Sensor data verwerking
Dependencies: SEGGER_RTT mbed
Fork of MPU9250AHRS by
Revision 3:d53674889db3, committed 2018-02-19
- Comitter:
- MarijnJ
- Date:
- Mon Feb 19 12:43:16 2018 +0000
- Parent:
- 2:4e59a37182df
- Commit message:
- Simpele sensor data verwerking zonder callibratie
Changed in this revision
diff -r 4e59a37182df -r d53674889db3 MPU9250.h --- a/MPU9250.h Tue Aug 05 01:37:23 2014 +0000 +++ b/MPU9250.h Mon Feb 19 12:43:16 2018 +0000 @@ -156,7 +156,7 @@ // Using the MSENSR-9250 breakout board, ADO is set to 0 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one! -#define ADO 0 +#define ADO 1 #if ADO #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 #else @@ -166,16 +166,16 @@ // Set initial input parameters enum Ascale { AFS_2G = 0, - AFS_4G, - AFS_8G, - AFS_16G + AFS_4G = 1, + AFS_8G = 2, + AFS_16G = 3 }; enum Gscale { GFS_250DPS = 0, - GFS_500DPS, - GFS_1000DPS, - GFS_2000DPS + GFS_500DPS = 1, + GFS_1000DPS = 2, + GFS_2000DPS = 3 }; enum Mscale { @@ -183,19 +183,17 @@ MFS_16BITS // 0.15 mG per LSB }; -uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G -uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS +uint8_t Ascale = AFS_8G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G +uint8_t Gscale = GFS_1000DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR float aRes, gRes, mRes; // scale resolutions per LSB for the sensors //Set up I2C, (SDA,SCL) -I2C i2c(I2C_SDA, I2C_SCL); - -DigitalOut myled(LED1); +I2C i2c(P0_8, P0_9); // Pin definitions -int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins +int intPin = 16; // These can be changed, 2 and 3 are the Arduinos ext int pins int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output @@ -625,7 +623,7 @@ // Configure the accelerometer for self-test writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - delay(25); // Delay a while to let the device stabilize + wait(0.1); // Delay a while to let the device stabilize for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer @@ -648,7 +646,7 @@ // Configure the gyro and accelerometer for normal operation writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); - delay(25); // Delay a while to let the device stabilize + wait(0.1); // Delay a while to let the device stabilize // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
diff -r 4e59a37182df -r d53674889db3 N5110.lib --- a/N5110.lib Tue Aug 05 01:37:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/onehorse/code/Adfs/#28c629d0b0d0
diff -r 4e59a37182df -r d53674889db3 SEGGER_RTT.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SEGGER_RTT.lib Mon Feb 19 12:43:16 2018 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/teams/anyThing-Connected/code/SEGGER_RTT/#7dcd871d726b
diff -r 4e59a37182df -r d53674889db3 ST_401_84MHZ.lib --- a/ST_401_84MHZ.lib Tue Aug 05 01:37:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/dreschpe/code/ST_401_84MHZ/#b9343c8b85ec
diff -r 4e59a37182df -r d53674889db3 main.cpp --- a/main.cpp Tue Aug 05 01:37:23 2014 +0000 +++ b/main.cpp Mon Feb 19 12:43:16 2018 +0000 @@ -1,254 +1,205 @@ /* MPU9250 Basic Example Code - by: Kris Winer - date: April 1, 2014 - license: Beerware - Use this code however you'd like. If you - find it useful you can buy me a beer some time. - - Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, - getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to - allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and - Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. - - SDA and SCL should have external pull-up resistors (to 3.3V). - 10k resistors are on the EMSENSR-9250 breakout board. - - Hardware setup: - MPU9250 Breakout --------- Arduino - VDD ---------------------- 3.3V - VDDI --------------------- 3.3V - SDA ----------------------- A4 - SCL ----------------------- A5 - GND ---------------------- GND - - Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. - Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. - We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. - We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. - */ - -//#include "ST_F401_84MHZ.h" -//F401_init84 myinit(0); +by: Kris Winer +date: April 1, 2014 +license: Beerware - Use this code however you'd like. If you +find it useful you can buy me a beer some time. + +Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, +getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to +allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and +Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + +----------------------------------------------------------------------- + +Adapted by Marijn Jeurissen for the anyThing Connected Sensor Sticker based on Nordic nRF51822 +date: February 16, 2018 +*/ + #include "mbed.h" #include "MPU9250.h" -#include "N5110.h" +#include "SEGGER_RTT.h" +#include "SEGGER_RTT.c" +#include "SEGGER_RTT_printf.c" -// Using NOKIA 5110 monochrome 84 x 48 pixel display -// pin 9 - Serial clock out (SCLK) -// pin 8 - Serial data out (DIN) -// pin 7 - Data/Command select (D/C) -// pin 5 - LCD chip select (CS) -// pin 6 - LCD reset (RST) -//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); - -float sum = 0; +float sum = 0, shift = 0; uint32_t sumCount = 0; +int cycle = 0; char buffer[14]; - MPU9250 mpu9250; +MPU9250 mpu9250; - Timer t; - - Serial pc(USBTX, USBRX); // tx, rx +Timer t; - // VCC, SCE, RST, D/C, MOSI,S CLK, LED - N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); - - - +short toInt(float x) +{ + return (x >= 0) ? (int)(x + 0.5) : (int)(x - 0.5); +} +int getTime(int counter) +{ + return (int)((counter/60000.0f)+shift); +} + int main() { - pc.baud(9600); - - //Set up I2C - i2c.frequency(400000); // use fast (400 kHz) I2C - - pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); - - t.start(); - - lcd.init(); -// lcd.setBrightness(0.05); - + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + SEGGER_RTT_printf(0, "CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + t.start(); - // Read the WHO_AM_I register, this is a good test of communication - uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 - pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); - - if (whoami == 0x71) // WHO_AM_I should always be 0x68 - { - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); - lcd.clear(); - lcd.printString("MPU9250 is", 0, 0); - sprintf(buffer, "0x%x", whoami); - lcd.printString(buffer, 0, 1); - lcd.printString("shoud be 0x71", 0, 2); - wait(1); + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 - mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration - mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); - mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]); - wait(2); - mpu9250.initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - mpu9250.initAK8963(magCalibration); - pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer - pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); - if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); - if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); - if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); - if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); - wait(1); - } - else - { - pc.printf("Could not connect to MPU9250: \n\r"); - pc.printf("%#x \n", whoami); - - lcd.clear(); - lcd.printString("MPU9250", 0, 0); - lcd.printString("no connection", 0, 1); - sprintf(buffer, "WHO_AM_I 0x%x", whoami); - lcd.printString(buffer, 0, 2); - - while(1) ; // Loop forever if communication doesn't happen + if (whoami == 0x71) // WHO_AM_I should always be 0x68 + { + SEGGER_RTT_WriteString(0, "MPU9250 is online...\n\n"); + wait(1); + + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values + SEGGER_RTT_printf(0, "x-axis self test: acceleration trim within : %d % of factory value\n", toInt(SelfTest[0])); + SEGGER_RTT_printf(0, "y-axis self test: acceleration trim within : %d % of factory value\n", toInt(SelfTest[1])); + SEGGER_RTT_printf(0, "z-axis self test: acceleration trim within : %d % of factory value\n", toInt(SelfTest[2])); + SEGGER_RTT_printf(0, "x-axis self test: gyration trim within : %d % of factory value\n", toInt(SelfTest[3])); + SEGGER_RTT_printf(0, "y-axis self test: gyration trim within : %d % of factory value\n", toInt(SelfTest[4])); + SEGGER_RTT_printf(0, "z-axis self test: gyration trim within : %d % of factory value\n\n", toInt(SelfTest[5])); + + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + SEGGER_RTT_printf(0, "x gyro bias = %d\n", toInt(gyroBias[0])); + SEGGER_RTT_printf(0, "y gyro bias = %d\n", toInt(gyroBias[1])); + SEGGER_RTT_printf(0, "z gyro bias = %d\n", toInt(gyroBias[2])); + SEGGER_RTT_printf(0, "x accel bias = %d\n", toInt(accelBias[0])); + SEGGER_RTT_printf(0, "y accel bias = %d\n", toInt(accelBias[1])); + SEGGER_RTT_printf(0, "z accel bias = %d\n\n", toInt(accelBias[2])); + wait(2); + + mpu9250.initMPU9250(); + SEGGER_RTT_WriteString(0, "MPU9250 initialized for active data mode....\n"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initAK8963(magCalibration); + SEGGER_RTT_WriteString(0, "AK8963 initialized for active data mode....\n"); // Initialize device for active mode read of magnetometer + SEGGER_RTT_printf(0, "Accelerometer full-scale range = %d g\n", toInt(2.0f*(float)(1<<Ascale))); + SEGGER_RTT_printf(0, "Gyroscope full-scale range = %d deg/s\n", toInt(250.0f*(float)(1<<Gscale))); + if(Mscale == 0) SEGGER_RTT_WriteString(0, "Magnetometer resolution = 14 bits\n"); + if(Mscale == 1) SEGGER_RTT_WriteString(0, "Magnetometer resolution = 16 bits\n"); + if(Mmode == 2) SEGGER_RTT_WriteString(0, "Magnetometer ODR = 8 Hz\n"); + if(Mmode == 6) SEGGER_RTT_WriteString(0, "Magnetometer ODR = 100 Hz\n"); + SEGGER_RTT_WriteString(0, "\n"); + wait(1); + } + else { + SEGGER_RTT_printf(0, "Could not connect to MPU9250: 0x%x \n", whoami); + while(1); // Loop forever if communication doesn't happen } mpu9250.getAres(); // Get accelerometer sensitivity mpu9250.getGres(); // Get gyro sensitivity mpu9250.getMres(); // Get magnetometer sensitivity - pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); - pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); + SEGGER_RTT_printf(0, "Accelerometer sensitivity is %d LSB/g \n", toInt(1.0f/aRes)); + SEGGER_RTT_printf(0, "Gyroscope sensitivity is %d LSB/deg/s \n", toInt(1.0f/gRes)); + SEGGER_RTT_printf(0, "Magnetometer sensitivity is %d LSB/G \n", toInt(1.0f/mRes)); magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated magbias[1] = +120.; // User environmental x-axis correction in milliGauss magbias[2] = +125.; // User environmental x-axis correction in milliGauss - while(1) { - - // If intPin goes high, all data registers have new data - if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt - - mpu9250.readAccelData(accelCount); // Read the x/y/z adc values - // Now we'll calculate the accleration value into actual g's - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - - mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values - // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; - - mpu9250.readMagData(magCount); // Read the x/y/z adc values - // Calculate the magnetometer values in milliGauss - // Include factory calibration per data sheet and user environmental corrections - mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set - my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; - mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; - } + while(1) + { + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) // On interrupt, check if data ready interrupt + { + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + } - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - - sum += deltat; - sumCount++; - -// if(lastUpdate - firstUpdate > 10000000.0f) { -// beta = 0.04; // decrease filter gain after stabilized -// zeta = 0.015; // increasey bias drift gain after stabilized - // } - - // Pass gyro rate as rad/s -// mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - - // Serial print and/or display at 0.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 500) { // update LCD once per half-second independent of read rate - - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); - - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - - pc.printf("gx = %f", mx); - pc.printf(" gy = %f", my); - pc.printf(" gz = %f mG\n\r", mz); + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; + sumCount++; + + if(lastUpdate - firstUpdate > 10000000.0f) + { + beta = 0.04; // decrease filter gain after stabilized + zeta = 0.015; // increasey bias drift gain after stabilized + } + + // Pass gyro rate as rad/s +// mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - tempCount = mpu9250.readTempData(); // Read the adc values - temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade - pc.printf(" temperature = %f C\n\r", temperature); - - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); - -/* lcd.clear(); - lcd.printString("MPU9250", 0, 0); - lcd.printString("x y z", 0, 1); - sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); - lcd.printString(buffer, 0, 2); - sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); - lcd.printString(buffer, 0, 3); - sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); - lcd.printString(buffer, 0, 4); - */ - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - - pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); -// sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); -// lcd.printString(buffer, 0, 4); -// sprintf(buffer, "rate = %f", (float) sumCount/sum); -// lcd.printString(buffer, 0, 5); - - myled= !myled; - count = t.read_ms(); - - if(count > 1<<21) { - t.start(); // start the timer over again if ~30 minutes has passed - count = 0; - deltat= 0; - lastUpdate = t.read_us(); - } - sum = 0; - sumCount = 0; -} -} - - } \ No newline at end of file + // Serial print 1 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 1000) // update print once per second independent of read rate + { + SEGGER_RTT_printf(0, "\n\nax = %d", toInt(1000*ax)); + SEGGER_RTT_printf(0, " ay = %d", toInt(1000*ay)); + SEGGER_RTT_printf(0, " az = %d mg\n", toInt(1000*az)); + + SEGGER_RTT_printf(0, "gx = %d", toInt(gx)); + SEGGER_RTT_printf(0, " gy = %d", toInt(gy)); + SEGGER_RTT_printf(0, " gz = %d deg/s\n", toInt(gz)); + + SEGGER_RTT_printf(0, "mx = %d", toInt(mx)); + SEGGER_RTT_printf(0, " my = %d", toInt(my)); + SEGGER_RTT_printf(0, " mz = %d mG\n", toInt(mz)); + + tempCount = mpu9250.readTempData(); // Read the adc values + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Celsius + SEGGER_RTT_printf(0, "Temperature = %d C\n\n", toInt(temperature)); + + //SEGGER_RTT_printf(0, "q0 = %d\n", toInt(q[0]*100)); + //SEGGER_RTT_printf(0, "q1 = %d\n", toInt(q[1]*100)); + //SEGGER_RTT_printf(0, "q2 = %d\n", toInt(q[2]*100)); + //SEGGER_RTT_printf(0, "q3 = %d\n", toInt(q[3]*100)); + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 1.05f; // Declination at Delft is 1 degrees 3 minutes on 2018-02-16 + roll *= 180.0f / PI; + + SEGGER_RTT_printf(0, "Yaw: %d Pitch: %d Roll: %d\n\n", toInt(yaw), toInt(pitch), toInt(roll)); + //SEGGER_RTT_printf(0, "average rate = %d\n\n\n", toInt((float) sumCount/sum)); + + count = t.read_ms(); + SEGGER_RTT_printf(0, "Time active: %d minutes\n---------------------------------", getTime(count)); + + if(count > 1<<21) + { + t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = t.read_us(); + shift = (++cycle * 34.9525f); + } + sum = 0; + sumCount = 0; + } + } +} \ No newline at end of file
diff -r 4e59a37182df -r d53674889db3 mbed.bld --- a/mbed.bld Tue Aug 05 01:37:23 2014 +0000 +++ b/mbed.bld Mon Feb 19 12:43:16 2018 +0000 @@ -1,1 +1,1 @@ -http://mbed.org/users/mbed_official/code/mbed/builds/0b3ab51c8877 \ No newline at end of file +http://mbed.org/users/mbed_official/code/mbed/builds/7130f322cb7e \ No newline at end of file