MPU library edited by kevin
MPU9250.h
- Committer:
- MarijnJ
- Date:
- 2018-03-02
- Revision:
- 0:264ee5acfe00
File content as of revision 0:264ee5acfe00:
#ifndef MPU9250_H #define MPU9250_H #include "mbed.h" #include "math.h" #include "MPU9250-common.h" // Set initial input parameters enum Ascale { AFS_2G = 0, AFS_4G = 1, AFS_8G = 2, AFS_16G = 3 }; enum Gscale { GFS_250DPS = 0, GFS_500DPS = 1, GFS_1000DPS = 2, GFS_2000DPS = 3 }; enum Mscale { MFS_14BITS = 0, // 0.6 mG per LSB MFS_16BITS // 0.15 mG per LSB }; class MPU9250 { public: // The sufficientMeasurements boolean is used to indicate that the sensor has // gathered enough measurements to do future sensor measurements reliably. // After roughly 10 seconds of full speed measuring, it should be accurate // enough (with the filter updates), so this can then be set to true. bool sufficientMeasurements; I2C *i2c; float beta, zeta; float deltat; // integration interval for both filter schemes float q[4]; // vector to hold quaternion float eInt[3]; // vector to hold integral error for Mahony method const uint8_t Ascale; // AFS_2G, AFS_4G, AFS_8G, AFS_16G const uint8_t Gscale; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS const uint8_t Mscale; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution const uint8_t Mmode; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR float aRes, gRes, mRes; // Resolution scales for accelerometer, gyro, magnetometer float accelCalibration[3]; float accelBias[3]; float gyroCalibration[3]; float gyroBias[3]; float magCalibration[3]; float magBias[3]; MPU9250(I2C *i2cConnection) : i2c(i2cConnection), Ascale(AFS_8G), Gscale(GFS_1000DPS), Mscale(MFS_16BITS), Mmode(0x06) { // Gyroscope measurement error in rads/s (start at 60 deg/s), // then reduce after ~10 s to 3 float GyroMeasError = PI * (60.0f / 180.0f); beta = sqrt(3.0f / 4.0f) * GyroMeasError; // Gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) float GyroMeasDrift = PI * (1.0f / 180.0f); // Other free parameter zeta in the Madgwick scheme usually set to a small or zero value zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // Integration interval for both filter schemes deltat = 0.0f; q[0] = 1.0f; q[1] = q[2] = q[3] = 0.0f; eInt[0] = eInt[1] = eInt[2] = 0.0f; // Get resolution scales aRes = getAres(); gRes = getGres(); mRes = getMres(); // Set initial calibration stuff all to 0.0f accelCalibration[0] = accelCalibration[1] = accelCalibration[2] = 0.0f; accelBias[0] = accelBias[1] = accelBias[2] = 0.0f; gyroCalibration[0] = gyroCalibration[1] = gyroCalibration[2] = 0.0f; gyroBias[0] = gyroBias[1] = gyroBias[2] = 0.0f; magCalibration[0] = magCalibration[1] = magCalibration[2] = 0.0f; // User environmental xyz-axes correction in milliGauss, should be automatically calculated magBias[0] = 470.0f; magBias[1] = 120.0f; magBias[2] = 125.0f; // We haven't done enough measurements to get accurate values yet! sufficientMeasurements = false; } void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { char data_write[2]; data_write[0] = subAddress; data_write[1] = data; i2c->write(address, data_write, 2, 0); } char readByte(uint8_t address, uint8_t subAddress) { // `data` will store the register data char data[1]; char data_write[1]; data_write[0] = subAddress; i2c->write(address, data_write, 1, 1); // no stop i2c->read(address, data, 1, 0); return data[0]; } void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest) { char data[14]; char data_write[1]; data_write[0] = subAddress; i2c->write(address, data_write, 1, 1); // no stop i2c->read(address, data, count, 0); for (int ii = 0; ii < count; ii++) { dest[ii] = data[ii]; } } float getMres() { switch (Mscale) { // Possible magnetometer scales (and their register bit settings) are: // 14 bit resolution (0) and 16 bit resolution (1) case MFS_14BITS: return 10.0 * 4219.0 / 8190.0; // Proper scale to return milliGauss case MFS_16BITS: return 10.0 * 4219.0 / 32760.0; // Proper scale to return milliGauss } return -1.0f; } float getGres() { switch (Gscale) { // Possible gyro scales (and their register bit settings) are: // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case GFS_250DPS: return 250.0/32768.0; case GFS_500DPS: return 500.0/32768.0; case GFS_1000DPS: return 1000.0/32768.0; case GFS_2000DPS: return 2000.0/32768.0; } return -1.0f; } float getAres() { switch (Ascale) { // Possible accelerometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case AFS_2G: return 2.0 / 32768.0; case AFS_4G: return 4.0 / 32768.0; case AFS_8G: return 8.0 / 32768.0; case AFS_16G: return 16.0 / 32768.0; } return -1.0f; } uint8_t hasNewData() { return readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01; } uint8_t getWhoAmI() { return readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); } void readAccelData(float *ax, float *ay, float *az) { // x/y/z accel register data stored here uint8_t rawData[6]; // Read the six raw data registers into data array readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value int16_t axTemp = (int16_t) (((int16_t) rawData[0] << 8) | rawData[1]); int16_t ayTemp = (int16_t) (((int16_t) rawData[2] << 8) | rawData[3]); int16_t azTemp = (int16_t) (((int16_t) rawData[4] << 8) | rawData[5]); // "Return" ax, ay and az in actual g's, depending on resolution *ax = (float) axTemp * aRes - accelBias[0]; *ay = (float) ayTemp * aRes - accelBias[1]; *az = (float) azTemp * aRes - accelBias[2]; } void readGyroData(float *gx, float *gy, float *gz) { // x/y/z gyro register data stored here uint8_t rawData[6]; // Read the six raw data registers sequentially into data array readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value int16_t gxTemp = (int16_t) (((int16_t) rawData[0] << 8) | rawData[1]); int16_t gyTemp = (int16_t) (((int16_t) rawData[2] << 8) | rawData[3]); int16_t gzTemp = (int16_t) (((int16_t) rawData[4] << 8) | rawData[5]); // "Return" gx, gy and gz in actual deg/s, depending on scale *gx = (float) gxTemp * gRes - gyroBias[0]; *gy = (float) gyTemp * gRes - gyroBias[1]; *gz = (float) gzTemp * gRes - gyroBias[2]; } void readMagData(float *mx, float *my, float *mz) { // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition uint8_t rawData[7]; // Wait for magnetometer data ready bit to be set if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // Read the six raw data and ST2 registers sequentially into data array readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); uint8_t c = rawData[6]; // End data read by reading ST2 register // Check if magnetic sensor overflow set, if not then report data if (!(c & 0x08)) { // Turn the MSB and LSB into a signed 16-bit value // Data stored as little Endian int16_t mxTemp = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); int16_t myTemp = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); int16_t mzTemp = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); // Calculate the magnetometer values in milliGauss. Include factory // calibration per data sheet and user environmental corrections // "Return" gx, gy and gz in actual deg/s, depending on scale *mx = (float) mxTemp * mRes * magCalibration[0] - magBias[0]; *my = (float) myTemp * mRes * magCalibration[1] - magBias[1]; *mz = (float) mzTemp * mRes * magCalibration[2] - magBias[2]; } } } int16_t readTempData() { // x/y/z gyro register data stored here uint8_t rawData[2]; // Read the two raw data registers sequentially into data array readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Turn the MSB and LSB into a 16-bit value return (int16_t) (((int16_t) rawData[0]) << 8 | rawData[1]); } float getTemperature() { int16_t tempData = readTempData(); return ((float) tempData) / 333.87f + 21.0f; // In Celsius } void getYawPitchRoll(float *yaw, float *pitch, float *roll, float declination) { // Define output variables from updated quaternion---these are // Tait-Bryan angles, commonly used in aircraft orientation. In // this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North // (or true North if corrected for local declination, looking down // on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, // toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, // y-axis up is positive roll. These arise from the definition of // the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; // that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is // yaw, pitch, and then roll. // For more see // http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles // which has additional links. *yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); *pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); *roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); // Quaternion q is in deg, so convert it to radian *pitch = RAD2DEG(*pitch); *yaw = RAD2DEG(*yaw)- declination; *roll = RAD2DEG(*roll); } void resetMPU9250() { // Write a one to bit 7 reset bit; toggle reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); wait(0.1); } void initAK8963() { // First extract the factory calibration for each magnetometer axis // x/y/z gyro calibration data stored here uint8_t rawData[3]; // Power down magnetometer writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); wait(0.01); // Enter Fuse ROM access mode writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); wait(0.01); // Read the x-, y-, and z-axis calibration values readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Return x-axis sensitivity adjustment values, etc. magCalibration[0] = (float)(rawData[0] - 128) / 256.0f + 1.0f; magCalibration[1] = (float)(rawData[1] - 128) / 256.0f + 1.0f; magCalibration[2] = (float)(rawData[2] - 128) / 256.0f + 1.0f; // Power down magnetometer writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); wait(0.01); // Configure the magnetometer for continuous read and highest resolution // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, // and enable continuous mode data acquisition Mmode (bits [3:0]), // 0010 for 8 Hz and 0110 for 100 Hz sample rates // Set magnetometer data resolution and sample ODR writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); wait(0.01); } void initMPU9250() { // Initialize MPU9250 device // Wake up device // Clear sleep mode bit (6), enable all sensors writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Delay 100 ms for PLL to get established on x-axis gyro // Should check for PLL ready interrupt wait(0.1); // Get stable time source // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Configure Gyro and Accelerometer // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate writeByte(MPU9250_ADDRESS, CONFIG, 0x03); // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) // Use a 200 Hz rate; the same rate set in CONFIG above writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Set gyroscope full scale range // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are // left-shifted into positions 4:3 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear AFS bits [4:3] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Set full scale range for the gyro writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set accelerometer configuration c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear AFS bits [4:3] writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Set full scale range for the accelerometer writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing // 1 for accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, // but all these rates are further reduced by a factor of 5 to 200 Hz // because of the SMPLRT_DIV setting // Configure Interrupts and Bypass Enable // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, // enable I2C_BYPASS_EN so additional chips can join the I2C bus and all // can be controlled by the Arduino as master writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); // Enable data ready (bit 0) interrupt writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); } // Function which accumulates gyro and accelerometer data after device // initialization. It calculates the average of the at-rest readings and then // loads the resulting offsets into accelerometer and gyro bias registers. void calibrateMPU9250() { // Data array to hold accelerometer and gyro x, y, z, data uint8_t data[12]; uint16_t ii, packet_count, fifo_count; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; // Reset device, reset all registers, clear gyro and accelerometer bias registers // Write a one to bit 7 reset bit; toggle reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); wait(0.1); // Get stable time source // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); wait(0.2); // Configure device for bias calculation // Disable all interrupts writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable FIFO writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Turn on internal clock source writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Disable I2C master writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable FIFO and I2C master modes writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Reset FIFO and DMP writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); wait(0.015); // Configure MPU9250 gyro and accelerometer for bias calculation // Set low-pass filter to 188 Hz writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set sample rate to 1 kHz writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // = 131 LSB/degrees/sec uint16_t gyrosensitivity = 131; // = 16384 LSB/g uint16_t accelsensitivity = 16384; // Configure FIFO to capture accelerometer and gyro data for bias calculation // Enable FIFO writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // accumulate 40 samples in 80 milliseconds = 480 bytes wait(0.04); // At end of sample accumulation, turn off FIFO sensor read // Disable gyro and accelerometer sensors for FIFO writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // read FIFO sample count readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); fifo_count = ((uint16_t) data[0] << 8) | data[1]; // How many sets of full gyro and accelerometer data for averaging packet_count = fifo_count/12; for (ii = 0; ii < packet_count; ii++) { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; // read data for averaging readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // Form signed 16-bit integer for each sample in FIFO accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]); accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]); accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]); gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]); gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]); gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]); // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[0] += (int32_t) accel_temp[0]; accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; gyro_bias[0] += (int32_t) gyro_temp[0]; gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; } // Normalize sums to get average count biases accel_bias[0] /= (int32_t) packet_count; accel_bias[1] /= (int32_t) packet_count; accel_bias[2] /= (int32_t) packet_count; gyro_bias[0] /= (int32_t) packet_count; gyro_bias[1] /= (int32_t) packet_count; gyro_bias[2] /= (int32_t) packet_count; // Remove gravity from the z-axis accelerometer bias calculation if (accel_bias[2] > 0L) { accel_bias[2] -= (int32_t) accelsensitivity; } else { accel_bias[2] += (int32_t) accelsensitivity; } // Construct the gyro biases for push to the hardware gyro bias registers, // which are reset to zero upon device startup. Divide by 4 to get // 32.9 LSB per deg/s to conform to expected bias input format data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases data[1] = (-gyro_bias[0]/4) & 0xFF; data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; data[3] = (-gyro_bias[1]/4) & 0xFF; data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; data[5] = (-gyro_bias[2]/4) & 0xFF; // Push gyro biases to hardware registers /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); */ // Construct gyro bias in deg/s for later manual subtraction gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity; gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity; // Construct the accelerometer biases for push to the hardware // accelerometer bias registers. These registers contain factory trim values // which must be added to the calculated accelerometer biases; on boot up // these registers will hold non-zero values. In addition, bit 0 of the // lower byte must be preserved since it is used for temperature compensation // calculations. Accelerometer bias registers expect bias input as // 2048 LSB per g, so that the accelerometer biases calculated above must // be divided by 8. // A place to hold the factory accelerometer trim biases int32_t accel_bias_reg[3] = {0, 0, 0}; // Read factory accelerometer trim values readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; // Define mask for temperature compensation bit 0 of lower byte of // accelerometer bias registers uint32_t mask = 1uL; // Define array to hold mask bit for each accelerometer bias axis uint8_t mask_bit[3] = {0, 0, 0}; for (ii = 0; ii < 3; ii++) { // If temperature compensation bit is set, record that fact in mask_bit if (accel_bias_reg[ii] & mask) { mask_bit[ii] = 0x01; } } // Construct total accelerometer bias, including calculated average // accelerometer bias from above. Subtract calculated averaged // accelerometer bias scaled to 2048 LSB/g (16 g full scale) accel_bias_reg[0] -= (accel_bias[0]/8); accel_bias_reg[1] -= (accel_bias[1]/8); accel_bias_reg[2] -= (accel_bias[2]/8); data[0] = (accel_bias_reg[0] >> 8) & 0xFF; data[1] = (accel_bias_reg[0]) & 0xFF; // Preserve temperature compensation bit when writing back to accelerometer bias registers data[1] = data[1] | mask_bit[0]; data[2] = (accel_bias_reg[1] >> 8) & 0xFF; data[3] = (accel_bias_reg[1]) & 0xFF; // Preserve temperature compensation bit when writing back to accelerometer bias registers data[3] = data[3] | mask_bit[1]; data[4] = (accel_bias_reg[2] >> 8) & 0xFF; data[5] = (accel_bias_reg[2]) & 0xFF; // Preserve temperature compensation bit when writing back to accelerometer bias registers data[5] = data[5] | mask_bit[2]; // Apparently this is not working for the acceleration biases in the MPU-9250 // Are we handling the temperature correction bit properly? // Push accelerometer biases to hardware registers /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); */ // Output scaled accelerometer biases for manual subtraction in the main program accelBias[0] = (float)accel_bias[0] / (float)accelsensitivity; accelBias[1] = (float)accel_bias[1] / (float)accelsensitivity; accelBias[2] = (float)accel_bias[2] / (float)accelsensitivity; } // Accelerometer and gyroscope self test; check calibration wrt factory settings void MPU9250SelfTest(float *destination) { // Should return percent deviation from factory trim values, // +/- 14 or less deviation is a pass { uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; uint8_t selfTest[6]; int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; float factoryTrim[6]; uint8_t FS = 0; // Set gyro sample rate to 1 kHz writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set full scale range for the gyro to 250 dps writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set full scale range for the accelerometer to 2 g writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Get average current values of gyro and acclerometer for (int ii = 0; ii < 200; ii++) { // Read the six raw data registers into data array readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); // Read the six raw data registers sequentially into data array readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } // Get average of 200 values and store as average current readings for (int ii = 0; ii < 3; ii++) { aAvg[ii] /= 200; gAvg[ii] /= 200; } // Configure the accelerometer for self-test // Enable self test on all three axes and set accelerometer range to +/- 2 g writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Delay a while to let the device stabilize wait(0.1); // Get average self-test values of gyro and acclerometer for (int ii = 0; ii < 200; ii++) { // Read the six raw data registers into data array readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); // Read the six raw data registers sequentially into data array readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } // Get average of 200 values and store as average self-test readings for (int ii = 0; ii < 3; ii++) { aSTAvg[ii] /= 200; gSTAvg[ii] /= 200; } // Configure the gyro and accelerometer for normal operation writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Delay a while to let the device stabilize wait(0.1); // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Retrieve factory self-test value from self-test code reads // FT[Xa] factory trim calculation, and FT[Ya], FT[Xg], etc factoryTrim[0] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[0] - 1.0))); factoryTrim[1] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[1] - 1.0))); factoryTrim[2] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[2] - 1.0))); factoryTrim[3] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[3] - 1.0))); factoryTrim[4] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[4] - 1.0))); factoryTrim[5] = (float) (2620 / 1<<FS) * (pow(1.01, ((float) selfTest[5] - 1.0))); // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim // of the Self-Test Response. To get percent, must multiply by 100 for (int i = 0; i < 3; i++) { // Report percent differences destination[i] = 100.0 * ((float) (aSTAvg[i] - aAvg[i])) / factoryTrim[i]; // Report percent differences destination[i + 3] = 100.0 * ((float) (gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3]; } } // Implementation of Sebastian Madgwick's "...efficient orientation filter // for... inertial/magnetic sensor arrays" // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) // which fuses acceleration, rotation rate, and magnetic moments to produce a // quaternion-based estimate of absolute // device orientation -- which can be converted to yaw, pitch, and roll. // Useful for stabilizing quadcopters, etc. The performance of the orientation // filter is at least as good as conventional Kalman-based filtering algorithms // but is much less computationally intensive---it can be performed on // a 3.3 V Pro Mini operating at 8 MHz! void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { // Short name local variable for readability float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; float norm; float hx, hy, _2bx, _2bz; float s1, s2, s3, s4; float qDot1, qDot2, qDot3, qDot4; // Auxiliary variables to avoid repeated arithmetic float _2q1mx; float _2q1my; float _2q1mz; float _2q2mx; float _4bx; float _4bz; float _2q1 = 2.0f * q1; float _2q2 = 2.0f * q2; float _2q3 = 2.0f * q3; float _2q4 = 2.0f * q4; float _2q1q3 = 2.0f * q1 * q3; float _2q3q4 = 2.0f * q3 * q4; float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); // Handle NaN if (norm == 0.0f) { return; } norm = 1.0f / norm; ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrt(mx * mx + my * my + mz * mz); // Handle NaN if (norm == 0.0f) { return; } norm = 1.0f/norm; mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field _2q1mx = 2.0f * q1 * mx; _2q1my = 2.0f * q1 * my; _2q1mz = 2.0f * q1 * mz; _2q2mx = 2.0f * q2 * mx; hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; _2bx = sqrt(hx * hx + hy * hy); _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient descent algorithm corrective step s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); // Normalise step magnitude norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); norm = 1.0f / norm; s1 *= norm; s2 *= norm; s3 *= norm; s4 *= norm; // Compute rate of change of quaternion qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; // Integrate to yield quaternion q1 += qDot1 * deltat; q2 += qDot2 * deltat; q3 += qDot3 * deltat; q4 += qDot4 * deltat; // Normalise quaternion norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); norm = 1.0f / norm; q[0] = q1 * norm; q[1] = q2 * norm; q[2] = q3 * norm; q[3] = q4 * norm; } // Similar to Madgwick scheme but uses proportional and integral filtering on // the error between estimated reference vectors and measured ones. void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { // short name local variable for readability float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; float norm; float hx, hy, bx, bz; float vx, vy, vz, wx, wy, wz; float ex, ey, ez; float pa, pb, pc; // Auxiliary variables to avoid repeated arithmetic float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); // Handle NaN if (norm == 0.0f) { return; } // Use reciprocal for division norm = 1.0f / norm; ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrt(mx * mx + my * my + mz * mz); // Handle NaN if (norm == 0.0f) { return; } // Use reciprocal for division norm = 1.0f / norm; mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); bx = sqrt((hx * hx) + (hy * hy)); bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); // Estimated direction of gravity and magnetic field vx = 2.0f * (q2q4 - q1q3); vy = 2.0f * (q1q2 + q3q4); vz = q1q1 - q2q2 - q3q3 + q4q4; wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); // Error is cross product between estimated direction and measured direction of gravity ex = (ay * vz - az * vy) + (my * wz - mz * wy); ey = (az * vx - ax * vz) + (mz * wx - mx * wz); ez = (ax * vy - ay * vx) + (mx * wy - my * wx); if (Ki > 0.0f) { // Accumulate integral error eInt[0] += ex; eInt[1] += ey; eInt[2] += ez; } else { // Prevent integral wind up eInt[0] = 0.0f; eInt[1] = 0.0f; eInt[2] = 0.0f; } // Apply feedback terms gx = gx + Kp * ex + Ki * eInt[0]; gy = gy + Kp * ey + Ki * eInt[1]; gz = gz + Kp * ez + Ki * eInt[2]; // Integrate rate of change of quaternion pa = q2; pb = q3; pc = q4; q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); // Normalise quaternion norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); norm = 1.0f / norm; q[0] = q1 * norm; q[1] = q2 * norm; q[2] = q3 * norm; q[3] = q4 * norm; } }; #endif