MPU library edited by kevin
Revision 0:264ee5acfe00, committed 2018-03-02
- Comitter:
- MarijnJ
- Date:
- Fri Mar 02 10:29:51 2018 +0000
- Commit message:
- bla
Changed in this revision
MPU9250-common.h | Show annotated file Show diff for this revision Revisions of this file |
MPU9250.h | Show annotated file Show diff for this revision Revisions of this file |
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU9250-common.h Fri Mar 02 10:29:51 2018 +0000 @@ -0,0 +1,177 @@ +#ifndef MPU9250_COMMON_H +#define MPU9250_COMMON_H + +/* + See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, + Rev. 1.4, 9/9/2013 for registers not listed in above document. The MPU9250 + and MPU9150 are virtually identical but the latter has a different register map. +*/ + +// Magnetometer Registers +#define AK8963_ADDRESS 0x0C<<1 +#define WHO_AM_I_AK8963 0x00 // should return 0x48 +#define INFO 0x01 +#define AK8963_ST1 0x02 // data ready status bit 0 +#define AK8963_XOUT_L 0x03 // data +#define AK8963_XOUT_H 0x04 +#define AK8963_YOUT_L 0x05 +#define AK8963_YOUT_H 0x06 +#define AK8963_ZOUT_L 0x07 +#define AK8963_ZOUT_H 0x08 +#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 +#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 +#define AK8963_ASTC 0x0C // Self test control +#define AK8963_I2CDIS 0x0F // I2C disable +#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value +#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value +#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value + +#define SELF_TEST_X_GYRO 0x00 +#define SELF_TEST_Y_GYRO 0x01 +#define SELF_TEST_Z_GYRO 0x02 + +/* +#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B +*/ + +#define SELF_TEST_X_ACCEL 0x0D +#define SELF_TEST_Y_ACCEL 0x0E +#define SELF_TEST_Z_ACCEL 0x0F + +#define SELF_TEST_A 0x10 + +#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope +#define XG_OFFSET_L 0x14 +#define YG_OFFSET_H 0x15 +#define YG_OFFSET_L 0x16 +#define ZG_OFFSET_H 0x17 +#define ZG_OFFSET_L 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define ACCEL_CONFIG2 0x1D +#define LP_ACCEL_ODR 0x1E +#define WOM_THR 0x1F + +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms + +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define EXT_SENS_DATA_00 0x49 +#define EXT_SENS_DATA_01 0x4A +#define EXT_SENS_DATA_02 0x4B +#define EXT_SENS_DATA_03 0x4C +#define EXT_SENS_DATA_04 0x4D +#define EXT_SENS_DATA_05 0x4E +#define EXT_SENS_DATA_06 0x4F +#define EXT_SENS_DATA_07 0x50 +#define EXT_SENS_DATA_08 0x51 +#define EXT_SENS_DATA_09 0x52 +#define EXT_SENS_DATA_10 0x53 +#define EXT_SENS_DATA_11 0x54 +#define EXT_SENS_DATA_12 0x55 +#define EXT_SENS_DATA_13 0x56 +#define EXT_SENS_DATA_14 0x57 +#define EXT_SENS_DATA_15 0x58 +#define EXT_SENS_DATA_16 0x59 +#define EXT_SENS_DATA_17 0x5A +#define EXT_SENS_DATA_18 0x5B +#define EXT_SENS_DATA_19 0x5C +#define EXT_SENS_DATA_20 0x5D +#define EXT_SENS_DATA_21 0x5E +#define EXT_SENS_DATA_22 0x5F +#define EXT_SENS_DATA_23 0x60 +#define MOT_DETECT_STATUS 0x61 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 +#define I2C_MST_DELAY_CTRL 0x67 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 +#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 +#define XA_OFFSET_H 0x77 +#define XA_OFFSET_L 0x78 +#define YA_OFFSET_H 0x7A +#define YA_OFFSET_L 0x7B +#define ZA_OFFSET_H 0x7D +#define ZA_OFFSET_L 0x7E + +// Using the MSENSR-9250 breakout board, ADO is set to 0 +// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 +// mbed uses the eight-bit device address, so shift seven-bit addresses left by one! +#define ADO 1 +#if ADO +#define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 +#else +#define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 +#endif + +#define PI 3.14159265358979323846f +#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral +#define Ki 0.0f + +#define CORRECT_WHO_AM_I 0x71 + +#define DEG2RAD(x) (x * PI / 180.0f) +#define RAD2DEG(x) (x / PI * 180.0f) + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU9250.h Fri Mar 02 10:29:51 2018 +0000 @@ -0,0 +1,1012 @@ +#ifndef MPU9250_H +#define MPU9250_H + +#include "mbed.h" +#include "math.h" +#include "MPU9250-common.h" + + +// Set initial input parameters +enum Ascale { + AFS_2G = 0, + AFS_4G = 1, + AFS_8G = 2, + AFS_16G = 3 +}; + +enum Gscale { + GFS_250DPS = 0, + GFS_500DPS = 1, + GFS_1000DPS = 2, + GFS_2000DPS = 3 +}; + +enum Mscale { + MFS_14BITS = 0, // 0.6 mG per LSB + MFS_16BITS // 0.15 mG per LSB +}; + + + +class MPU9250 { +public: + +// The sufficientMeasurements boolean is used to indicate that the sensor has +// gathered enough measurements to do future sensor measurements reliably. +// After roughly 10 seconds of full speed measuring, it should be accurate +// enough (with the filter updates), so this can then be set to true. +bool sufficientMeasurements; + +I2C *i2c; +float beta, zeta; +float deltat; // integration interval for both filter schemes +float q[4]; // vector to hold quaternion +float eInt[3]; // vector to hold integral error for Mahony method + +const uint8_t Ascale; // AFS_2G, AFS_4G, AFS_8G, AFS_16G +const uint8_t Gscale; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS +const uint8_t Mscale; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution +const uint8_t Mmode; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR + +float aRes, gRes, mRes; // Resolution scales for accelerometer, gyro, magnetometer + +float accelCalibration[3]; +float accelBias[3]; + +float gyroCalibration[3]; +float gyroBias[3]; + +float magCalibration[3]; +float magBias[3]; + + +MPU9250(I2C *i2cConnection) : i2c(i2cConnection), Ascale(AFS_8G), + Gscale(GFS_1000DPS), Mscale(MFS_16BITS), Mmode(0x06) { + // Gyroscope measurement error in rads/s (start at 60 deg/s), + // then reduce after ~10 s to 3 + float GyroMeasError = PI * (60.0f / 180.0f); + beta = sqrt(3.0f / 4.0f) * GyroMeasError; + + // Gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) + float GyroMeasDrift = PI * (1.0f / 180.0f); + + // Other free parameter zeta in the Madgwick scheme usually set to a small or zero value + zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; + + // Integration interval for both filter schemes + deltat = 0.0f; + + q[0] = 1.0f; + q[1] = q[2] = q[3] = 0.0f; + + eInt[0] = eInt[1] = eInt[2] = 0.0f; + + // Get resolution scales + aRes = getAres(); + gRes = getGres(); + mRes = getMres(); + + // Set initial calibration stuff all to 0.0f + accelCalibration[0] = accelCalibration[1] = accelCalibration[2] = 0.0f; + accelBias[0] = accelBias[1] = accelBias[2] = 0.0f; + gyroCalibration[0] = gyroCalibration[1] = gyroCalibration[2] = 0.0f; + gyroBias[0] = gyroBias[1] = gyroBias[2] = 0.0f; + magCalibration[0] = magCalibration[1] = magCalibration[2] = 0.0f; + + // User environmental xyz-axes correction in milliGauss, should be automatically calculated + magBias[0] = 470.0f; + magBias[1] = 120.0f; + magBias[2] = 125.0f; + + // We haven't done enough measurements to get accurate values yet! + sufficientMeasurements = false; +} + +void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c->write(address, data_write, 2, 0); +} + +char readByte(uint8_t address, uint8_t subAddress) { + // `data` will store the register data + char data[1]; + char data_write[1]; + data_write[0] = subAddress; + i2c->write(address, data_write, 1, 1); // no stop + i2c->read(address, data, 1, 0); + return data[0]; +} + +void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest) { + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + i2c->write(address, data_write, 1, 1); // no stop + i2c->read(address, data, count, 0); + + for (int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } +} + +float getMres() { + switch (Mscale) { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + return 10.0 * 4219.0 / 8190.0; // Proper scale to return milliGauss + case MFS_16BITS: + return 10.0 * 4219.0 / 32760.0; // Proper scale to return milliGauss + } + + return -1.0f; +} + + +float getGres() { + switch (Gscale) { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + return 250.0/32768.0; + case GFS_500DPS: + return 500.0/32768.0; + case GFS_1000DPS: + return 1000.0/32768.0; + case GFS_2000DPS: + return 2000.0/32768.0; + } + + return -1.0f; +} + + +float getAres() { + switch (Ascale) { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + return 2.0 / 32768.0; + case AFS_4G: + return 4.0 / 32768.0; + case AFS_8G: + return 8.0 / 32768.0; + case AFS_16G: + return 16.0 / 32768.0; + } + + return -1.0f; +} + +uint8_t hasNewData() { + return readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01; +} + +uint8_t getWhoAmI() { + return readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); +} + + +void readAccelData(float *ax, float *ay, float *az) { + // x/y/z accel register data stored here + uint8_t rawData[6]; + + // Read the six raw data registers into data array + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + int16_t axTemp = (int16_t) (((int16_t) rawData[0] << 8) | rawData[1]); + int16_t ayTemp = (int16_t) (((int16_t) rawData[2] << 8) | rawData[3]); + int16_t azTemp = (int16_t) (((int16_t) rawData[4] << 8) | rawData[5]); + + // "Return" ax, ay and az in actual g's, depending on resolution + *ax = (float) axTemp * aRes - accelBias[0]; + *ay = (float) ayTemp * aRes - accelBias[1]; + *az = (float) azTemp * aRes - accelBias[2]; +} + +void readGyroData(float *gx, float *gy, float *gz) { + // x/y/z gyro register data stored here + uint8_t rawData[6]; + + // Read the six raw data registers sequentially into data array + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + int16_t gxTemp = (int16_t) (((int16_t) rawData[0] << 8) | rawData[1]); + int16_t gyTemp = (int16_t) (((int16_t) rawData[2] << 8) | rawData[3]); + int16_t gzTemp = (int16_t) (((int16_t) rawData[4] << 8) | rawData[5]); + + // "Return" gx, gy and gz in actual deg/s, depending on scale + *gx = (float) gxTemp * gRes - gyroBias[0]; + *gy = (float) gyTemp * gRes - gyroBias[1]; + *gz = (float) gzTemp * gRes - gyroBias[2]; +} + +void readMagData(float *mx, float *my, float *mz) { + // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition + uint8_t rawData[7]; + + // Wait for magnetometer data ready bit to be set + if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { + // Read the six raw data and ST2 registers sequentially into data array + readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); + uint8_t c = rawData[6]; // End data read by reading ST2 register + + // Check if magnetic sensor overflow set, if not then report data + if (!(c & 0x08)) { + // Turn the MSB and LSB into a signed 16-bit value + // Data stored as little Endian + int16_t mxTemp = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); + int16_t myTemp = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); + int16_t mzTemp = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); + + // Calculate the magnetometer values in milliGauss. Include factory + // calibration per data sheet and user environmental corrections + // "Return" gx, gy and gz in actual deg/s, depending on scale + *mx = (float) mxTemp * mRes * magCalibration[0] - magBias[0]; + *my = (float) myTemp * mRes * magCalibration[1] - magBias[1]; + *mz = (float) mzTemp * mRes * magCalibration[2] - magBias[2]; + } + } +} + +int16_t readTempData() { + // x/y/z gyro register data stored here + uint8_t rawData[2]; + + // Read the two raw data registers sequentially into data array + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); + + // Turn the MSB and LSB into a 16-bit value + return (int16_t) (((int16_t) rawData[0]) << 8 | rawData[1]); +} + +float getTemperature() { + int16_t tempData = readTempData(); + return ((float) tempData) / 333.87f + 21.0f; // In Celsius +} + + +void getYawPitchRoll(float *yaw, float *pitch, float *roll, float declination) { + // Define output variables from updated quaternion---these are + // Tait-Bryan angles, commonly used in aircraft orientation. In + // this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North + // (or true North if corrected for local declination, looking down + // on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, + // toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, + // y-axis up is positive roll. These arise from the definition of + // the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; + // that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is + // yaw, pitch, and then roll. + // For more see + // http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles + // which has additional links. + *yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), + q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + *pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + *roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), + q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + + // Quaternion q is in deg, so convert it to radian + *pitch = RAD2DEG(*pitch); + *yaw = RAD2DEG(*yaw)- declination; + *roll = RAD2DEG(*roll); +} + + +void resetMPU9250() { + // Write a one to bit 7 reset bit; toggle reset device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); + wait(0.1); +} + +void initAK8963() { + // First extract the factory calibration for each magnetometer axis + // x/y/z gyro calibration data stored here + uint8_t rawData[3]; + + // Power down magnetometer + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); + wait(0.01); + + // Enter Fuse ROM access mode + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); + wait(0.01); + + // Read the x-, y-, and z-axis calibration values + readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); + + // Return x-axis sensitivity adjustment values, etc. + magCalibration[0] = (float)(rawData[0] - 128) / 256.0f + 1.0f; + magCalibration[1] = (float)(rawData[1] - 128) / 256.0f + 1.0f; + magCalibration[2] = (float)(rawData[2] - 128) / 256.0f + 1.0f; + + // Power down magnetometer + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); + wait(0.01); + + // Configure the magnetometer for continuous read and highest resolution + // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, + // and enable continuous mode data acquisition Mmode (bits [3:0]), + // 0010 for 8 Hz and 0110 for 100 Hz sample rates + // Set magnetometer data resolution and sample ODR + writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); + wait(0.01); +} + + +void initMPU9250() { + // Initialize MPU9250 device + // Wake up device + // Clear sleep mode bit (6), enable all sensors + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); + + // Delay 100 ms for PLL to get established on x-axis gyro + // Should check for PLL ready interrupt + wait(0.1); + + // Get stable time source + // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte(MPU9250_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + // Use a 200 Hz rate; the same rate set in CONFIG above + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are + // left-shifted into positions 4:3 + uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); + + // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); + + // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); + + // Set full scale range for the gyro + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); + + // Set accelerometer configuration + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); + + // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); + + // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); + + // Set full scale range for the accelerometer + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); + + // Set accelerometer sample rate configuration + // It is possible to get a 4 kHz sample rate from the accelerometer by choosing + // 1 for accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); + + // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); + + // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); + + // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, + // but all these rates are further reduced by a factor of 5 to 200 Hz + // because of the SMPLRT_DIV setting + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, + // enable I2C_BYPASS_EN so additional chips can join the I2C bus and all + // can be controlled by the Arduino as master + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + + // Enable data ready (bit 0) interrupt + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); +} + +// Function which accumulates gyro and accelerometer data after device +// initialization. It calculates the average of the at-rest readings and then +// loads the resulting offsets into accelerometer and gyro bias registers. +void calibrateMPU9250() { + // Data array to hold accelerometer and gyro x, y, z, data + uint8_t data[12]; + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + + // Reset device, reset all registers, clear gyro and accelerometer bias registers + // Write a one to bit 7 reset bit; toggle reset device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); + wait(0.1); + + // Get stable time source + // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); + wait(0.2); + + // Configure device for bias calculation + // Disable all interrupts + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); + + // Disable FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); + + // Turn on internal clock source + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); + + // Disable I2C master + writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); + + // Disable FIFO and I2C master modes + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); + + // Reset FIFO and DMP + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); + wait(0.015); + + // Configure MPU9250 gyro and accelerometer for bias calculation + // Set low-pass filter to 188 Hz + writeByte(MPU9250_ADDRESS, CONFIG, 0x01); + + // Set sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); + + // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); + + // Set accelerometer full-scale to 2 g, maximum sensitivity + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); + + // = 131 LSB/degrees/sec + uint16_t gyrosensitivity = 131; + + // = 16384 LSB/g + uint16_t accelsensitivity = 16384; + + // Configure FIFO to capture accelerometer and gyro data for bias calculation + // Enable FIFO + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); + + // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); + + // accumulate 40 samples in 80 milliseconds = 480 bytes + wait(0.04); + + // At end of sample accumulation, turn off FIFO sensor read + // Disable gyro and accelerometer sensors for FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); + + // read FIFO sample count + readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); + fifo_count = ((uint16_t) data[0] << 8) | data[1]; + + // How many sets of full gyro and accelerometer data for averaging + packet_count = fifo_count/12; + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + + // read data for averaging + readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); + + // Form signed 16-bit integer for each sample in FIFO + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]); + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]); + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]); + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]); + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]); + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]); + + // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[0] += (int32_t) accel_temp[0]; + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0]; + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + } + + // Normalize sums to get average count biases + accel_bias[0] /= (int32_t) packet_count; + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + // Remove gravity from the z-axis accelerometer bias calculation + if (accel_bias[2] > 0L) { + accel_bias[2] -= (int32_t) accelsensitivity; + } else { + accel_bias[2] += (int32_t) accelsensitivity; + } + + // Construct the gyro biases for push to the hardware gyro bias registers, + // which are reset to zero upon device startup. Divide by 4 to get + // 32.9 LSB per deg/s to conform to expected bias input format + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; + + // Biases are additive, so change sign on calculated average gyro biases + data[1] = (-gyro_bias[0]/4) & 0xFF; + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + + // Push gyro biases to hardware registers + /* + writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); + */ + // Construct gyro bias in deg/s for later manual subtraction + gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; + gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + + // Construct the accelerometer biases for push to the hardware + // accelerometer bias registers. These registers contain factory trim values + // which must be added to the calculated accelerometer biases; on boot up + // these registers will hold non-zero values. In addition, bit 0 of the + // lower byte must be preserved since it is used for temperature compensation + // calculations. Accelerometer bias registers expect bias input as + // 2048 LSB per g, so that the accelerometer biases calculated above must + // be divided by 8. + // A place to hold the factory accelerometer trim biases + int32_t accel_bias_reg[3] = {0, 0, 0}; + + // Read factory accelerometer trim values + readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + // Define mask for temperature compensation bit 0 of lower byte of + // accelerometer bias registers + uint32_t mask = 1uL; + + // Define array to hold mask bit for each accelerometer bias axis + uint8_t mask_bit[3] = {0, 0, 0}; + + for (ii = 0; ii < 3; ii++) { + // If temperature compensation bit is set, record that fact in mask_bit + if (accel_bias_reg[ii] & mask) { + mask_bit[ii] = 0x01; + } + } + + // Construct total accelerometer bias, including calculated average + // accelerometer bias from above. Subtract calculated averaged + // accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[0] -= (accel_bias[0]/8); + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + + // Preserve temperature compensation bit when writing back to accelerometer bias registers + data[1] = data[1] | mask_bit[0]; + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + + // Preserve temperature compensation bit when writing back to accelerometer bias registers + data[3] = data[3] | mask_bit[1]; + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + + // Preserve temperature compensation bit when writing back to accelerometer bias registers + data[5] = data[5] | mask_bit[2]; + + // Apparently this is not working for the acceleration biases in the MPU-9250 + // Are we handling the temperature correction bit properly? + // Push accelerometer biases to hardware registers + /* + writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); + */ + + // Output scaled accelerometer biases for manual subtraction in the main program + accelBias[0] = (float)accel_bias[0] / (float)accelsensitivity; + accelBias[1] = (float)accel_bias[1] / (float)accelsensitivity; + accelBias[2] = (float)accel_bias[2] / (float)accelsensitivity; +} + + +// Accelerometer and gyroscope self test; check calibration wrt factory settings +void MPU9250SelfTest(float *destination) { + // Should return percent deviation from factory trim values, + // +/- 14 or less deviation is a pass { + uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; + uint8_t selfTest[6]; + int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; + float factoryTrim[6]; + uint8_t FS = 0; + + // Set gyro sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); + + // Set gyro sample rate to 1 kHz and DLPF to 92 Hz + writeByte(MPU9250_ADDRESS, CONFIG, 0x02); + + // Set full scale range for the gyro to 250 dps + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); + + // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); + + // Set full scale range for the accelerometer to 2 g + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); + + // Get average current values of gyro and acclerometer + for (int ii = 0; ii < 200; ii++) { + // Read the six raw data registers into data array + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); + aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); + + // Read the six raw data registers sequentially into data array + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); + gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); + } + + // Get average of 200 values and store as average current readings + for (int ii = 0; ii < 3; ii++) { + aAvg[ii] /= 200; + gAvg[ii] /= 200; + } + + // Configure the accelerometer for self-test + // Enable self test on all three axes and set accelerometer range to +/- 2 g + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); + + // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); + + // Delay a while to let the device stabilize + wait(0.1); + + // Get average self-test values of gyro and acclerometer + for (int ii = 0; ii < 200; ii++) { + // Read the six raw data registers into data array + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); + aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); + + // Read the six raw data registers sequentially into data array + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); + + // Turn the MSB and LSB into a signed 16-bit value + gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); + gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); + } + + // Get average of 200 values and store as average self-test readings + for (int ii = 0; ii < 3; ii++) { + aSTAvg[ii] /= 200; + gSTAvg[ii] /= 200; + } + + // Configure the gyro and accelerometer for normal operation + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); + + // Delay a while to let the device stabilize + wait(0.1); + + // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg + selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); + selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); + selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); + selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); + selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); + selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); + + // Retrieve factory self-test value from self-test code reads + // FT[Xa] factory trim calculation, and FT[Ya], FT[Xg], etc + factoryTrim[0] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[0] - 1.0))); + factoryTrim[1] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[1] - 1.0))); + factoryTrim[2] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[2] - 1.0))); + factoryTrim[3] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[3] - 1.0))); + factoryTrim[4] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[4] - 1.0))); + factoryTrim[5] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[5] - 1.0))); + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim + // of the Self-Test Response. To get percent, must multiply by 100 + for (int i = 0; i < 3; i++) { + // Report percent differences + destination[i] = 100.0 * ((float) (aSTAvg[i] - aAvg[i])) / factoryTrim[i]; + + // Report percent differences + destination[i + 3] = 100.0 * ((float) (gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3]; + } +} + + + +// Implementation of Sebastian Madgwick's "...efficient orientation filter +// for... inertial/magnetic sensor arrays" +// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) +// which fuses acceleration, rotation rate, and magnetic moments to produce a +// quaternion-based estimate of absolute +// device orientation -- which can be converted to yaw, pitch, and roll. +// Useful for stabilizing quadcopters, etc. The performance of the orientation +// filter is at least as good as conventional Kalman-based filtering algorithms +// but is much less computationally intensive---it can be performed on +// a 3.3 V Pro Mini operating at 8 MHz! +void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, + float gz, float mx, float my, float mz) { + // Short name local variable for readability + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; + float norm; + float hx, hy, _2bx, _2bz; + float s1, s2, s3, s4; + float qDot1, qDot2, qDot3, qDot4; + + // Auxiliary variables to avoid repeated arithmetic + float _2q1mx; + float _2q1my; + float _2q1mz; + float _2q2mx; + float _4bx; + float _4bz; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; + float _2q1q3 = 2.0f * q1 * q3; + float _2q3q4 = 2.0f * q3 * q4; + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + + // Handle NaN + if (norm == 0.0f) { + return; + } + + norm = 1.0f / norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Normalise magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + + // Handle NaN + if (norm == 0.0f) { + return; + } + + norm = 1.0f/norm; + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + _2q1mx = 2.0f * q1 * mx; + _2q1my = 2.0f * q1 * my; + _2q1mz = 2.0f * q1 * mz; + _2q2mx = 2.0f * q2 * mx; + hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; + hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + + my * q3q3 + _2q3 * mz * q4 - my * q4q4; + _2bx = sqrt(hx * hx + hy * hy); + _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; + _4bx = 2.0f * _2bx; + _4bz = 2.0f * _2bz; + + // Gradient descent algorithm corrective step + s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) + - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) + - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + + _2bz * (0.5f - q2q2 - q3q3) - mz); + s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) + - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + + _2bz * (0.5f - q2q2 - q3q3) - mz); + s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + + _2bz * (0.5f - q2q2 - q3q3) - mz); + + // Normalise step magnitude + norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); + norm = 1.0f / norm; + s1 *= norm; + s2 *= norm; + s3 *= norm; + s4 *= norm; + + // Compute rate of change of quaternion + qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; + qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; + qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; + qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; + + // Integrate to yield quaternion + q1 += qDot1 * deltat; + q2 += qDot2 * deltat; + q3 += qDot3 * deltat; + q4 += qDot4 * deltat; + + // Normalise quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); + norm = 1.0f / norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; +} + + +// Similar to Madgwick scheme but uses proportional and integral filtering on +// the error between estimated reference vectors and measured ones. +void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, + float gz, float mx, float my, float mz) { + // short name local variable for readability + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; + float norm; + float hx, hy, bx, bz; + float vx, vy, vz, wx, wy, wz; + float ex, ey, ez; + float pa, pb, pc; + + // Auxiliary variables to avoid repeated arithmetic + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + + // Handle NaN + if (norm == 0.0f) { + return; + } + + // Use reciprocal for division + norm = 1.0f / norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Normalise magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + + // Handle NaN + if (norm == 0.0f) { + return; + } + + // Use reciprocal for division + norm = 1.0f / norm; + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + + 2.0f * mz * (q2q4 + q1q3); + hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + + 2.0f * mz * (q3q4 - q1q2); + bx = sqrt((hx * hx) + (hy * hy)); + bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + + 2.0f * mz * (0.5f - q2q2 - q3q3); + + // Estimated direction of gravity and magnetic field + vx = 2.0f * (q2q4 - q1q3); + vy = 2.0f * (q1q2 + q3q4); + vz = q1q1 - q2q2 - q3q3 + q4q4; + wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); + wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); + wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); + + // Error is cross product between estimated direction and measured direction of gravity + ex = (ay * vz - az * vy) + (my * wz - mz * wy); + ey = (az * vx - ax * vz) + (mz * wx - mx * wz); + ez = (ax * vy - ay * vx) + (mx * wy - my * wx); + + if (Ki > 0.0f) { + // Accumulate integral error + eInt[0] += ex; + eInt[1] += ey; + eInt[2] += ez; + } else { + // Prevent integral wind up + eInt[0] = 0.0f; + eInt[1] = 0.0f; + eInt[2] = 0.0f; + } + + // Apply feedback terms + gx = gx + Kp * ex + Ki * eInt[0]; + gy = gy + Kp * ey + Ki * eInt[1]; + gz = gz + Kp * ez + Ki * eInt[2]; + + // Integrate rate of change of quaternion + pa = q2; + pb = q3; + pc = q4; + q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); + q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); + q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); + q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); + + // Normalise quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); + norm = 1.0f / norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; +} + +}; + +#endif