Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32625/mxc/i2cm.c
- Committer:
- Anythingconnected
- Date:
- 2017-12-18
- Revision:
- 180:d79f997829d6
- Parent:
- 150:02e0a0aed4ec
File content as of revision 180:d79f997829d6:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. * * $Date: 2016-06-01 08:51:23 -0500 (Wed, 01 Jun 2016) $ * $Revision: 23131 $ * ******************************************************************************/ /** * @file i2cm.c * @brief I2C Master driver source. */ /***** Includes *****/ #include <string.h> #include <math.h> #include "mxc_assert.h" #include "mxc_lock.h" #include "mxc_errors.h" #include "mxc_sys.h" #include "i2cm.h" /***** Definitions *****/ #ifndef MXC_I2CM_TX_TIMEOUT #define MXC_I2CM_TX_TIMEOUT 0x5000 #endif #ifndef MXC_I2CM_RX_TIMEOUT #define MXC_I2CM_RX_TIMEOUT 0x5000 #endif #define I2CM_READ_BIT 0x0001 #define I2CM_FIFO_DEPTH_3Q ((3 * MXC_I2CM_FIFO_DEPTH) / 4) #define I2CM_FIFO_DEPTH_2Q (MXC_I2CM_FIFO_DEPTH / 2) /***** Globals *****/ // Saves the state of the non-blocking requests typedef enum { I2CM_STATE_READING = 0, I2CM_STATE_WRITING = 1 } i2cm_state_t; typedef struct { i2cm_req_t *req; i2cm_state_t state; } i2cm_req_state_t; static i2cm_req_state_t states[MXC_CFG_I2CM_INSTANCES]; /***** Functions *****/ //static void I2CM_Recover(mxc_i2cm_regs_t *i2cm); //static int I2CM_WriteTxFifo(mxc_i2cm_regs_t *regs, mxc_i2cm_fifo_regs_t *fifo, const uint16_t data); //static int I2CM_TxInProgress(mxc_i2cm_regs_t *i2cm); static void I2CM_FreeCallback(int i2cm_num, int error); //static int I2CM_Tx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr, // const uint8_t *data, uint32_t len, uint8_t stop); //static int I2CM_Rx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr, // uint8_t *data, uint32_t len); static int I2CM_CmdHandler(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, i2cm_req_t *req); static int I2CM_ReadHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num); static int I2CM_WriteHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num); /******************************************************************************/ int I2CM_Init(mxc_i2cm_regs_t *i2cm, const sys_cfg_i2cm_t *sys_cfg, i2cm_speed_t speed) { int err; // Check the base pointer MXC_ASSERT(MXC_I2CM_GET_IDX(i2cm) >= 0); // Set system level configurations if ((err = SYS_I2CM_Init(i2cm, sys_cfg)) != E_NO_ERROR) { return err; } I2CM_SetFrequency(i2cm,speed); // Reset module i2cm->ctrl = MXC_F_I2CM_CTRL_MSTR_RESET_EN; i2cm->ctrl = 0; // Set timeout to 255 ms and turn on the auto-stop option i2cm->timeout = (MXC_F_I2CM_TIMEOUT_TX_TIMEOUT | MXC_F_I2CM_TIMEOUT_AUTO_STOP_EN); // Enable tx_fifo and rx_fifo i2cm->ctrl |= (MXC_F_I2CM_CTRL_TX_FIFO_EN | MXC_F_I2CM_CTRL_RX_FIFO_EN); return E_NO_ERROR; } /******************************************************************************/ int I2CM_Shutdown(mxc_i2cm_regs_t *i2cm) { int i2cm_num, err; // Check the base pointer i2cm_num = MXC_I2CM_GET_IDX(i2cm); MXC_ASSERT(i2cm_num >= 0); // Disable and clear interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; // Call all of the pending callbacks for this I2CM if(states[i2cm_num].req != NULL) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, E_SHUTDOWN); } // Clears system level configurations if ((err = SYS_I2CM_Shutdown(i2cm)) != E_NO_ERROR) { return err; } return E_NO_ERROR; } /******************************************************************************/ int I2CM_Read(mxc_i2cm_regs_t *i2cm, uint8_t addr, const uint8_t *cmd_data, uint32_t cmd_len, uint8_t* data, uint32_t len) { int i2cm_num; int error = E_NO_ERROR; int retval = E_NO_ERROR; mxc_i2cm_fifo_regs_t *fifo; if(data == NULL) { return E_NULL_PTR; } // Make sure the I2CM has been initialized if(i2cm->ctrl == 0) { return E_UNINITIALIZED; } if(!(len > 0)) { return E_NO_ERROR; } // Lock this I2CM i2cm_num = MXC_I2CM_GET_IDX(i2cm); while(mxc_get_lock((uint32_t*)&states[i2cm_num].req,1) != E_NO_ERROR) {} // Get the FIFO pointer for this I2CM fifo = MXC_I2CM_GET_FIFO(i2cm_num); // Disable and clear the interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; // Transmit the command if there is command data and length if((cmd_data != NULL) && (cmd_len > 0)) { retval = I2CM_Tx(i2cm, fifo, addr, cmd_data, cmd_len, 0); } // Read data from the slave if we don't have any errors if(retval == E_NO_ERROR) { retval = I2CM_Rx(i2cm, fifo, addr, data, len); } // Wait for the transaction to complete if((error = I2CM_TxInProgress(i2cm)) != E_NO_ERROR) { retval = error; } // Unlock this I2CM mxc_free_lock((uint32_t*)&states[i2cm_num].req); if(retval != E_NO_ERROR) { return retval; } return len; } /******************************************************************************/ int I2CM_Write(mxc_i2cm_regs_t *i2cm, uint8_t addr, const uint8_t *cmd_data, uint32_t cmd_len, uint8_t* data, uint32_t len) { int i2cm_num; int error = E_NO_ERROR; int retval = E_NO_ERROR; mxc_i2cm_fifo_regs_t *fifo; if(data == NULL) { return E_NULL_PTR; } // Make sure the I2CM has been initialized if(i2cm->ctrl == 0) { return E_UNINITIALIZED; } if(!(len > 0)) { return E_NO_ERROR; } // Lock this I2CM i2cm_num = MXC_I2CM_GET_IDX(i2cm); while(mxc_get_lock((uint32_t*)&states[i2cm_num].req,1) != E_NO_ERROR) {} // Get the FIFO pointer for this I2CM fifo = MXC_I2CM_GET_FIFO(i2cm_num); // Disable and clear the interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; // Transmit the command if there is command data and length, don't send stop bit if((cmd_data != NULL) && (cmd_len > 0)) { retval = I2CM_Tx(i2cm, fifo, addr, cmd_data, cmd_len, 0); } // Write data to the slave, send the stop bit if(retval == E_NO_ERROR) { retval = I2CM_Tx(i2cm, fifo, addr, data, len, 1); } // Wait for the transaction to complete if((error = I2CM_TxInProgress(i2cm)) != E_NO_ERROR) { retval = error; } // Unlock this I2CM mxc_free_lock((uint32_t*)&states[i2cm_num].req); if(retval != E_NO_ERROR) { return retval; } return len; } /******************************************************************************/ int I2CM_ReadAsync(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req) { int i2cm_num, error; if(req->data == NULL) { return E_NULL_PTR; } // Make sure the I2CM has been initialized if(i2cm->ctrl == 0) { return E_UNINITIALIZED; } if(!(req->data_len > 0)) { return E_NO_ERROR; } i2cm_num = MXC_I2CM_GET_IDX(i2cm); // Attempt to register this request if(mxc_get_lock((uint32_t*)&states[i2cm_num].req, (uint32_t)req) != E_NO_ERROR) { return E_BUSY; } states[i2cm_num].state = I2CM_STATE_READING; // Clear the number of bytes counter req->cmd_num = 0; req->data_num = 0; // Disable and clear the interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; // Start the read if((error = I2CM_ReadHandler(i2cm, req, i2cm_num)) != E_NO_ERROR) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, error); return error; } return E_NO_ERROR; } /******************************************************************************/ int I2CM_WriteAsync(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req) { int i2cm_num, error; if(req->data == NULL) { return E_NULL_PTR; } // Make sure the I2CM has been initialized if(i2cm->ctrl == 0) { return E_UNINITIALIZED; } if(!(req->data_len > 0)) { return E_NO_ERROR; } i2cm_num = MXC_I2CM_GET_IDX(i2cm); // Attempt to register this request if(mxc_get_lock((uint32_t*)&states[i2cm_num].req, (uint32_t)req) != E_NO_ERROR) { return E_BUSY; } states[i2cm_num].state = I2CM_STATE_WRITING; // Clear the number of bytes counter req->cmd_num = 0; req->data_num = 0; // Disable and clear the interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; // Start the Write if((error = I2CM_WriteHandler(i2cm, req, i2cm_num)) != E_NO_ERROR) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, error); return error; } return E_NO_ERROR; } /******************************************************************************/ int I2CM_AbortAsync(i2cm_req_t *req) { int i2cm_num; mxc_i2cm_regs_t *i2cm; // Find the request, set to NULL for(i2cm_num = 0; i2cm_num < MXC_CFG_I2CM_INSTANCES; i2cm_num++) { if(req == states[i2cm_num].req) { i2cm = MXC_I2CM_GET_I2CM(i2cm_num); I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, E_ABORT); return E_NO_ERROR; } } return E_BAD_PARAM; } /******************************************************************************/ void I2CM_Handler(mxc_i2cm_regs_t *i2cm) { uint32_t intfl; int i2cm_num, error; // Save and clear the interrupts intfl = i2cm->intfl; i2cm->intfl = intfl; // Mask the disabled interrupts intfl &= i2cm->inten; i2cm_num = MXC_I2CM_GET_IDX(i2cm); // Check for errors if ((intfl & MXC_F_I2CM_INTFL_TX_NACKED) || (intfl & MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, E_COMM_ERR); return; } if(intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, E_TIME_OUT); return; } // Read or write if(states[i2cm_num].state == I2CM_STATE_READING) { if((error = I2CM_ReadHandler(i2cm, states[i2cm_num].req, i2cm_num)) != E_NO_ERROR) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, error); return; } } else if(states[i2cm_num].state == I2CM_STATE_WRITING) { if((error = I2CM_WriteHandler(i2cm, states[i2cm_num].req, i2cm_num)) != E_NO_ERROR) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, error); return; } } // Done with the transaction if(intfl & MXC_F_I2CM_INTFL_TX_DONE) { I2CM_Recover(i2cm); I2CM_FreeCallback(i2cm_num, E_NO_ERROR); } } /******************************************************************************/ int I2CM_Busy(mxc_i2cm_regs_t *i2cm) { // Check to see if there are any ongoing transactions if((states[MXC_I2CM_GET_IDX(i2cm)].req == NULL) && !(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { return E_NO_ERROR; } return E_BUSY; } /******************************************************************************/ int I2CM_PrepForSleep(mxc_i2cm_regs_t *i2cm) { if(I2CM_Busy(i2cm) != E_NO_ERROR) { return E_BUSY; } // Disable interrupts i2cm->inten = 0; return E_NO_ERROR; } /******************************************************************************/ int I2CM_BusCheck(mxc_i2cm_regs_t *i2cm) { // If SCL is low, we don't have the bus if(!(i2cm->bb & MXC_F_I2CM_BB_BB_SCL_IN_VAL)) { return E_BUSY; } // If SDA is low, we don't have the bus if(!(i2cm->bb & MXC_F_I2CM_BB_BB_SDA_IN_VAL)) { return E_BUSY; } return E_NO_ERROR; } /******************************************************************************/ static void I2CM_FreeCallback(int i2cm_num, int error) { // Save the request i2cm_req_t *temp_req = states[i2cm_num].req; // Unlock this UART to write mxc_free_lock((uint32_t*)&states[i2cm_num].req); // Callback if not NULL if(temp_req->callback != NULL) { temp_req->callback(temp_req, error); } } /******************************************************************************/ void I2CM_Recover(mxc_i2cm_regs_t *i2cm) { // Disable and clear interrupts i2cm->inten = 0; i2cm->intfl = i2cm->intfl; i2cm->ctrl = MXC_F_I2CM_CTRL_MSTR_RESET_EN; i2cm->ctrl = MXC_F_I2CM_CTRL_TX_FIFO_EN | MXC_F_I2CM_CTRL_RX_FIFO_EN; } /******************************************************************************/ int I2CM_WriteTxFifo(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, const uint16_t data) { int32_t timeout = MXC_I2CM_TX_TIMEOUT; // Read the TX FIFO to determine if it's full do { // Wait for the TX FIFO to have room and check for errors if (i2cm->intfl & (MXC_F_I2CM_INTFL_TX_NACKED | MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) { return E_COMM_ERR; } if((i2cm->intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) || !timeout--) { return E_TIME_OUT; } } while (fifo->tx); fifo->tx = data; return E_NO_ERROR; } /******************************************************************************/ int I2CM_TxInProgress(mxc_i2cm_regs_t *i2cm) { int32_t timeout = MXC_I2CM_TX_TIMEOUT; while ((i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS) && --timeout); if (i2cm->intfl & (MXC_F_I2CM_INTFL_TX_NACKED | MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) { I2CM_Recover(i2cm); return E_COMM_ERR; } if((i2cm->intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) && !timeout--) { I2CM_Recover(i2cm); return E_TIME_OUT; } return E_NO_ERROR; } /******************************************************************************/ int I2CM_Tx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr, const uint8_t *data, uint32_t len, uint8_t stop) { uint32_t i; int error; // Write the address to the TXFIFO if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (addr << 1)))) != E_NO_ERROR) { return error; } // Start the transaction if it is not currently ongoing if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { i2cm->trans |= MXC_F_I2CM_TRANS_TX_START; } // Fill the FIFO for (i = 0; i < len; i++) { if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | data[i]))) != E_NO_ERROR) { return error; } } // Send the stop condition if(stop) { if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) { return error; } } return E_NO_ERROR; } /******************************************************************************/ int I2CM_Rx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr, uint8_t *data, uint32_t len) { uint32_t i = len; int32_t timeout; uint16_t temp; int error; // Write the address to the TXFIFO if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (addr << 1) | I2CM_READ_BIT))) != E_NO_ERROR) { return error; } // Write to the TXFIFO the number of bytes we want to read while(i > 256) { if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | 255))) != E_NO_ERROR) { return error; } i -= 256; } if(i > 1) { if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | (i-2)))) != E_NO_ERROR) { return error; } } // Start the transaction if it is not currently ongoing if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { i2cm->trans |= MXC_F_I2CM_TRANS_TX_START; } // NACK the last read byte if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_NACK))) != E_NO_ERROR) { return error; } // Send the stop condition if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) { return error; } // Get the data from the RX FIFO i = 0; while (i < len) { // Wait for there to be data in the RX FIFO timeout = MXC_I2CM_RX_TIMEOUT; while (!(i2cm->intfl & MXC_F_I2CM_INTFL_RX_FIFO_NOT_EMPTY) && ((i2cm->bb & MXC_F_I2CM_BB_RX_FIFO_CNT) == 0)) { if((timeout-- < 0) || (i2cm->trans & MXC_F_I2CM_TRANS_TX_TIMEOUT)) { return E_TIME_OUT; } if (i2cm->trans & (MXC_F_I2CM_TRANS_TX_LOST_ARBITR | MXC_F_I2CM_TRANS_TX_NACKED)) { return E_COMM_ERR; } } i2cm->intfl = MXC_F_I2CM_INTFL_RX_FIFO_NOT_EMPTY; // Save the data from the RX FIFO temp = fifo->rx; if (temp & MXC_S_I2CM_RSTLS_TAG_EMPTY) { continue; } data[i++] = (uint8_t)temp; } return E_NO_ERROR; } /******************************************************************************/ static int I2CM_CmdHandler(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, i2cm_req_t *req) { int error; // Start of the command if(req->cmd_num == 0) { // Write the address to the TXFIFO if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (req->addr << 1)))) != E_NO_ERROR) { return error; } // Start the transaction if it is not currently ongoing if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { i2cm->trans |= MXC_F_I2CM_TRANS_TX_START; } } // Write to the FIFO until it is full or we run out of command bytes while((req->cmd_num < req->cmd_len) && (!fifo->tx)) { fifo->tx = MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | req->cmd_data[req->cmd_num++]; } return E_NO_ERROR; } /******************************************************************************/ static int I2CM_ReadHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num) { int error, cmd_remain, data_remain; uint16_t data; uint32_t temp_len, inten; mxc_i2cm_fifo_regs_t *fifo; // Get the FIFO pointer for this I2CM fifo = MXC_I2CM_GET_FIFO(i2cm_num); cmd_remain = req->cmd_len - req->cmd_num; data_remain = req->data_len - req->data_num; // Process the command portion if((cmd_remain) && (req->cmd_data != NULL)) { if((error = I2CM_CmdHandler(i2cm, fifo, req)) != E_NO_ERROR) { return error; } cmd_remain = req->cmd_len - req->cmd_num; } // Process the data portion if((cmd_remain == 0) && (data_remain)) { // Save the data from the RXFIFO data = fifo->rx; while((req->data_num < req->data_len) && !(data & MXC_S_I2CM_RSTLS_TAG_EMPTY)) { req->data[req->data_num++] = data; data = fifo->rx; } // Start of the data portion if(req->data_num == 0) { temp_len = req->data_len; // Write the address to the TXFIFO if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (req->addr << 1) | I2CM_READ_BIT))) != E_NO_ERROR) { return error; } // Write to the TXFIFO the number of bytes we want to read while(temp_len > 256) { if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | 255))) != E_NO_ERROR) { return error; } temp_len -= 256; } if(temp_len > 1) { if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | (temp_len-2)))) != E_NO_ERROR) { return error; } } // Start the transaction if it is not currently ongoing if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { i2cm->trans |= MXC_F_I2CM_TRANS_TX_START; } // NACK the last read byte if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_NACK))) != E_NO_ERROR) { return error; } // Send the stop condition if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) { return error; } } } // Enable the required interrupts inten = MXC_F_I2CM_INTEN_TX_DONE | MXC_F_I2CM_INTEN_TX_NACKED | MXC_F_I2CM_INTEN_TX_LOST_ARBITR | MXC_F_I2CM_INTEN_TX_TIMEOUT; if (cmd_remain) { inten |= (MXC_F_I2CM_INTEN_TX_FIFO_EMPTY | MXC_F_I2CM_INTEN_TX_FIFO_3Q_EMPTY); } data_remain = req->data_len - req->data_num; if (data_remain > I2CM_FIFO_DEPTH_3Q) { inten |= MXC_F_I2CM_INTEN_RX_FIFO_3Q_FULL; } else if (data_remain > I2CM_FIFO_DEPTH_2Q) { inten |= MXC_F_I2CM_INTEN_RX_FIFO_2Q_FULL; } else if (data_remain > 0) { inten |= MXC_F_I2CM_INTEN_RX_FIFO_NOT_EMPTY; } i2cm->inten = inten; return E_NO_ERROR; } /******************************************************************************/ static int I2CM_WriteHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num) { int error, cmd_remain, data_remain; uint32_t inten; mxc_i2cm_fifo_regs_t *fifo; // Get the FIFO pointer for this I2CM fifo = MXC_I2CM_GET_FIFO(i2cm_num); cmd_remain = req->cmd_len - req->cmd_num; data_remain = req->data_len - req->data_num; // Process the command portion if((cmd_remain) && (req->cmd_data != NULL)) { if((error = I2CM_CmdHandler(i2cm, fifo, req)) != E_NO_ERROR) { return error; } cmd_remain = req->cmd_len - req->cmd_num; } // Process the data portion if((cmd_remain == 0) && (data_remain)) { // Start of the data portion if(req->data_num == 0) { // Write the address to the TXFIFO if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (req->addr << 1)))) != E_NO_ERROR) { return error; } // Start the transaction if it is not currently ongoing if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) { i2cm->trans |= MXC_F_I2CM_TRANS_TX_START; } } // Write bytes to the FIFO until it's full or we run out of bytes while(req->data_num < req->data_len) { fifo->tx = MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | req->data[req->data_num++]; } // Send the stop condition if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) { return error; } } // Enable the required interrupts data_remain = req->data_len - req->data_num; inten = MXC_F_I2CM_INTEN_TX_DONE | MXC_F_I2CM_INTEN_TX_NACKED | MXC_F_I2CM_INTEN_TX_LOST_ARBITR | MXC_F_I2CM_INTEN_TX_TIMEOUT; if(data_remain || cmd_remain) { inten |= (MXC_F_I2CM_INTEN_TX_FIFO_EMPTY | MXC_F_I2CM_INTEN_TX_FIFO_3Q_EMPTY); } i2cm->inten = inten; return E_NO_ERROR; } int I2CM_SetFrequency(mxc_i2cm_regs_t *i2cm, int speed) { // Speed converted into Khz float i2cSpeed = speed / 1000.0f; //get clk speed into MHz int sClk = SYS_I2CM_GetFreq(i2cm) / 1000000; // duty cycle of .67 float dc = 2.0f / 3.0f; //Hold Time float hold = (100.0f / i2cSpeed); int riseTime; //max rise time based on speed according to the I2C specs if (i2cSpeed <= 100) { riseTime = 1000; } else if (i2cSpeed <= 400) { riseTime = 300; } else if (i2cSpeed <= 1000) { riseTime = 120; } else { return E_NOT_SUPPORTED; } // Clock cycles to delay int latency = 4; int filtDev, sclHi, sclLow; filtDev = (hold * sClk) / 2; sclHi = (((dc * sClk * 1000.0f / i2cSpeed) - (((2.5f * filtDev) + (riseTime / 1000.0f * sClk) + latency) * (1.0f + dc))) / (1.0f + dc)); sclLow = ((sClk * 1000.0f / i2cSpeed) - (2.5f * filtDev) - (riseTime / 1000.0f * sClk) - latency - sclHi); i2cm->fs_clk_div = ((filtDev << MXC_F_I2CM_FS_CLK_DIV_FS_FILTER_CLK_DIV_POS) | (sclHi << MXC_F_I2CM_FS_CLK_DIV_FS_SCL_HI_CNT_POS) | (sclLow << MXC_F_I2CM_FS_CLK_DIV_FS_SCL_LO_CNT_POS)); return E_NO_ERROR; }