Control Library by altb

Dependents:   My_Libraries IndNav_QK3_T265

Committer:
altb
Date:
Mon Mar 04 11:03:08 2019 +0000
Revision:
0:d49418189c5c
Child:
4:74a4318390ea
New Folder Lib
;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
altb 0:d49418189c5c 1 /*
altb 0:d49418189c5c 2 GPA: Frequency point wise gain and phase analyser to measure the frequency respone function (FRF) of a dynamical system, based on the one point DFT
altb 0:d49418189c5c 3
altb 0:d49418189c5c 4 Hint: If the plant has a pole at zero, is unstable or weakly damped the measurement has to be perfomed
altb 0:d49418189c5c 5 in closed loop (this is NOT tfestimate, the algorithm is based on the one point DFT).
altb 0:d49418189c5c 6 Assumption: The system is and remains at the desired steady state of interest when the measurment starts
altb 0:d49418189c5c 7
altb 0:d49418189c5c 8 Instantiate option 0: ("Not a Jedi yet" users, for logarithmic equaly spaced frequency points)
altb 0:d49418189c5c 9
altb 0:d49418189c5c 10 GPA(float fMin, float fMax, int NfexcDes, float Aexc0, float Aexc1, float Ts)
altb 0:d49418189c5c 11
altb 0:d49418189c5c 12 fMin: Minimal desired frequency that should be measured in Hz
altb 0:d49418189c5c 13 fMax: Maximal desired frequency that should be measured in Hz
altb 0:d49418189c5c 14 NfexcDes: Number of logarithmic equaly spaced frequency points between fMin and fMax
altb 0:d49418189c5c 15 Aexc0: Excitation amplitude at fMin
altb 0:d49418189c5c 16 Aexc1: Excitation amplitude at fMax
altb 0:d49418189c5c 17 Ts: Sampling time in sec
altb 0:d49418189c5c 18
altb 0:d49418189c5c 19 Default values are as follows:
altb 0:d49418189c5c 20 int NperMin = 3;
altb 0:d49418189c5c 21 int NmeasMin = (int)ceil(1.0f/Ts);
altb 0:d49418189c5c 22 int NstartMin = (int)ceil(3.0f/Ts);
altb 0:d49418189c5c 23 int NsweepMin = 0;
altb 0:d49418189c5c 24
altb 0:d49418189c5c 25 Instantiate option 1: ("Jedi or Sith Lord", for logarithmic equaly spaced frequency points)
altb 0:d49418189c5c 26
altb 0:d49418189c5c 27 GPA(float fMin, float fMax, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 28
altb 0:d49418189c5c 29 fMin: Minimal desired frequency that should be measured in Hz
altb 0:d49418189c5c 30 fMax: Maximal desired frequency that should be measured in Hz
altb 0:d49418189c5c 31 NfexcDes: Number of logarithmic equaly spaced frequency points
altb 0:d49418189c5c 32 NperMin: Minimal number of periods that are used for each frequency point
altb 0:d49418189c5c 33 NmeasMin: Minimal number of samples that are used for each frequency point
altb 0:d49418189c5c 34 Ts: Sampling time in sec
altb 0:d49418189c5c 35 Aexc0: Excitation amplitude at fMin
altb 0:d49418189c5c 36 Aexc1: Excitation amplitude at fMax
altb 0:d49418189c5c 37 NstartMin: Minimal number of samples to sweep to the first frequency point (can be equal 0)
altb 0:d49418189c5c 38 NsweepMin: Minimal number of samples to sweep from freq. point to freq. point (can be equal 0)
altb 0:d49418189c5c 39
altb 0:d49418189c5c 40
altb 0:d49418189c5c 41 Instantiate option 2: (for a second, refined frequency grid measurement)
altb 0:d49418189c5c 42
altb 0:d49418189c5c 43 GPA(float f0, float f1, float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 44
altb 0:d49418189c5c 45 f0: Frequency point for the calculation of Aexc0 in Hz (should be chosen like in the first measurement)
altb 0:d49418189c5c 46 f1: Frequency point for the calculation of Aexc1 in Hz (should be chosen like in the first measurement)
altb 0:d49418189c5c 47 *fexcDes: Sorted frequency point array in Hz
altb 0:d49418189c5c 48 NfexcDes: Length of fexcDes
altb 0:d49418189c5c 49
altb 0:d49418189c5c 50 For the other parameters see above.
altb 0:d49418189c5c 51
altb 0:d49418189c5c 52 Instantiate option 3: (for an arbitary but sorted frequency grid measurement)
altb 0:d49418189c5c 53
altb 0:d49418189c5c 54 GPA(float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 55
altb 0:d49418189c5c 56 *fexcDes: Sorted frequency point array in Hz
altb 0:d49418189c5c 57 Aexc0: Excitation amplitude at fexcDes[0]
altb 0:d49418189c5c 58 Aexc1: Excitation amplitude at fexcDes[NfexcDes-1]
altb 0:d49418189c5c 59 NfexcDes: Length of fexcDes
altb 0:d49418189c5c 60
altb 0:d49418189c5c 61 For the other parameters see above.
altb 0:d49418189c5c 62
altb 0:d49418189c5c 63 Note: The amplitude drops with 1/fexc, if you're using Axc1 = Aexc0/fMax then d/dt exc = const.,
altb 0:d49418189c5c 64 this is recommended if your controller does not have a rolloff. If a desired frequency point
altb 0:d49418189c5c 65 is not measured (could not be reached) try to increase Nmeas.
altb 0:d49418189c5c 66
altb 0:d49418189c5c 67
altb 0:d49418189c5c 68 Block diagram:
altb 0:d49418189c5c 69
altb 0:d49418189c5c 70 w (const.) exc(2) C: controller
altb 0:d49418189c5c 71 | | P: plant
altb 0:d49418189c5c 72 v e v
altb 0:d49418189c5c 73 exc(1) --> o ->| C |--->o------->| P |----------> out (y)
altb 0:d49418189c5c 74 ^ - | |
altb 0:d49418189c5c 75 | --> inp (u) | exc (R): excitation signal
altb 0:d49418189c5c 76 | | inp (U): input plant
altb 0:d49418189c5c 77 -------------------------------- out (Y): output plant
altb 0:d49418189c5c 78
altb 0:d49418189c5c 79
altb 0:d49418189c5c 80 Pseudo code for an open loop measurement:
altb 0:d49418189c5c 81
altb 0:d49418189c5c 82 - Measuring the plant P = Gyu = Gyr:
altb 0:d49418189c5c 83
altb 0:d49418189c5c 84 u = w + exc;
altb 0:d49418189c5c 85 ... write output u here! it follows exc(k+1) ...
altb 0:d49418189c5c 86 exc = Wobble(exc, y);
altb 0:d49418189c5c 87
altb 0:d49418189c5c 88 Closed loop FRF calculus with a stabilizing controller C:
altb 0:d49418189c5c 89 S = 1/(1 + C*P); % ( exc1 -> e , 1/(1 + C*P) ) contr. error rejection, robustness (1/max|S|)
altb 0:d49418189c5c 90 T = 1 - S; % ( w -> y , C*P/(1 + C*P) ) tracking
altb 0:d49418189c5c 91 CS = C*S; % ( exc1 -> u , C/(1 + C*P) ) disturbance plant output
altb 0:d49418189c5c 92 PS = P*S; % ( exc2 -> y , P/(1 + C*P) ) disturbance plant input
altb 0:d49418189c5c 93
altb 0:d49418189c5c 94
altb 0:d49418189c5c 95 Pseudo code for a closed loop measurement with stabilizing controller C:
altb 0:d49418189c5c 96
altb 0:d49418189c5c 97 Excitation at excitation input (1):
altb 0:d49418189c5c 98
altb 0:d49418189c5c 99 - Measuring the plant P = Gyu and the closed loop tf T = PC/(1 + PC) = Gyr:
altb 0:d49418189c5c 100
altb 0:d49418189c5c 101 u = C(w - y + exc);
altb 0:d49418189c5c 102 ... write output u here! it follows exc(k+1) ...
altb 0:d49418189c5c 103 exc = Wobble(u, y);
altb 0:d49418189c5c 104
altb 0:d49418189c5c 105 Closed loop FRF calculus:
altb 0:d49418189c5c 106 S = 1 - T;
altb 0:d49418189c5c 107 PS = P*S;
altb 0:d49418189c5c 108 CS = T/P;
altb 0:d49418189c5c 109 C = C/S;
altb 0:d49418189c5c 110
altb 0:d49418189c5c 111 Excitation at excitation input (2):
altb 0:d49418189c5c 112
altb 0:d49418189c5c 113 - Measuring the plant P = Gyu and the closed loop tf PS = P/(1 + PC) = Gyr:
altb 0:d49418189c5c 114
altb 0:d49418189c5c 115 u = C(w - y) + exc;
altb 0:d49418189c5c 116 ... write output u here! it follows exc(k+1) ...
altb 0:d49418189c5c 117 exc = Wobble(u, y);
altb 0:d49418189c5c 118
altb 0:d49418189c5c 119 Closed loop FRF calculus:
altb 0:d49418189c5c 120 S = PS/P;
altb 0:d49418189c5c 121 T = 1 - S;
altb 0:d49418189c5c 122 CS = T/P;
altb 0:d49418189c5c 123 C = C/S;
altb 0:d49418189c5c 124
altb 0:d49418189c5c 125
altb 0:d49418189c5c 126 Usage:
altb 0:d49418189c5c 127 exc(k+1) = myGPA(inp(k), out(k)) does update the internal states of the
altb 0:d49418189c5c 128 gpa at the timestep k and returns the excitation signal for the timestep
altb 0:d49418189c5c 129 k+1. The FRF data are plotted to a terminal (Putty) over a serial
altb 0:d49418189c5c 130 connection and look as follows:
altb 0:d49418189c5c 131
altb 0:d49418189c5c 132 --------------------------------------------------------------------------------
altb 0:d49418189c5c 133 fexc[Hz] |Gyu| deg(Gyu) |Gyr| deg(Gyr) |U| |Y| |R|
altb 0:d49418189c5c 134 --------------------------------------------------------------------------------
altb 0:d49418189c5c 135 5.0000e-02 1.001e+00 -0.309 1.001e+00 -0.309 4.000e-01 4.000e-01 4.005e-01
altb 0:d49418189c5c 136 . . . . . . . .
altb 0:d49418189c5c 137 . . . . . . . .
altb 0:d49418189c5c 138 . . . . . . . .
altb 0:d49418189c5c 139
altb 0:d49418189c5c 140 In Matlab you can use the editor as follows:
altb 0:d49418189c5c 141 data = [... insert measurement data here ...];
altb 0:d49418189c5c 142 gyu = frd(data(:,2).*exp(1i*data(:,3)*pi/180), data(:,1), Ts, 'Units', 'Hz');
altb 0:d49418189c5c 143 gyr = frd(data(:,4).*exp(1i*data(:,5)*pi/180), data(:,1), Ts, 'Units', 'Hz');
altb 0:d49418189c5c 144
altb 0:d49418189c5c 145 If you're evaluating more than one measurement which contain equal frequency points use:
altb 0:d49418189c5c 146 data = [data1; data2];
altb 0:d49418189c5c 147 [~, ind] = unique(data(:,1), 'stable');
altb 0:d49418189c5c 148 data = data(ind,:);
altb 0:d49418189c5c 149
altb 0:d49418189c5c 150
altb 0:d49418189c5c 151 Autor and Copyrigth: 2018 / 2019 / M.E. Peter
altb 0:d49418189c5c 152
altb 0:d49418189c5c 153 */
altb 0:d49418189c5c 154
altb 0:d49418189c5c 155 #include "GPA.h"
altb 0:d49418189c5c 156 #include "mbed.h"
altb 0:d49418189c5c 157 #include "math.h"
altb 0:d49418189c5c 158 #define pi 3.141592653589793
altb 0:d49418189c5c 159
altb 0:d49418189c5c 160 using namespace std;
altb 0:d49418189c5c 161
altb 0:d49418189c5c 162 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 163 // instantiate
altb 0:d49418189c5c 164 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 165
altb 0:d49418189c5c 166 GPA::GPA(float fMin, float fMax, int NfexcDes, float Aexc0, float Aexc1, float Ts)
altb 0:d49418189c5c 167 {
altb 0:d49418189c5c 168 int NperMin = 3;
altb 0:d49418189c5c 169 int NmeasMin = (int)ceil(1.0f/Ts);
altb 0:d49418189c5c 170 int NstartMin = (int)ceil(3.0f/Ts);
altb 0:d49418189c5c 171 int NsweepMin = 0;
altb 0:d49418189c5c 172
altb 0:d49418189c5c 173 assignParameters(NfexcDes, NperMin, NmeasMin, (double)Ts, NstartMin, NsweepMin);
altb 0:d49418189c5c 174
altb 0:d49418189c5c 175 // calculate logarithmic spaced frequency points
altb 0:d49418189c5c 176 fexcDes = (double*)malloc(NfexcDes*sizeof(double));
altb 0:d49418189c5c 177 fexcDesLogspace((double)fMin, (double)fMax, NfexcDes);
altb 0:d49418189c5c 178
altb 0:d49418189c5c 179 calculateDecreasingAmplitudeCoefficients((double)Aexc0, (double)Aexc1);
altb 0:d49418189c5c 180 initializeConstants((double)Ts);
altb 0:d49418189c5c 181 assignFilterStorage();
altb 0:d49418189c5c 182 reset();
altb 0:d49418189c5c 183 }
altb 0:d49418189c5c 184
altb 0:d49418189c5c 185 GPA::GPA(float fMin, float fMax, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 186 {
altb 0:d49418189c5c 187 assignParameters(NfexcDes, NperMin, NmeasMin, (double)Ts, NstartMin, NsweepMin);
altb 0:d49418189c5c 188
altb 0:d49418189c5c 189 // calculate logarithmic spaced frequency points
altb 0:d49418189c5c 190 fexcDes = (double*)malloc(NfexcDes*sizeof(double));
altb 0:d49418189c5c 191 fexcDesLogspace((double)fMin, (double)fMax, NfexcDes);
altb 0:d49418189c5c 192
altb 0:d49418189c5c 193 calculateDecreasingAmplitudeCoefficients((double)Aexc0, (double)Aexc1);
altb 0:d49418189c5c 194 initializeConstants((double)Ts);
altb 0:d49418189c5c 195 assignFilterStorage();
altb 0:d49418189c5c 196 reset();
altb 0:d49418189c5c 197 }
altb 0:d49418189c5c 198
altb 0:d49418189c5c 199 GPA::GPA(float f0, float f1, float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 200 {
altb 0:d49418189c5c 201 assignParameters(NfexcDes, NperMin, NmeasMin, (double)Ts, NstartMin, NsweepMin);
altb 0:d49418189c5c 202
altb 0:d49418189c5c 203 // convert fexcDes from float to double, it is assumed that it is sorted
altb 0:d49418189c5c 204 this->fexcDes = (double*)malloc(NfexcDes*sizeof(double));
altb 0:d49418189c5c 205 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 206 this->fexcDes[i] = (double)fexcDes[i];
altb 0:d49418189c5c 207 }
altb 0:d49418189c5c 208
altb 0:d49418189c5c 209 calculateDecreasingAmplitudeCoefficients((double)Aexc0, (double)Aexc1);
altb 0:d49418189c5c 210 initializeConstants((double)Ts);
altb 0:d49418189c5c 211 assignFilterStorage();
altb 0:d49418189c5c 212 reset();
altb 0:d49418189c5c 213 }
altb 0:d49418189c5c 214
altb 0:d49418189c5c 215 GPA::GPA(float *fexcDes, int NfexcDes, int NperMin, int NmeasMin, float Ts, float Aexc0, float Aexc1, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 216 {
altb 0:d49418189c5c 217 assignParameters(NfexcDes, NperMin, NmeasMin, (double)Ts, NstartMin, NsweepMin);
altb 0:d49418189c5c 218
altb 0:d49418189c5c 219 // convert fexcDes from float to double, it is assumed that it is sorted
altb 0:d49418189c5c 220 this->fexcDes = (double*)malloc(NfexcDes*sizeof(double));
altb 0:d49418189c5c 221 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 222 this->fexcDes[i] = (double)fexcDes[i];
altb 0:d49418189c5c 223 }
altb 0:d49418189c5c 224
altb 0:d49418189c5c 225 calculateDecreasingAmplitudeCoefficients((double)Aexc0, (double)Aexc1);
altb 0:d49418189c5c 226 initializeConstants((double)Ts);
altb 0:d49418189c5c 227 assignFilterStorage();
altb 0:d49418189c5c 228 reset();
altb 0:d49418189c5c 229 }
altb 0:d49418189c5c 230
altb 0:d49418189c5c 231 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 232 // virtual and reset
altb 0:d49418189c5c 233 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 234
altb 0:d49418189c5c 235 GPA::~GPA() {}
altb 0:d49418189c5c 236
altb 0:d49418189c5c 237 void GPA::reset()
altb 0:d49418189c5c 238 {
altb 0:d49418189c5c 239 Nmeas = 0;
altb 0:d49418189c5c 240 Nper = 0;
altb 0:d49418189c5c 241 dfexc = 0.0;
altb 0:d49418189c5c 242 fexc = 0.0;
altb 0:d49418189c5c 243 fexcPast = 0.0;
altb 0:d49418189c5c 244 i = 1; // iterating through desired frequency points
altb 0:d49418189c5c 245 j = 1; // iterating through measurement points w.r.t. reachable frequency
altb 0:d49418189c5c 246 scaleG = 0.0;
altb 0:d49418189c5c 247 cr = 0.0;
altb 0:d49418189c5c 248 ci = 0.0;
altb 0:d49418189c5c 249 for(int i = 0; i < 3; i++) {
altb 0:d49418189c5c 250 sU[i] = 0.0;
altb 0:d49418189c5c 251 sY[i] = 0.0;
altb 0:d49418189c5c 252 }
altb 0:d49418189c5c 253 sinarg = 0.0;
altb 0:d49418189c5c 254 NmeasTotal = 0;
altb 0:d49418189c5c 255 Aexc = 0.0;
altb 0:d49418189c5c 256 pi2Tsfexc = 0.0;
altb 0:d49418189c5c 257 Nsweep = NstartMin;
altb 0:d49418189c5c 258 bfexc = 0.0;
altb 0:d49418189c5c 259 afexc = 0.0;
altb 0:d49418189c5c 260 aAexc = 0.0;
altb 0:d49418189c5c 261 bAexc = 0.0;
altb 0:d49418189c5c 262 AexcOut = 0.0;
altb 0:d49418189c5c 263 }
altb 0:d49418189c5c 264
altb 0:d49418189c5c 265 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 266 // update (operator)
altb 0:d49418189c5c 267 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 268
altb 0:d49418189c5c 269 float GPA::update(double inp, double out)
altb 0:d49418189c5c 270 {
altb 0:d49418189c5c 271 // a new frequency point has been reached
altb 0:d49418189c5c 272 if(j == 1) {
altb 0:d49418189c5c 273 // user info
altb 0:d49418189c5c 274 if(i == 1) {
altb 0:d49418189c5c 275 printLine();
altb 0:d49418189c5c 276 printf(" fexc[Hz] |Gyu| deg(Gyu) |Gyr| deg(Gyr) |U| |Y| |R|\r\n");
altb 0:d49418189c5c 277 printLine();
altb 0:d49418189c5c 278 }
altb 0:d49418189c5c 279 // get a new unique frequency point
altb 0:d49418189c5c 280 while(fexc == fexcPast) {
altb 0:d49418189c5c 281 // measurement finished
altb 0:d49418189c5c 282 if(i > NfexcDes) {
altb 0:d49418189c5c 283 return 0.0f;
altb 0:d49418189c5c 284 }
altb 0:d49418189c5c 285 calcGPAmeasPara(fexcDes[i - 1]);
altb 0:d49418189c5c 286 // secure fexc is not higher or equal to nyquist frequency
altb 0:d49418189c5c 287 if(fexc >= fnyq) {
altb 0:d49418189c5c 288 fexc = fexcPast;
altb 0:d49418189c5c 289 }
altb 0:d49418189c5c 290 // no frequency found
altb 0:d49418189c5c 291 if(fexc == fexcPast) {
altb 0:d49418189c5c 292 i += 1;
altb 0:d49418189c5c 293 } else {
altb 0:d49418189c5c 294 Aexc = aAexcDes/fexc + bAexcDes;
altb 0:d49418189c5c 295 pi2Tsfexc = pi2Ts*fexc;
altb 0:d49418189c5c 296 }
altb 0:d49418189c5c 297 }
altb 0:d49418189c5c 298 // filter scaling
altb 0:d49418189c5c 299 scaleG = 1.0/sqrt((double)Nmeas);
altb 0:d49418189c5c 300 // filter coefficients
altb 0:d49418189c5c 301 cr = cos(pi2Tsfexc);
altb 0:d49418189c5c 302 ci = sin(pi2Tsfexc);
altb 0:d49418189c5c 303 // set filter storage zero
altb 0:d49418189c5c 304 for(int i = 0; i < 3; i++) {
altb 0:d49418189c5c 305 sU[i] = 0.0;
altb 0:d49418189c5c 306 sY[i] = 0.0;
altb 0:d49418189c5c 307 }
altb 0:d49418189c5c 308 // calculate the parameters for the frequency sweep from fexcPast to fexc
altb 0:d49418189c5c 309 if(Nsweep > 0) calcGPAsweepPara();
altb 0:d49418189c5c 310 }
altb 0:d49418189c5c 311 // perfomre the sweep or measure
altb 0:d49418189c5c 312 if(j <= Nsweep) {
altb 0:d49418189c5c 313 dfexc = afexc*(double)j + bfexc;
altb 0:d49418189c5c 314 AexcOut = aAexc*(double)j + bAexc;
altb 0:d49418189c5c 315 } else {
altb 0:d49418189c5c 316 dfexc = fexc;
altb 0:d49418189c5c 317 AexcOut = Aexc;
altb 0:d49418189c5c 318 // one point DFT filter step for signal su
altb 0:d49418189c5c 319 sU[0] = scaleG*inp + 2.0*cr*sU[1] - sU[2];
altb 0:d49418189c5c 320 sU[2] = sU[1];
altb 0:d49418189c5c 321 sU[1] = sU[0];
altb 0:d49418189c5c 322 // one point DFT filter step for signal sy
altb 0:d49418189c5c 323 sY[0] = scaleG*out + 2.0*cr*sY[1] - sY[2];
altb 0:d49418189c5c 324 sY[2] = sY[1];
altb 0:d49418189c5c 325 sY[1] = sY[0];
altb 0:d49418189c5c 326 }
altb 0:d49418189c5c 327 // secure sinarg starts at 0 (numerically maybe not given)
altb 0:d49418189c5c 328 if(j == 1 || j == Nsweep + 1) sinarg = 0.0;
altb 0:d49418189c5c 329 // measurement of frequencypoint is finished
altb 0:d49418189c5c 330 if(j == Nmeas + Nsweep) {
altb 0:d49418189c5c 331 fexcPast = fexc;
altb 0:d49418189c5c 332 AexcPast = Aexc;
altb 0:d49418189c5c 333 Nsweep = NsweepMin;
altb 0:d49418189c5c 334 // calculate the one point dft
altb 0:d49418189c5c 335 double Ureal = 2.0*scaleG*(cr*sU[1] - sU[2]);
altb 0:d49418189c5c 336 double Uimag = 2.0*scaleG*ci*sU[1];
altb 0:d49418189c5c 337 double Yreal = 2.0*scaleG*(cr*sY[1] - sY[2]);
altb 0:d49418189c5c 338 double Yimag = 2.0*scaleG*ci*sY[1];
altb 0:d49418189c5c 339 // calculate magnitude and angle
altb 0:d49418189c5c 340 float Umag = (float)(sqrt(Ureal*Ureal + Uimag*Uimag));
altb 0:d49418189c5c 341 float Ymag = (float)(sqrt(Yreal*Yreal + Yimag*Yimag));
altb 0:d49418189c5c 342 float absGyu = (float)(Ymag/Umag);
altb 0:d49418189c5c 343 float angGyu = (float)wrapAngle(atan2(Yimag, Yreal) - atan2(Uimag, Ureal));
altb 0:d49418189c5c 344 float absGyr = (float)(Ymag/Aexc);
altb 0:d49418189c5c 345 float angGyr = (float)wrapAngle(atan2(Yimag, Yreal) + piDiv2);
altb 0:d49418189c5c 346 // user info
altb 0:d49418189c5c 347 printf("%11.4e %9.3e %8.3f %9.3e %8.3f %9.3e %9.3e %9.3e\r\n", (float)fexc, absGyu, angGyu*rad2deg, absGyr, angGyr*rad2deg, Umag, Ymag, (float)Aexc);
altb 0:d49418189c5c 348 i += 1;
altb 0:d49418189c5c 349 j = 1;
altb 0:d49418189c5c 350 } else {
altb 0:d49418189c5c 351 j += 1;
altb 0:d49418189c5c 352 }
altb 0:d49418189c5c 353 // calculate the excitation
altb 0:d49418189c5c 354 sinarg = fmod(sinarg + pi2Ts*dfexc, pi2);
altb 0:d49418189c5c 355 NmeasTotal += 1;
altb 0:d49418189c5c 356 return (float)(AexcOut*sin(sinarg));
altb 0:d49418189c5c 357 }
altb 0:d49418189c5c 358
altb 0:d49418189c5c 359 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 360 // private functions
altb 0:d49418189c5c 361 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 362
altb 0:d49418189c5c 363 void GPA::assignParameters(int NfexcDes, int NperMin, int NmeasMin, double Ts, int NstartMin, int NsweepMin)
altb 0:d49418189c5c 364 {
altb 0:d49418189c5c 365 this->NfexcDes = NfexcDes;
altb 0:d49418189c5c 366 this->NperMin = NperMin;
altb 0:d49418189c5c 367 this->NmeasMin = NmeasMin;
altb 0:d49418189c5c 368 this->Ts = Ts;
altb 0:d49418189c5c 369 this->NstartMin = NstartMin;
altb 0:d49418189c5c 370 this->NsweepMin = NsweepMin;
altb 0:d49418189c5c 371 }
altb 0:d49418189c5c 372
altb 0:d49418189c5c 373 void GPA::calculateDecreasingAmplitudeCoefficients(double Aexc0, double Aexc1)
altb 0:d49418189c5c 374 {
altb 0:d49418189c5c 375 // calculate coefficients for decreasing amplitude (1/fexc)
altb 0:d49418189c5c 376 this->aAexcDes = (Aexc1 - Aexc0)/(1.0/fexcDes[NfexcDes-1] - 1.0/fexcDes[0]);
altb 0:d49418189c5c 377 this->bAexcDes = Aexc0 - aAexcDes/fexcDes[0];
altb 0:d49418189c5c 378 }
altb 0:d49418189c5c 379
altb 0:d49418189c5c 380 void GPA::initializeConstants(double Ts)
altb 0:d49418189c5c 381 {
altb 0:d49418189c5c 382 fnyq = 1.0/2.0/Ts;
altb 0:d49418189c5c 383 pi2 = 2.0*pi;
altb 0:d49418189c5c 384 pi2Ts = pi2*Ts;
altb 0:d49418189c5c 385 piDiv2 = pi/2.0;
altb 0:d49418189c5c 386 rad2deg = 180.0f/(float)pi;
altb 0:d49418189c5c 387 }
altb 0:d49418189c5c 388
altb 0:d49418189c5c 389 void GPA::assignFilterStorage()
altb 0:d49418189c5c 390 {
altb 0:d49418189c5c 391 sU = (double*)malloc(3*sizeof(double));
altb 0:d49418189c5c 392 sY = (double*)malloc(3*sizeof(double));
altb 0:d49418189c5c 393 }
altb 0:d49418189c5c 394
altb 0:d49418189c5c 395 void GPA::fexcDesLogspace(double fMin, double fMax, int NfexcDes)
altb 0:d49418189c5c 396 {
altb 0:d49418189c5c 397 // calculate logarithmic spaced frequency points
altb 0:d49418189c5c 398 double Gain = log10(fMax/fMin)/((double)NfexcDes - 1.0);
altb 0:d49418189c5c 399 double expon = 0.0;
altb 0:d49418189c5c 400 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 401 fexcDes[i] = fMin*pow(10.0, expon);
altb 0:d49418189c5c 402 expon += Gain;
altb 0:d49418189c5c 403 }
altb 0:d49418189c5c 404 }
altb 0:d49418189c5c 405
altb 0:d49418189c5c 406 void GPA::calcGPAmeasPara(double fexcDes_i)
altb 0:d49418189c5c 407 {
altb 0:d49418189c5c 408 // Nmeas has to be an integer
altb 0:d49418189c5c 409 Nper = NperMin;
altb 0:d49418189c5c 410 Nmeas = (int)floor((double)Nper/fexcDes_i/Ts + 0.5);
altb 0:d49418189c5c 411 // secure that the minimal number of measurements is fullfilled
altb 0:d49418189c5c 412 int Ndelta = NmeasMin - Nmeas;
altb 0:d49418189c5c 413 if(Ndelta > 0) {
altb 0:d49418189c5c 414 Nper = (int)ceil((double)NmeasMin*fexcDes_i*Ts);
altb 0:d49418189c5c 415 Nmeas = (int)floor((double)Nper/fexcDes_i/Ts + 0.5);
altb 0:d49418189c5c 416 }
altb 0:d49418189c5c 417 // evaluating reachable frequency
altb 0:d49418189c5c 418 fexc = (double)Nper/(double)Nmeas/Ts;
altb 0:d49418189c5c 419 }
altb 0:d49418189c5c 420
altb 0:d49418189c5c 421 void GPA::calcGPAsweepPara()
altb 0:d49418189c5c 422 {
altb 0:d49418189c5c 423 // calculate linear frequency sweep parameters
altb 0:d49418189c5c 424 double ksta = ceil(Ts*(double)Nsweep/2.0*(fexc + fexcPast));
altb 0:d49418189c5c 425 Nsweep = (int)floor(2.0*ksta/Ts/(fexc + fexcPast) + 0.5);
altb 0:d49418189c5c 426 bfexc = 2.0*ksta/Ts/(double)Nsweep - fexc;
altb 0:d49418189c5c 427 afexc = (fexc - bfexc)/((double)Nsweep + 1.0);
altb 0:d49418189c5c 428 aAexc = (Aexc - AexcPast)/((double)Nsweep + 1.0);
altb 0:d49418189c5c 429 bAexc = AexcPast;
altb 0:d49418189c5c 430 }
altb 0:d49418189c5c 431
altb 0:d49418189c5c 432 double GPA::wrapAngle(double angle)
altb 0:d49418189c5c 433 {
altb 0:d49418189c5c 434 // wrap angle from (-2pi,2pi) into (-pi,pi)
altb 0:d49418189c5c 435 if(abs(angle) > pi) angle -= copysign(-pi2, angle); // -1*sign(angle)*2*pi + angle;
altb 0:d49418189c5c 436 return angle;
altb 0:d49418189c5c 437 }
altb 0:d49418189c5c 438
altb 0:d49418189c5c 439 void GPA::printLine()
altb 0:d49418189c5c 440 {
altb 0:d49418189c5c 441 printf("--------------------------------------------------------------------------------\r\n");
altb 0:d49418189c5c 442 }
altb 0:d49418189c5c 443
altb 0:d49418189c5c 444 void GPA::printLongLine()
altb 0:d49418189c5c 445 {
altb 0:d49418189c5c 446 printf("-------------------------------------------------------------------------------------------------------\r\n");
altb 0:d49418189c5c 447 }
altb 0:d49418189c5c 448
altb 0:d49418189c5c 449 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 450 // public functions
altb 0:d49418189c5c 451 // -----------------------------------------------------------------------------
altb 0:d49418189c5c 452
altb 0:d49418189c5c 453 void GPA::printGPAfexcDes()
altb 0:d49418189c5c 454 {
altb 0:d49418189c5c 455 printLine();
altb 0:d49418189c5c 456 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 457 printf("%9.4f\r\n", (float)fexcDes[i]);
altb 0:d49418189c5c 458 }
altb 0:d49418189c5c 459 }
altb 0:d49418189c5c 460
altb 0:d49418189c5c 461 void GPA::printGPAmeasPara()
altb 0:d49418189c5c 462 {
altb 0:d49418189c5c 463 printLine();
altb 0:d49418189c5c 464 printf(" fexcDes[Hz] fexc[Hz] Aexc Nmeas Nper Nsweep\r\n");
altb 0:d49418189c5c 465 printLine();
altb 0:d49418189c5c 466 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 467 calcGPAmeasPara(fexcDes[i]);
altb 0:d49418189c5c 468 if(fexc == fexcPast || fexc >= fnyq) {
altb 0:d49418189c5c 469 fexc = 0.0;
altb 0:d49418189c5c 470 Aexc = 0.0;
altb 0:d49418189c5c 471 Nmeas = 0;
altb 0:d49418189c5c 472 Nper = 0;
altb 0:d49418189c5c 473 Nsweep = 0;
altb 0:d49418189c5c 474 afexc = 0.0;
altb 0:d49418189c5c 475 bfexc = 0.0;
altb 0:d49418189c5c 476 aAexc = 0.0;
altb 0:d49418189c5c 477 bAexc = 0.0;
altb 0:d49418189c5c 478
altb 0:d49418189c5c 479 } else {
altb 0:d49418189c5c 480 Aexc = aAexcDes/fexc + bAexcDes;
altb 0:d49418189c5c 481 if(Nsweep > 0) calcGPAsweepPara();
altb 0:d49418189c5c 482 else{
altb 0:d49418189c5c 483 afexc = 0.0;
altb 0:d49418189c5c 484 bfexc = 0.0;
altb 0:d49418189c5c 485 aAexc = 0.0;
altb 0:d49418189c5c 486 bAexc = 0.0;
altb 0:d49418189c5c 487 }
altb 0:d49418189c5c 488 fexcPast = fexc;
altb 0:d49418189c5c 489 AexcPast = Aexc;
altb 0:d49418189c5c 490 }
altb 0:d49418189c5c 491 NmeasTotal += Nmeas;
altb 0:d49418189c5c 492 NmeasTotal += Nsweep;
altb 0:d49418189c5c 493 printf("%11.4e %12.4e %10.3e %7i %6i %7i\r\n", (float)fexcDes[i], (float)fexc, (float)Aexc, Nmeas, Nper, Nsweep);
altb 0:d49418189c5c 494 Nsweep = NsweepMin;
altb 0:d49418189c5c 495 }
altb 0:d49418189c5c 496 printGPAmeasTime();
altb 0:d49418189c5c 497 reset();
altb 0:d49418189c5c 498 }
altb 0:d49418189c5c 499
altb 0:d49418189c5c 500 void GPA::printFullGPAmeasPara()
altb 0:d49418189c5c 501 {
altb 0:d49418189c5c 502 printLongLine();
altb 0:d49418189c5c 503 printf(" fexcDes[Hz] fexc[Hz] Aexc Nmeas Nper Nsweep afexc bfexc aAexc bAexc\r\n");
altb 0:d49418189c5c 504 printLongLine();
altb 0:d49418189c5c 505 for(int i = 0; i < NfexcDes; i++) {
altb 0:d49418189c5c 506 calcGPAmeasPara(fexcDes[i]);
altb 0:d49418189c5c 507 if(fexc == fexcPast || fexc >= fnyq) {
altb 0:d49418189c5c 508 fexc = 0.0;
altb 0:d49418189c5c 509 Aexc = 0.0;
altb 0:d49418189c5c 510 Nmeas = 0;
altb 0:d49418189c5c 511 Nper = 0;
altb 0:d49418189c5c 512 Nsweep = 0;
altb 0:d49418189c5c 513 afexc = 0.0;
altb 0:d49418189c5c 514 bfexc = 0.0;
altb 0:d49418189c5c 515 aAexc = 0.0;
altb 0:d49418189c5c 516 bAexc = 0.0;
altb 0:d49418189c5c 517
altb 0:d49418189c5c 518 } else {
altb 0:d49418189c5c 519 Aexc = aAexcDes/fexc + bAexcDes;
altb 0:d49418189c5c 520 if(Nsweep > 0) calcGPAsweepPara();
altb 0:d49418189c5c 521 else{
altb 0:d49418189c5c 522 afexc = 0.0;
altb 0:d49418189c5c 523 bfexc = 0.0;
altb 0:d49418189c5c 524 aAexc = 0.0;
altb 0:d49418189c5c 525 bAexc = 0.0;
altb 0:d49418189c5c 526 }
altb 0:d49418189c5c 527 fexcPast = fexc;
altb 0:d49418189c5c 528 AexcPast = Aexc;
altb 0:d49418189c5c 529 }
altb 0:d49418189c5c 530 NmeasTotal += Nmeas;
altb 0:d49418189c5c 531 NmeasTotal += Nsweep;
altb 0:d49418189c5c 532 printf("%11.4e %12.4e %10.3e %7i %6i %7i %10.3e %10.3e %10.3e %10.3e\r\n", (float)fexcDes[i], (float)fexc, (float)Aexc, Nmeas, Nper, Nsweep, (float)afexc, (float)bfexc, (float)aAexc, (float)bAexc);
altb 0:d49418189c5c 533 Nsweep = NsweepMin;
altb 0:d49418189c5c 534 }
altb 0:d49418189c5c 535 printGPAmeasTime();
altb 0:d49418189c5c 536 reset();
altb 0:d49418189c5c 537 }
altb 0:d49418189c5c 538
altb 0:d49418189c5c 539 void GPA::printGPAmeasTime()
altb 0:d49418189c5c 540 {
altb 0:d49418189c5c 541 printLine();
altb 0:d49418189c5c 542 printf(" Number of data points : %11i\r\n", NmeasTotal);
altb 0:d49418189c5c 543 printf(" Measurment time in sec: %12.2f\r\n", (float)((double)NmeasTotal*Ts));
altb 0:d49418189c5c 544 }
altb 0:d49418189c5c 545
altb 0:d49418189c5c 546 void GPA::printNfexcDes()
altb 0:d49418189c5c 547 {
altb 0:d49418189c5c 548 printLine();
altb 0:d49418189c5c 549 printf(" Number of frequancy points: %3i\r\n", NfexcDes);
altb 0:d49418189c5c 550 }