 0x07);
+ status |= VL53L0X_write_byte( 0xbe, 0x00);
+ status |= VL53L0X_write_byte( 0xff, 0x06);
+ status |= VL53L0X_write_byte( 0xcc, 0x09);
+ status |= VL53L0X_write_byte( 0xff, 0x00);
+ status |= VL53L0X_write_byte( 0xff, 0x01);
+ status |= VL53L0X_write_byte( 0x00, 0x00);
+
+ } else {
+
+ if (status == VL53L0X_ERROR_NONE) {
+ switch (functionality) {
+ case VL53L0X_GPIOFUNCTIONALITY_OFF:
+ data = 0x00;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
+ data = 0x01;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
+ data = 0x02;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
+ data = 0x03;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
+ data = 0x04;
+ break;
+ default:
+ status = VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
+ data = 0;
+ } else { data = (uint8_t)(1 << 4); }
+ status = VL53L0X_update_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.Pin0GpioFunctionality = functionality; }
+
+ if (status == VL53L0X_ERROR_NONE) { status = VL53L0X_clear_interrupt_mask( 0); }
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_fraction_enable( uint8_t *p_enabled)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_RANGE_CONFIG, p_enabled);
+ if (status == VL53L0X_ERROR_NONE) { *p_enabled = (*p_enabled & 1); }
+ return status;
+}
+
+uint16_t VL53L0X::VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
+{ /*!Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format*/
+
+ uint16_t encoded_timeout = 0;
+ uint32_t ls_byte = 0;
+ uint16_t ms_byte = 0;
+
+ if (timeout_macro_clks > 0) {
+ ls_byte = timeout_macro_clks - 1;
+
+ while ((ls_byte & 0xFFFFFF00) > 0) {
+ ls_byte = ls_byte >> 1;
+ ms_byte++;
+ }
+ encoded_timeout = (ms_byte << 8) + (uint16_t)(ls_byte & 0x000000FF);
+ }
+ return encoded_timeout;
+}
+
+VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
+ uint32_t timeout_micro_secs)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t current_vcsel_pulse_period_p_clk;
+ uint8_t msrc_encoded_time_out;
+ uint16_t pre_range_encoded_time_out;
+ uint16_t pre_range_time_out_m_clks;
+ uint16_t msrc_range_time_out_m_clks;
+ uint32_t final_range_time_out_m_clks;
+ uint16_t final_range_encoded_time_out;
+ VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
+
+ if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC) ||
+ (sequence_step_id == VL53L0X_SEQUENCESTEP_DSS) ||
+ (sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ msrc_range_time_out_m_clks = VL53L0X_calc_timeout_mclks(timeout_micro_secs,
+ (uint8_t)current_vcsel_pulse_period_p_clk);
+
+ if (msrc_range_time_out_m_clks > 256) {
+ msrc_encoded_time_out = 255;
+ } else {
+ msrc_encoded_time_out =
+ (uint8_t)msrc_range_time_out_m_clks - 1;
+ }
+ Data.LastEncodedTimeout = msrc_encoded_time_out;
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+ msrc_encoded_time_out);
+ }
+ } else {
+
+ if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+ pre_range_time_out_m_clks =
+ VL53L0X_calc_timeout_mclks(timeout_micro_secs,
+ (uint8_t)current_vcsel_pulse_period_p_clk);
+ pre_range_encoded_time_out = VL53L0X_encode_timeout(pre_range_time_out_m_clks);
+ Data.LastEncodedTimeout = pre_range_encoded_time_out;
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ pre_range_encoded_time_out);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.PreRangeTimeout_us = timeout_micro_secs;
+ }
+ } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+ /* For the final range timeout, the pre-range timeout
+ * must be added. To do this both final and pre-range
+ * timeouts must be expressed in macro periods MClks
+ * because they have different vcsel periods. */
+
+ VL53L0X_get_sequence_step_enables(&scheduler_sequence_steps);
+ pre_range_time_out_m_clks = 0;
+ if (scheduler_sequence_steps.PreRangeOn) {
+
+ /* Retrieve PRE-RANGE VCSEL Period */
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods
+ * (MCLKS) */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_word( 0x51, &pre_range_encoded_time_out);
+ pre_range_time_out_m_clks =
+ VL53L0X_decode_timeout( pre_range_encoded_time_out);
+ }
+ }
+
+ /* Calculate FINAL RANGE Timeout in Macro Periods
+ * (MCLKS) and add PRE-RANGE value
+ */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_vcsel_pulse_period( VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ ¤t_vcsel_pulse_period_p_clk);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ final_range_time_out_m_clks =
+ VL53L0X_calc_timeout_mclks( timeout_micro_secs,
+ (uint8_t) current_vcsel_pulse_period_p_clk);
+
+ final_range_time_out_m_clks += pre_range_time_out_m_clks;
+ final_range_encoded_time_out =
+ VL53L0X_encode_timeout(final_range_time_out_m_clks);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_word( 0x71, final_range_encoded_time_out);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.FinalRangeTimeout_us = timeout_micro_secs;
+ }
+ }
+ } else {
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t final_range_timing_budget_us;
+ VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
+ uint32_t msrc_dcc_tcc_timeout_us = 2000;
+ uint32_t start_overhead_us = 1910;
+ uint32_t end_overhead_us = 960;
+ uint32_t msrc_overhead_us = 660;
+ uint32_t tcc_overhead_us = 590;
+ uint32_t dss_overhead_us = 690;
+ uint32_t pre_range_overhead_us = 660;
+ uint32_t final_range_overhead_us = 550;
+ uint32_t pre_range_timeout_us = 0;
+ uint32_t c_min_timing_budget_us = 20000;
+ uint32_t sub_timeout = 0;
+
+ if (measurement_timing_budget_us < c_min_timing_budget_us)
+ { status = VL53L0X_ERROR_INVALID_PARAMS;
+ return status;
+ }
+
+ final_range_timing_budget_us =
+ measurement_timing_budget_us - (start_overhead_us + end_overhead_us);
+
+ status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
+
+ if (status == VL53L0X_ERROR_NONE &&
+ (scheduler_sequence_steps.TccOn ||
+ scheduler_sequence_steps.MsrcOn ||
+ scheduler_sequence_steps.DssOn)) {
+
+ /* TCC, MSRC and DSS all share the same timeout */
+ status = get_sequence_step_timeout( VL53L0X_SEQUENCESTEP_MSRC,
+ &msrc_dcc_tcc_timeout_us);
+
+ /* Subtract the TCC, MSRC and DSS timeouts if they are
+ * enabled. */
+
+ if (status != VL53L0X_ERROR_NONE) {
+ return status;
+ }
+
+ /* TCC */
+ if (scheduler_sequence_steps.TccOn) {
+
+ sub_timeout = msrc_dcc_tcc_timeout_us
+ + tcc_overhead_us;
+
+ if (sub_timeout <
+ final_range_timing_budget_us) {
+ final_range_timing_budget_us -=
+ sub_timeout;
+ } else {
+ /* Requested timeout too big. */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ if (status != VL53L0X_ERROR_NONE) {return status;}
+
+ /* DSS */
+ if (scheduler_sequence_steps.DssOn) {
+
+ sub_timeout = 2 * (msrc_dcc_tcc_timeout_us +
+ dss_overhead_us);
+
+ if (sub_timeout < final_range_timing_budget_us) {
+ final_range_timing_budget_us
+ -= sub_timeout;
+ } else {
+ /* Requested timeout too big. */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ } else if (scheduler_sequence_steps.MsrcOn) {
+ /* MSRC */
+ sub_timeout = msrc_dcc_tcc_timeout_us +
+ msrc_overhead_us;
+
+ if (sub_timeout < final_range_timing_budget_us) {
+ final_range_timing_budget_us
+ -= sub_timeout;
+ } else {
+ /* Requested timeout too big. */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+ }
+
+ if (status != VL53L0X_ERROR_NONE) { return status; }
+
+ if (scheduler_sequence_steps.PreRangeOn) {
+
+ /* Subtract the Pre-range timeout if enabled. */
+
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &pre_range_timeout_us);
+
+ sub_timeout = pre_range_timeout_us +
+ pre_range_overhead_us;
+
+ if (sub_timeout < final_range_timing_budget_us) {
+ final_range_timing_budget_us -= sub_timeout;
+ } else {
+ /* Requested timeout too big. */
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE &&
+ scheduler_sequence_steps.FinalRangeOn) {
+
+ final_range_timing_budget_us -=
+ final_range_overhead_us;
+
+ /* Final Range Timeout
+ * Note that the final range timeout is determined by the timing
+ * budget and the sum of all other timeouts within the sequence.
+ * If there is no room for the final range timeout, then an error
+ * will be set. Otherwise the remaining time will be applied to
+ * the final range.
+ */
+ status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ final_range_timing_budget_us);
+ CurrentParameters.MeasurementTimingBudget_us = measurement_timing_budget_us;
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ status = wrapped_VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_sequence_step_enable(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_step_enabled)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t sequence_config = 0;
+ uint8_t sequence_config_new = 0;
+ uint32_t measurement_timing_budget_us;
+
+ status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &sequence_config);
+
+ sequence_config_new = sequence_config;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (sequence_step_enabled == 1) {
+
+ /* Enable requested sequence step
+ */
+ switch (sequence_step_id) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ sequence_config_new |= 0x10;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ sequence_config_new |= 0x28;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ sequence_config_new |= 0x04;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ sequence_config_new |= 0x40;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ sequence_config_new |= 0x80;
+ break;
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ } else {
+ /* Disable requested sequence step */
+ switch (sequence_step_id) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ sequence_config_new &= 0xef;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ sequence_config_new &= 0xd7;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ sequence_config_new &= 0xfb;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ sequence_config_new &= 0xbf;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ sequence_config_new &= 0x7f;
+ break;
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+ }
+
+ if (sequence_config_new != sequence_config) {
+ /* Apply New Setting */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, sequence_config_new);
+ }
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = sequence_config_new;}
+
+ /* Recalculate timing budget */
+ if (status == VL53L0X_ERROR_NONE) {
+ measurement_timing_budget_us = CurrentParameters.MeasurementTimingBudget_us ;
+ VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
+ }
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_enable( uint16_t limit_check_id,
+ uint8_t limit_check_enable)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t temp_fix1616 = 0;
+ uint8_t limit_check_enable_int = 0;
+ uint8_t limit_check_disable = 0;
+ uint8_t temp8;
+
+ if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else {
+ if (limit_check_enable == 0) {
+ temp_fix1616 = 0;
+ limit_check_enable_int = 0;
+ limit_check_disable = 1;
+ } else {
+ temp_fix1616 = CurrentParameters.LimitChecksValue[limit_check_id];
+ limit_check_disable = 0;
+ /* this to be sure to have either 0 or 1 */
+ limit_check_enable_int = 1;
+ }
+
+ switch (limit_check_id) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+ /* internal computation: */
+ CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_enable_int;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+ status = VL53L0X_write_word( VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FP1616TOFP97(temp_fix1616));
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
+ CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_enable_int;
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
+ CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_enable_int;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+ temp8 = (uint8_t)(limit_check_disable << 1);
+ status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
+ 0xFE, temp8);
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+
+ temp8 = (uint8_t)(limit_check_disable << 4);
+ status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
+ 0xEF, temp8);
+ break;
+
+ default:
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ if (limit_check_enable == 0) {
+ CurrentParameters.LimitChecksEnable[limit_check_id] = 0;
+ } else {
+ CurrentParameters.LimitChecksEnable[limit_check_id] = 1;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_static_init(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceParameters_t current_parameters = {0};
+ uint8_t *p_tuning_setting_buffer;
+ uint16_t tempword = 0;
+ uint8_t tempbyte = 0;
+ uint8_t use_internal_tuning_settings = 0;
+ uint32_t count = 0;
+ uint8_t is_aperture_spads = 0;
+ uint32_t ref_spad_count = 0;
+ uint8_t aperture_spads = 0;
+ uint8_t vcsel_pulse_period_pclk;
+ uint32_t seq_timeout_micro_secs;
+
+ status = VL53L0X_get_info_from_device( 1);
+
+ /* set the ref spad from NVM */
+ count = (uint32_t)Data.ReferenceSpadCount;
+ aperture_spads = Data.ReferenceSpadType;
+
+ /* NVM value invalid */
+ if ((aperture_spads > 1) ||
+ ((aperture_spads == 1) && (count > 32)) ||
+ ((aperture_spads == 0) && (count > 12))) {
+ status = wrapped_VL53L0X_perform_ref_spad_management( &ref_spad_count,
+ &is_aperture_spads);
+ } else {
+ status = VL53L0X_set_reference_spads( count, aperture_spads);
+ }
+
+ /* Initialize tuning settings buffer to prevent compiler warning. */
+ p_tuning_setting_buffer = DefaultTuningSettings;
+
+ if (status == VL53L0X_ERROR_NONE) {
+ use_internal_tuning_settings = Data.UseInternalTuningSettings;
+
+ if (use_internal_tuning_settings == 0) {
+ p_tuning_setting_buffer = Data.pTuningSettingsPointer; }
+ else { p_tuning_setting_buffer = DefaultTuningSettings; }
+
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_load_tuning_settings( p_tuning_setting_buffer); }
+
+ /* Set interrupt config to new sample ready */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_gpio_config( 0, 0,
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
+ VL53L0X_INTERRUPTPOLARITY_LOW);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+ status |= VL53L0X_read_word ( 0x84, &tempword);
+ status |= VL53L0X_write_byte( 0xFF, 0x00);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.OscFrequency_MHz = VL53L0X_FP412TOFP1616(tempword) ;
+ }
+
+ /* After static init, some device parameters may be changed,
+ * so update them */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_device_parameters( ¤t_parameters);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_fraction_enable( &tempbyte);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.RangeFractionalEnable = tempbyte;
+ }
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ CurrentParameters = current_parameters;
+ }
+
+ /* read the sequence config and save it */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.SequenceConfig = tempbyte;
+ }
+ }
+
+ /* Disable MSRC and TCC by default */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_TCC, 0);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_MSRC, 0);
+ }
+
+ /* Set PAL State to standby */
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.PalState = VL53L0X_STATE_IDLE;
+ }
+
+ /* Store pre-range vcsel period */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,&vcsel_pulse_period_pclk);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
+ }
+
+ /* Store final-range vcsel period */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ &vcsel_pulse_period_pclk);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
+ }
+
+ /* Store pre-range timeout */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,&seq_timeout_micro_secs);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.PreRangeTimeout_us = seq_timeout_micro_secs;
+ }
+
+ /* Store final-range timeout */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,&seq_timeout_micro_secs);
+ }
+
+ if (status == VL53L0X_ERROR_NONE) {
+ Data.FinalRangeTimeout_us = seq_timeout_micro_secs;
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_stop_measurement(void)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+ status = VL53L0X_write_byte( 0x00, 0x00);
+ status = VL53L0X_write_byte( 0x91, 0x00);
+ status = VL53L0X_write_byte( 0x00, 0x01);
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* Set PAL State to Idle */
+ Data.PalState = VL53L0X_STATE_IDLE;
+ }
+
+ /* Check if need to apply interrupt settings */
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_check_and_load_interrupt_settings( 0);
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_stop_completed_status(uint32_t *p_stop_status)
+{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint8_t byte = 0;
+
+
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_read_byte( 0x04, &byte);}
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = VL53L0X_write_byte( 0xFF, 0x0); }
+
+ *p_stop_status = byte;
+
+ if (byte == 0) {
+ status = VL53L0X_write_byte( 0x80, 0x01);
+ status = VL53L0X_write_byte( 0xFF, 0x01);
+ status = VL53L0X_write_byte( 0x00, 0x00);
+ status = VL53L0X_write_byte( 0x91,Data.StopVariable);
+ status = VL53L0X_write_byte( 0x00, 0x01);
+ status = VL53L0X_write_byte( 0xFF, 0x00);
+ status = VL53L0X_write_byte( 0x80, 0x00);
+ }
+ return status;
+}
+
+/******************************************************************************/
+
+/****************** Write and read functions from I2C *************************/
+
+VL53L0X_Error VL53L0X::VL53L0X_read_multi( uint8_t index, uint8_t *p_data, uint32_t count)
+{ if (count >= VL53L0X_MAX_I2C_XFER_SIZE) {
+ return VL53L0X_ERROR_INVALID_PARAMS;}
+ else { return VL53L0X_i2c_read(index, p_data, (uint16_t)count); }
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_write_byte( uint8_t index, uint8_t data)
+{ return VL53L0X_i2c_write(index, &data, 1);
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_write_word( uint8_t index, uint16_t data)
+{ int status;
+ uint8_t buffer[2];
+
+ buffer[0] = data >> 8;
+ buffer[1] = data & 0x00FF;
+ status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 2);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_write_dword( uint8_t index, uint32_t data)
+{ int status;
+ uint8_t buffer[4];
+
+ buffer[0] = (data >> 24) & 0xFF;
+ buffer[1] = (data >> 16) & 0xFF;
+ buffer[2] = (data >> 8) & 0xFF;
+ buffer[3] = (data >> 0) & 0xFF;
+ status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 4);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_read_byte( uint8_t index, uint8_t *p_data)
+{ return VL53L0X_i2c_read(index, p_data, 1); }
+
+VL53L0X_Error VL53L0X::VL53L0X_read_word( uint8_t index, uint16_t *p_data)
+{ int status;
+ uint8_t buffer[2] = {0, 0};
+
+ status = VL53L0X_i2c_read(index, buffer, 2);
+ if (!status) {*p_data = (buffer[0] << 8) + buffer[1];}
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_read_dword( uint8_t index, uint32_t *p_data)
+{ int status;
+ uint8_t buffer[4] = {0, 0, 0, 0};
+
+ status = VL53L0X_i2c_read(index, buffer, 4);
+ if (!status) { *p_data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3]; }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_update_byte( uint8_t index, uint8_t and_data, uint8_t or_data)
+{ int status;
+ uint8_t buffer = 0;
+
+ /* read data direct onto buffer */
+ status = VL53L0X_i2c_read(index, &buffer, 1);
+ if (!status) {
+ buffer = (buffer & and_data) | or_data;
+ status = VL53L0X_i2c_write(index, &buffer, (uint8_t)1);
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_i2c_write(uint8_t RegisterAddr, uint8_t *p_data,
+ uint16_t NumByteToWrite)
+{ /** Writes a buffer towards the I2C peripheral device. */
+ static uint8_t tmp[VL53L0X_MAX_I2C_XFER_SIZE];
+
+ if(NumByteToWrite >= VL53L0X_MAX_I2C_XFER_SIZE) return -2;
+
+ /* First, send device address. Then, send data and STOP condition */
+ tmp[0] = RegisterAddr;
+ memcpy(tmp+1, p_data, NumByteToWrite);
+
+ if (_dev_i2c->write(I2cDevAddr, (const char*)tmp, NumByteToWrite+1, false) != 0 )
+ { return -1; }
+ return 0;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_i2c_read(uint8_t RegisterAddr, uint8_t *p_data, uint16_t NumByteToRead)
+{ /** Reads a buffer from the I2C peripheral device. */
+
+ /* First Send device address, with no STOP condition */
+ int ret = _dev_i2c->write(I2cDevAddr, (const char*)&RegisterAddr, 1, true);
+
+ /* all ok ? then Read data, with STOP condition */
+ if (ret == 0) { ret = _dev_i2c->read(I2cDevAddr, (char*)p_data, NumByteToRead, false); }
+
+ if (ret != 0 ){ return -1; }
+ return 0;
+}
+