Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
main.cpp
- Committer:
- Kir
- Date:
- 2015-03-17
- Revision:
- 0:d38b3edad9b3
File content as of revision 0:d38b3edad9b3:
/* Copyright (c) 2015 Aurobo Pty Ltd === A test program for the auSpeed Integrated Combo board === Version 1.00 The auSpeed-1M combo controller is an integrated module that combines three UAV sub-systems: - high efficient protected power supply for electronic units and servos with voltage and current sensors (BEC); - brushless motor speed controller (ESC), up to 40A; - six channel servo controller with a PWM output and power line. The board's i2c interface need to be connected to the PTE0 and PTE1 ports of the Freescale FRDM-KL25Z device For more information, please visit our web-site: ***************************** * http://aupilot.com.au * ***************************** License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: 1) The Software or its substantial portions are used for auPilot product(s); 2) The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // ########## WARNING: // This test will turn ON the motor. Please make sure that it is SAFE // ################### // Test 1: readout the firmware version and status // Test 2: servo controller test // Test 3: the main motor(s) test #include "mbed.h" #include "itoa.h" #define AUSPEED_I2C_ADDRESS (0x12<<1) #define BUFF_SIZE 16 //DigitalOut myled(LED_BLUE); Serial pc(USBTX, USBRX); I2C i2c(PTE0, PTE1); //int i2c_reg8_write(int i2c_address, char reg, const char wd); int i2c_reg_read(int i2c_address, char reg, char* rd, int len); void diag(void); int address = AUSPEED_I2C_ADDRESS; typedef union _conv_float_bytes { float f; uint8_t b[4]; } convert_float2bytes; convert_float2bytes q; int motors = 0; int main() { PwmOut led(LED_GREEN); char rd[BUFF_SIZE]; int slider = 127; int sliderIncrement = 1; i2c.frequency(400000); led = 1; pc.printf("\n\r\n\rTest program for the auSpeed board"); // === Test 1 ==== pc.printf("\n\rStarting Test 1..."); // read firmware version if (i2c_reg_read(address, 0x34, rd, 16)) { pc.printf("\n\ri2c error 01"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { char serial[13]= {0}; memcpy(serial,rd,12); motors = (int)rd[14]; pc.printf("\n\rSerial: %s, Version: %d.%.2d, Motors detected: %d", serial, rd[12], rd[13],motors ); } wait(1); // === Test 2 ==== pc.printf("\n\rStarting Test 2..."); pc.printf("\n\rSwinging all servos"); for (int i=0; i<2; i++) { for (int j=0; j<250; j++) { rd[0] = 0x21; rd[1] = (char) slider; rd[2] = (char) slider; rd[3] = (char) slider; rd[4] = (char) slider; rd[5] = (char) slider; rd[6] = (char) slider; if (i2c.write(address, rd, 7, false) == 0) ; // pc.printf("\n\rSuccess"); else pc.printf("\n\ri2c error 02"); led = (float)slider / 256; wait(0.01); slider += sliderIncrement; if (slider > 250) sliderIncrement = -2; if (slider < 2) sliderIncrement = +2; } } led = 1; // === Test 3 ==== pc.printf("\n\rStarting Test 3..."); pc.printf("\n\rWARNING Motor will be started!"); wait(1); for (int i=0; i<3; i++) { // ========= start ======== rd[0] = 0x01; rd[1] = 0x30; if (i2c.write(address, rd, 2) != 0) pc.printf("\n\ri2c error 03"); wait(1); diag(); // ====== accelerate ====== rd[0] = 0x01; rd[1] = 0x40; if (i2c.write(address, rd, 2) != 0) pc.printf("\n\ri2c error 04"); wait(1); diag(); // this might show soft fail due to sync lost when accelerate // ========= stop ========= rd[0] = 0x05; rd[1] = 0x01; if (i2c.write(address, rd, 2) != 0) pc.printf("\n\ri2c error 05"); wait(1); diag(); } pc.printf("\n\rAll tests done!"); } // reads 1 byte from a register of an i2c device // return: rd data read from the register // return: 0 if OK, -1 otherwise int i2c_reg_read(int i2c_address, char reg, char* rd, int len) { wait(0.001); // we need to keep the command flow under 1000 per second, otherwise they might get skipped. if (i2c.write(i2c_address, ®, 1, true) == 0) if (i2c.read(i2c_address, rd, len) == 0) { i2c.stop(); return 0; } i2c.stop(); return -1; } // read and print RPMs and battery data void diag(void) { char rd[BUFF_SIZE] = {0}; float main_battery, spare_battery, current, temperature, work; int rpms=0; char status[9]={0}; main_battery =spare_battery =current = temperature= work=0; // == read rpms of the 1st motor if (i2c_reg_read(address, 0x01, rd, 4)) { pc.printf("\n\ri2c error 10"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { rpms = (uint32_t)rd[0]+((uint32_t)rd[1])*256+((uint32_t)rd[2])*256*256+((uint32_t)rd[3])*256*256*256; } // == read status of the 1st motor if (i2c_reg_read(address, 0x31, rd, 1)) { pc.printf("\n\ri2c error 11"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { itoa(rd[0],status,2); } // == read main battery if (i2c_reg_read(address, 0x50, rd, 4)) { pc.printf("\n\ri2c error 12"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { memcpy(q.b, rd,4); main_battery = q.f; } // == read spare battery if (i2c_reg_read(address, 0x51, rd, 4)) { pc.printf("\n\ri2c error 13"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { memcpy(q.b, rd,4); spare_battery = q.f; } // == read current if (i2c_reg_read(address, 0x52, rd, 4)) { pc.printf("\n\ri2c error 14"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { memcpy(q.b, rd,4); current = q.f; } // == read electrical work if (i2c_reg_read(address, 0x54, rd, 4)) { pc.printf("\n\ri2c error 15"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { memcpy(q.b, rd,4); work = q.f; } // == read temperature if (i2c_reg_read(address, 0x53, rd,4)) { pc.printf("\n\ri2c error 16"); memset(rd,0,BUFF_SIZE); // clear the buffer } else { memcpy(q.b, rd,4); temperature = q.f; } pc.printf("\n\rS %08s RPMs: %.6d Main: %.2fV Spare: %.2fV Current %.0fmA Work %.2f Temp %.1fC", status,rpms,main_battery,spare_battery,current,work,temperature); }