Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: Eigen
LSM9DS1_i2c.cpp
00001 /****************************************************************************** 00002 SFE_LSM9DS1.cpp 00003 SFE_LSM9DS1 Library Source File 00004 Jim Lindblom @ SparkFun Electronics 00005 Original Creation Date: February 27, 2015 00006 https://github.com/sparkfun/LSM9DS1_Breakout 00007 00008 This file implements all functions of the LSM9DS1 class. Functions here range 00009 from higher level stuff, like reading/writing LSM9DS1 registers to low-level, 00010 hardware reads and writes. Both SPI and I2C handler functions can be found 00011 towards the bottom of this file. 00012 00013 Development environment specifics: 00014 IDE: Arduino 1.6 00015 Hardware Platform: Arduino Uno 00016 LSM9DS1 Breakout Version: 1.0 00017 00018 This code is beerware; if you see me (or any other SparkFun employee) at the 00019 local, and you've found our code helpful, please buy us a round! 00020 00021 Distributed as-is; no warranty is given. 00022 00023 Modified: Nicolas Borla, 20.01.2019 00024 ******************************************************************************/ 00025 00026 #include "LSM9DS1_i2c.h" 00027 #include "LSM9DS1_Registers.h" 00028 #include "LSM9DS1_Types.h" 00029 //#include <Wire.h> // Wire library is used for I2C 00030 //#include <SPI.h> // SPI library is used for...SPI. 00031 00032 //#if defined(ARDUINO) && ARDUINO >= 100 00033 // #include "Arduino.h" 00034 //#else 00035 // #include "WProgram.h" 00036 //#endif 00037 00038 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000 00039 00040 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; 00041 //extern Serial pc; 00042 00043 LSM9DS1::LSM9DS1(I2C & i2c) : i2c(i2c) 00044 { 00045 init(IMU_MODE_I2C, 0xD6, 0x3C); // 00046 } 00047 00048 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) 00049 { 00050 settings.device.commInterface = interface; 00051 settings.device.agAddress = xgAddr; 00052 settings.device.mAddress = mAddr; 00053 00054 settings.gyro.enabled = true; 00055 settings.gyro.enableX = true; 00056 settings.gyro.enableY = true; 00057 settings.gyro.enableZ = true; 00058 // gyro scale can be 245, 500, or 2000 dps (degree per second) 00059 settings.gyro.scale = 500; 00060 // gyro sample rate: value between 1-6 in Hz 00061 // 1 = 14.9 4 = 238 00062 // 2 = 59.5 5 = 476 00063 // 3 = 119 6 = 952 00064 settings.gyro.sampleRate = 5; 00065 // gyro cutoff frequency: value between 0-3 00066 // Actual value of cutoff frequency depends 00067 // on sample rate. 00068 // @476 Hz: 0 -> 21 Hz only if LPF2 is enabled, to do so you need to set xgWriteByte(CTRL_REG2_G, 0x02) to enable LPF 2, pmic 11.09.2019 00069 // 1 -> 28 Hz 00070 // 2 -> 57 Hz 00071 // 3 -> 100 Hz 00072 settings.gyro.bandwidth = 1; 00073 settings.gyro.lowPowerEnable = false; 00074 settings.gyro.HPFEnable = false; 00075 // Gyro HPF cutoff frequency: value between 0-9 00076 // Actual value depends on sample rate. Only applies 00077 // if gyroHPFEnable is true. 00078 settings.gyro.HPFCutoff = 0; 00079 settings.gyro.flipX = false; 00080 settings.gyro.flipY = false; 00081 settings.gyro.flipZ = false; 00082 settings.gyro.orientation = 0; 00083 settings.gyro.latchInterrupt = true; 00084 00085 settings.accel.enabled = true; 00086 settings.accel.enableX = true; 00087 settings.accel.enableY = true; 00088 settings.accel.enableZ = true; 00089 // accel scale can be 2, 4, 8, or 16 00090 settings.accel.scale = 2; 00091 // accel sample rate can be 1-6 00092 // 1 = 10 Hz 4 = 238 Hz 00093 // 2 = 50 Hz 5 = 476 Hz 00094 // 3 = 119 Hz 6 = 952 Hz 00095 settings.accel.sampleRate = 5; 00096 // Accel cutoff freqeuncy can be any value between -1 - 3. 00097 // -1 = bandwidth determined by sample rate 00098 // 0 = 408 Hz 2 = 105 Hz 00099 // 1 = 211 Hz 3 = 50 Hz 00100 settings.accel.bandwidth = 3; 00101 settings.accel.highResEnable = false; 00102 // accelHighResBandwidth can be any value between 0-3 00103 // LP cutoff is set to a factor of sample rate 00104 // 0 = ODR/50 2 = ODR/9 00105 // 1 = ODR/100 3 = ODR/400 00106 settings.accel.highResBandwidth = 0; 00107 00108 settings.mag.enabled = true; 00109 // mag scale can be 4, 8, 12, or 16 00110 settings.mag.scale = 4; 00111 // mag data rate can be 0-7 00112 // 0 = 0.625 Hz 4 = 10 Hz 00113 // 1 = 1.25 Hz 5 = 20 Hz 00114 // 2 = 2.5 Hz 6 = 40 Hz 00115 // 3 = 5 Hz 7 = 80 Hz 00116 settings.mag.sampleRate = 7; 00117 settings.mag.tempCompensationEnable = true; 00118 // magPerformance can be any value between 0-3 00119 // 0 = Low power mode 2 = high performance 00120 // 1 = medium performance 3 = ultra-high performance 00121 settings.mag.XYPerformance = 2; 00122 settings.mag.ZPerformance = 2; 00123 settings.mag.lowPowerEnable = false; 00124 // magOperatingMode can be 0-2 00125 // 0 = continuous conversion 00126 // 1 = single-conversion 00127 // 2 = power down 00128 settings.mag.operatingMode = 0; 00129 00130 settings.temp.enabled = true; 00131 for (int i=0; i<3; i++) 00132 { 00133 gBias[i] = 0; 00134 aBias[i] = 0; 00135 mBias[i] = 0; 00136 gBiasRaw[i] = 0; 00137 aBiasRaw[i] = 0; 00138 mBiasRaw[i] = 0; 00139 } 00140 _autoCalc = false; 00141 } 00142 00143 00144 uint16_t LSM9DS1::begin() 00145 { 00146 //! Todo: don't use _xgAddress or _mAddress, duplicating memory 00147 _xgAddress = settings.device.agAddress; 00148 _mAddress = settings.device.mAddress; 00149 00150 constrainScales(); 00151 // Once we have the scale values, we can calculate the resolution 00152 // of each sensor. That's what these functions are for. One for each sensor 00153 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable 00154 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable 00155 calcaRes(); // Calculate g / ADC tick, stored in aRes variable 00156 00157 // Now, initialize our hardware interface. 00158 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C 00159 initI2C(); // Initialize I2C 00160 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI 00161 initSPI(); // Initialize SPI 00162 00163 // To verify communication, we can read from the WHO_AM_I register of 00164 // each device. Store those in a variable so we can return them. 00165 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I 00166 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I 00167 printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); 00168 uint16_t whoAmICombined = (xgTest << 8) | mTest; 00169 00170 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) 00171 return 0; 00172 00173 // Gyro initialization stuff: 00174 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. 00175 00176 // Accelerometer initialization stuff: 00177 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. 00178 00179 // Magnetometer initialization stuff: 00180 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. 00181 00182 // Once everything is initialized, return the WHO_AM_I registers we read: 00183 return whoAmICombined; 00184 } 00185 00186 void LSM9DS1::initGyro() 00187 { 00188 uint8_t tempRegValue = 0; 00189 00190 // CTRL_REG1_G (Default value: 0x00) 00191 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] 00192 // ODR_G[2:0] - Output data rate selection 00193 // FS_G[1:0] - Gyroscope full-scale selection 00194 // BW_G[1:0] - Gyroscope bandwidth selection 00195 00196 // To disable gyro, set sample rate bits to 0. We'll only set sample 00197 // rate if the gyro is enabled. 00198 if (settings.gyro.enabled) 00199 { 00200 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; 00201 } 00202 switch (settings.gyro.scale) 00203 { 00204 case 500: 00205 tempRegValue |= (0x1 << 3); 00206 break; 00207 case 2000: 00208 tempRegValue |= (0x3 << 3); 00209 break; 00210 // Otherwise we'll set it to 245 dps (0x0 << 4) 00211 } 00212 tempRegValue |= (settings.gyro.bandwidth & 0x3); 00213 xgWriteByte(CTRL_REG1_G, tempRegValue); 00214 00215 // CTRL_REG2_G (Default value: 0x00) 00216 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] 00217 // INT_SEL[1:0] - INT selection configuration 00218 // OUT_SEL[1:0] - Out selection configuration 00219 xgWriteByte(CTRL_REG2_G, 0x02); // use xgWriteByte(CTRL_REG2_G, 0x00); to disable LPF 2, pmic 11.09.2019 00220 00221 // CTRL_REG3_G (Default value: 0x00) 00222 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] 00223 // LP_mode - Low-power mode enable (0: disabled, 1: enabled) 00224 // HP_EN - HPF enable (0:disabled, 1: enabled) 00225 // HPCF_G[3:0] - HPF cutoff frequency 00226 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; 00227 if (settings.gyro.HPFEnable) 00228 { 00229 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); 00230 } 00231 xgWriteByte(CTRL_REG3_G, tempRegValue); 00232 00233 // CTRL_REG4 (Default value: 0x38) 00234 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] 00235 // Zen_G - Z-axis output enable (0:disable, 1:enable) 00236 // Yen_G - Y-axis output enable (0:disable, 1:enable) 00237 // Xen_G - X-axis output enable (0:disable, 1:enable) 00238 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) 00239 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) 00240 tempRegValue = 0; 00241 if (settings.gyro.enableZ) tempRegValue |= (1<<5); 00242 if (settings.gyro.enableY) tempRegValue |= (1<<4); 00243 if (settings.gyro.enableX) tempRegValue |= (1<<3); 00244 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); 00245 xgWriteByte(CTRL_REG4, tempRegValue); 00246 00247 // ORIENT_CFG_G (Default value: 0x00) 00248 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] 00249 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) 00250 // Orient [2:0] - Directional user orientation selection 00251 tempRegValue = 0; 00252 if (settings.gyro.flipX) tempRegValue |= (1<<5); 00253 if (settings.gyro.flipY) tempRegValue |= (1<<4); 00254 if (settings.gyro.flipZ) tempRegValue |= (1<<3); 00255 xgWriteByte(ORIENT_CFG_G, tempRegValue); 00256 } 00257 00258 void LSM9DS1::initAccel() 00259 { 00260 uint8_t tempRegValue = 0; 00261 00262 // CTRL_REG5_XL (0x1F) (Default value: 0x38) 00263 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] 00264 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. 00265 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples 00266 // Zen_XL - Z-axis output enabled 00267 // Yen_XL - Y-axis output enabled 00268 // Xen_XL - X-axis output enabled 00269 if (settings.accel.enableZ) tempRegValue |= (1<<5); 00270 if (settings.accel.enableY) tempRegValue |= (1<<4); 00271 if (settings.accel.enableX) tempRegValue |= (1<<3); 00272 00273 xgWriteByte(CTRL_REG5_XL, tempRegValue); 00274 00275 // CTRL_REG6_XL (0x20) (Default value: 0x00) 00276 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] 00277 // ODR_XL[2:0] - Output data rate & power mode selection 00278 // FS_XL[1:0] - Full-scale selection 00279 // BW_SCAL_ODR - Bandwidth selection 00280 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection 00281 tempRegValue = 0; 00282 // To disable the accel, set the sampleRate bits to 0. 00283 if (settings.accel.enabled) 00284 { 00285 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; 00286 } 00287 switch (settings.accel.scale) 00288 { 00289 case 4: 00290 tempRegValue |= (0x2 << 3); 00291 break; 00292 case 8: 00293 tempRegValue |= (0x3 << 3); 00294 break; 00295 case 16: 00296 tempRegValue |= (0x1 << 3); 00297 break; 00298 // Otherwise it'll be set to 2g (0x0 << 3) 00299 } 00300 if (settings.accel.bandwidth >= 0) 00301 { 00302 tempRegValue |= (1<<2); // Set BW_SCAL_ODR 00303 tempRegValue |= (settings.accel.bandwidth & 0x03); 00304 } 00305 xgWriteByte(CTRL_REG6_XL, tempRegValue); 00306 00307 // CTRL_REG7_XL (0x21) (Default value: 0x00) 00308 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] 00309 // HR - High resolution mode (0: disable, 1: enable) 00310 // DCF[1:0] - Digital filter cutoff frequency 00311 // FDS - Filtered data selection 00312 // HPIS1 - HPF enabled for interrupt function 00313 tempRegValue = 0; 00314 if (settings.accel.highResEnable) 00315 { 00316 tempRegValue |= (1<<7); // Set HR bit 00317 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; 00318 } 00319 xgWriteByte(CTRL_REG7_XL, tempRegValue); 00320 } 00321 00322 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average 00323 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch 00324 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store 00325 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to 00326 // subtract the biases ourselves. This results in a more accurate measurement in general and can 00327 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner 00328 // is good practice. 00329 void LSM9DS1::calibrate(bool autoCalc) 00330 { 00331 uint8_t data[6] = {0, 0, 0, 0, 0, 0}; 00332 uint8_t samples = 0; 00333 int ii; 00334 int32_t aBiasRawTemp[3] = {0, 0, 0}; 00335 int32_t gBiasRawTemp[3] = {0, 0, 0}; 00336 00337 // Turn on FIFO and set threshold to 32 samples 00338 enableFIFO(true); 00339 setFIFO(FIFO_THS, 0x1F); 00340 while (samples < 0x7F) 00341 { 00342 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples 00343 } 00344 for(ii = 0; ii < samples ; ii++) 00345 { // Read the gyro data stored in the FIFO 00346 readGyro(); 00347 gBiasRawTemp[0] += gx; 00348 gBiasRawTemp[1] += gy; 00349 gBiasRawTemp[2] += gz; 00350 readAccel(); 00351 aBiasRawTemp[0] += ax; 00352 aBiasRawTemp[1] += ay; 00353 aBiasRawTemp[2] += az - (int32_t)(1.0f/aRes); // Assumes sensor facing up! 00354 } 00355 for (ii = 0; ii < 3; ii++) 00356 { 00357 gBiasRaw[ii] = gBiasRawTemp[ii] / samples; 00358 gBias[ii] = calcGyro(gBiasRaw[ii]); 00359 aBiasRaw[ii] = aBiasRawTemp[ii] / samples; 00360 aBias[ii] = calcAccel(aBiasRaw[ii]); 00361 } 00362 00363 enableFIFO(false); 00364 setFIFO(FIFO_OFF, 0x00); 00365 00366 if (autoCalc) _autoCalc = true; 00367 } 00368 00369 void LSM9DS1::calibrateMag(bool loadIn) 00370 { 00371 int i, j; 00372 int16_t magMin[3] = {0, 0, 0}; 00373 int16_t magMax[3] = {0, 0, 0}; // The road warrior 00374 00375 for (i=0; i<128; i++) 00376 { 00377 while (!magAvailable()); 00378 readMag(); 00379 int16_t magTemp[3] = {0, 0, 0}; 00380 magTemp[0] = mx; 00381 magTemp[1] = my; 00382 magTemp[2] = mz; 00383 for (j = 0; j < 3; j++) 00384 { 00385 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; 00386 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; 00387 } 00388 } 00389 for (j = 0; j < 3; j++) 00390 { 00391 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; 00392 mBias[j] = calcMag(mBiasRaw[j]); 00393 if (loadIn) 00394 magOffset(j, mBiasRaw[j]); 00395 } 00396 00397 } 00398 void LSM9DS1::magOffset(uint8_t axis, int16_t offset) 00399 { 00400 if (axis > 2) 00401 return; 00402 uint8_t msb, lsb; 00403 msb = (offset & 0xFF00) >> 8; 00404 lsb = offset & 0x00FF; 00405 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); 00406 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); 00407 } 00408 00409 void LSM9DS1::initMag() 00410 { 00411 uint8_t tempRegValue = 0; 00412 00413 // CTRL_REG1_M (Default value: 0x10) 00414 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] 00415 // TEMP_COMP - Temperature compensation 00416 // OM[1:0] - X & Y axes op mode selection 00417 // 00:low-power, 01:medium performance 00418 // 10: high performance, 11:ultra-high performance 00419 // DO[2:0] - Output data rate selection 00420 // ST - Self-test enable 00421 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); 00422 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; 00423 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; 00424 // mWriteByte(CTRL_REG1_M, tempRegValue); 00425 // pmic 21.09.2019, settings now static 00426 // use 0xC2 for temperature compensation on, Fast ODR -> 300 Hz undocumented mode high performance 00427 // use 0x42 for temperature compensation off, Fast ODR -> 300 Hz undocumented mode high performance 00428 // use 0xE2 for temperature compensation on, Fast ODR -> 155 Hz undocumented mode ultra high performance 00429 // use 0x62 for temperature compensation off, Fast ODR -> 155 Hz undocumented mode ultra high performance 00430 // use 0xA2 for temperature compensation on, Fast ODR -> 155 Hz undocumented mode medium performance 00431 // use 0x22 for temperature compensation off, Fast ODR -> 155 Hz undocumented mode medium performance 00432 mWriteByte(CTRL_REG1_M, 0xC2); 00433 00434 // CTRL_REG2_M (Default value 0x00) 00435 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] 00436 // FS[1:0] - Full-scale configuration 00437 // REBOOT - Reboot memory content (0:normal, 1:reboot) 00438 // SOFT_RST - Reset config and user registers (0:default, 1:reset) 00439 tempRegValue = 0; 00440 switch (settings.mag.scale) 00441 { 00442 case 8: 00443 tempRegValue |= (0x1 << 5); 00444 break; 00445 case 12: 00446 tempRegValue |= (0x2 << 5); 00447 break; 00448 case 16: 00449 tempRegValue |= (0x3 << 5); 00450 break; 00451 // Otherwise we'll default to 4 gauss (00) 00452 } 00453 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss 00454 00455 // CTRL_REG3_M (Default value: 0x03) 00456 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] 00457 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) 00458 // LP - Low-power mode cofiguration (1:enable) 00459 // SIM - SPI mode selection (0:write-only, 1:read/write enable) 00460 // MD[1:0] - Operating mode 00461 // 00:continuous conversion, 01:single-conversion, 00462 // 10,11: Power-down 00463 tempRegValue = 0; 00464 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); 00465 tempRegValue |= (settings.mag.operatingMode & 0x3); 00466 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode 00467 00468 // CTRL_REG4_M (Default value: 0x00) 00469 // [0][0][0][0][OMZ1][OMZ0][BLE][0] 00470 // OMZ[1:0] - Z-axis operative mode selection 00471 // 00:low-power mode, 01:medium performance 00472 // 10:high performance, 11:ultra-high performance 00473 // BLE - Big/little endian data 00474 tempRegValue = 0; 00475 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; 00476 mWriteByte(CTRL_REG4_M, tempRegValue); 00477 00478 // CTRL_REG5_M (Default value: 0x00) 00479 // [0][BDU][0][0][0][0][0][0] 00480 // BDU - Block data update for magnetic data 00481 // 0:continuous, 1:not updated until MSB/LSB are read 00482 tempRegValue = 0; 00483 mWriteByte(CTRL_REG5_M, tempRegValue); 00484 } 00485 00486 uint8_t LSM9DS1::accelAvailable() 00487 { 00488 uint8_t status = xgReadByte(STATUS_REG_1); 00489 00490 return (status & (1<<0)); 00491 } 00492 00493 uint8_t LSM9DS1::gyroAvailable() 00494 { 00495 uint8_t status = xgReadByte(STATUS_REG_1); 00496 00497 return ((status & (1<<1)) >> 1); 00498 } 00499 00500 uint8_t LSM9DS1::tempAvailable() 00501 { 00502 uint8_t status = xgReadByte(STATUS_REG_1); 00503 00504 return ((status & (1<<2)) >> 2); 00505 } 00506 00507 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) 00508 { 00509 uint8_t status; 00510 status = mReadByte(STATUS_REG_M); 00511 00512 return ((status & (1<<axis)) >> axis); 00513 } 00514 00515 void LSM9DS1::readAccel() 00516 { 00517 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp 00518 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL 00519 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax 00520 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay 00521 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az 00522 if (_autoCalc) 00523 { 00524 ax -= aBiasRaw[X_AXIS]; 00525 ay -= aBiasRaw[Y_AXIS]; 00526 az -= aBiasRaw[Z_AXIS]; 00527 } 00528 accX = static_cast<float>(ax)/32768.0f*2.0f*9.81f; 00529 accY = static_cast<float>(ay)/32768.0f*2.0f*9.81f; 00530 accZ = static_cast<float>(az)/32768.0f*2.0f*9.81f; 00531 } 00532 00533 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) 00534 { 00535 uint8_t temp[2]; 00536 int16_t value; 00537 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); 00538 value = (temp[1] << 8) | temp[0]; 00539 00540 if (_autoCalc) 00541 value -= aBiasRaw[axis]; 00542 00543 return value; 00544 } 00545 00546 void LSM9DS1::readMag() 00547 { 00548 uint8_t temp[6]; // We'll read six bytes from the mag into temp 00549 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M 00550 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx 00551 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my 00552 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz 00553 00554 magX = static_cast<float>(mx)/32768.0f*4.0f; 00555 magY = static_cast<float>(my)/32768.0f*4.0f; 00556 magZ = static_cast<float>(mz)/32768.0f*4.0f; 00557 } 00558 00559 int16_t LSM9DS1::readMag(lsm9ds1_axis axis) 00560 { 00561 uint8_t temp[2]; 00562 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); 00563 return (temp[1] << 8) | temp[0]; 00564 } 00565 00566 void LSM9DS1::readTemp() 00567 { 00568 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp 00569 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L 00570 temperature = ((int16_t)temp[1] << 8) | temp[0]; 00571 } 00572 00573 void LSM9DS1::readGyro() 00574 { 00575 uint8_t temp[6]; // We'll read six bytes from the gyro into temp 00576 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G 00577 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx 00578 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy 00579 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz 00580 if (_autoCalc) 00581 { 00582 gx -= gBiasRaw[X_AXIS]; 00583 gy -= gBiasRaw[Y_AXIS]; 00584 gz -= gBiasRaw[Z_AXIS]; 00585 } 00586 gyroX = static_cast<float>(gx)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f; // measured correction 1.17, pmic 04.09.2019 00587 gyroY = static_cast<float>(gy)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f; 00588 gyroZ = static_cast<float>(gz)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f; 00589 } 00590 00591 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) 00592 { 00593 uint8_t temp[2]; 00594 int16_t value; 00595 00596 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); 00597 00598 value = (temp[1] << 8) | temp[0]; 00599 00600 if (_autoCalc) 00601 value -= gBiasRaw[axis]; 00602 00603 return value; 00604 } 00605 00606 float LSM9DS1::calcGyro(int16_t gyro) 00607 { 00608 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): 00609 return gRes * gyro; 00610 } 00611 00612 float LSM9DS1::calcAccel(int16_t accel) 00613 { 00614 // Return the accel raw reading times our pre-calculated g's / (ADC tick): 00615 return aRes * accel; 00616 } 00617 00618 float LSM9DS1::calcMag(int16_t mag) 00619 { 00620 // Return the mag raw reading times our pre-calculated Gs / (ADC tick): 00621 return mRes * mag; 00622 } 00623 00624 void LSM9DS1::setGyroScale(uint16_t gScl) 00625 { 00626 // Read current value of CTRL_REG1_G: 00627 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); 00628 // Mask out scale bits (3 & 4): 00629 ctrl1RegValue &= 0xE7; 00630 switch (gScl) 00631 { 00632 case 500: 00633 ctrl1RegValue |= (0x1 << 3); 00634 settings.gyro.scale = 500; 00635 break; 00636 case 2000: 00637 ctrl1RegValue |= (0x3 << 3); 00638 settings.gyro.scale = 2000; 00639 break; 00640 default: // Otherwise we'll set it to 245 dps (0x0 << 4) 00641 settings.gyro.scale = 245; 00642 break; 00643 } 00644 xgWriteByte(CTRL_REG1_G, ctrl1RegValue); 00645 00646 calcgRes(); 00647 } 00648 00649 void LSM9DS1::setAccelScale(uint8_t aScl) 00650 { 00651 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: 00652 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); 00653 // Mask out accel scale bits: 00654 tempRegValue &= 0xE7; 00655 00656 switch (aScl) 00657 { 00658 case 4: 00659 tempRegValue |= (0x2 << 3); 00660 settings.accel.scale = 4; 00661 break; 00662 case 8: 00663 tempRegValue |= (0x3 << 3); 00664 settings.accel.scale = 8; 00665 break; 00666 case 16: 00667 tempRegValue |= (0x1 << 3); 00668 settings.accel.scale = 16; 00669 break; 00670 default: // Otherwise it'll be set to 2g (0x0 << 3) 00671 settings.accel.scale = 2; 00672 break; 00673 } 00674 xgWriteByte(CTRL_REG6_XL, tempRegValue); 00675 00676 // Then calculate a new aRes, which relies on aScale being set correctly: 00677 calcaRes(); 00678 } 00679 00680 void LSM9DS1::setMagScale(uint8_t mScl) 00681 { 00682 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: 00683 uint8_t temp = mReadByte(CTRL_REG2_M); 00684 // Then mask out the mag scale bits: 00685 temp &= 0xFF^(0x3 << 5); 00686 00687 switch (mScl) 00688 { 00689 case 8: 00690 temp |= (0x1 << 5); 00691 settings.mag.scale = 8; 00692 break; 00693 case 12: 00694 temp |= (0x2 << 5); 00695 settings.mag.scale = 12; 00696 break; 00697 case 16: 00698 temp |= (0x3 << 5); 00699 settings.mag.scale = 16; 00700 break; 00701 default: // Otherwise we'll default to 4 gauss (00) 00702 settings.mag.scale = 4; 00703 break; 00704 } 00705 00706 // And write the new register value back into CTRL_REG6_XM: 00707 mWriteByte(CTRL_REG2_M, temp); 00708 00709 // We've updated the sensor, but we also need to update our class variables 00710 // First update mScale: 00711 //mScale = mScl; 00712 // Then calculate a new mRes, which relies on mScale being set correctly: 00713 calcmRes(); 00714 } 00715 00716 void LSM9DS1::setGyroODR(uint8_t gRate) 00717 { 00718 // Only do this if gRate is not 0 (which would disable the gyro) 00719 if ((gRate & 0x07) != 0) 00720 { 00721 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: 00722 uint8_t temp = xgReadByte(CTRL_REG1_G); 00723 // Then mask out the gyro ODR bits: 00724 temp &= 0xFF^(0x7 << 5); 00725 temp |= (gRate & 0x07) << 5; 00726 // Update our settings struct 00727 settings.gyro.sampleRate = gRate & 0x07; 00728 // And write the new register value back into CTRL_REG1_G: 00729 xgWriteByte(CTRL_REG1_G, temp); 00730 } 00731 } 00732 00733 void LSM9DS1::setAccelODR(uint8_t aRate) 00734 { 00735 // Only do this if aRate is not 0 (which would disable the accel) 00736 if ((aRate & 0x07) != 0) 00737 { 00738 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: 00739 uint8_t temp = xgReadByte(CTRL_REG6_XL); 00740 // Then mask out the accel ODR bits: 00741 temp &= 0x1F; 00742 // Then shift in our new ODR bits: 00743 temp |= ((aRate & 0x07) << 5); 00744 settings.accel.sampleRate = aRate & 0x07; 00745 // And write the new register value back into CTRL_REG1_XM: 00746 xgWriteByte(CTRL_REG6_XL, temp); 00747 } 00748 } 00749 00750 void LSM9DS1::setMagODR(uint8_t mRate) 00751 { 00752 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: 00753 uint8_t temp = mReadByte(CTRL_REG1_M); 00754 // Then mask out the mag ODR bits: 00755 temp &= 0xFF^(0x7 << 2); 00756 // Then shift in our new ODR bits: 00757 temp |= ((mRate & 0x07) << 2); 00758 settings.mag.sampleRate = mRate & 0x07; 00759 // And write the new register value back into CTRL_REG5_XM: 00760 mWriteByte(CTRL_REG1_M, temp); 00761 } 00762 00763 void LSM9DS1::calcgRes() 00764 { 00765 gRes = ((float) settings.gyro.scale) / 32768.0f; 00766 } 00767 00768 void LSM9DS1::calcaRes() 00769 { 00770 aRes = ((float) settings.accel.scale) / 32768.0f; 00771 } 00772 00773 void LSM9DS1::calcmRes() 00774 { 00775 //mRes = ((float) settings.mag.scale) / 32768.0; 00776 switch (settings.mag.scale) 00777 { 00778 case 4: 00779 mRes = magSensitivity[0]; 00780 break; 00781 case 8: 00782 mRes = magSensitivity[1]; 00783 break; 00784 case 12: 00785 mRes = magSensitivity[2]; 00786 break; 00787 case 16: 00788 mRes = magSensitivity[3]; 00789 break; 00790 } 00791 00792 } 00793 00794 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, 00795 h_lactive activeLow, pp_od pushPull) 00796 { 00797 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of 00798 // those two values. 00799 // [generator] should be an OR'd list of values from the interrupt_generators enum 00800 xgWriteByte(interrupt, generator); 00801 00802 // Configure CTRL_REG8 00803 uint8_t temp; 00804 temp = xgReadByte(CTRL_REG8); 00805 00806 if (activeLow) temp |= (1<<5); 00807 else temp &= ~(1<<5); 00808 00809 if (pushPull) temp &= ~(1<<4); 00810 else temp |= (1<<4); 00811 00812 xgWriteByte(CTRL_REG8, temp); 00813 } 00814 00815 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) 00816 { 00817 uint8_t temp = 0; 00818 00819 temp = threshold & 0x7F; 00820 if (sleepOn) temp |= (1<<7); 00821 xgWriteByte(ACT_THS, temp); 00822 00823 xgWriteByte(ACT_DUR, duration); 00824 } 00825 00826 uint8_t LSM9DS1::getInactivity() 00827 { 00828 uint8_t temp = xgReadByte(STATUS_REG_0); 00829 temp &= (0x10); 00830 return temp; 00831 } 00832 00833 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) 00834 { 00835 // Use variables from accel_interrupt_generator, OR'd together to create 00836 // the [generator]value. 00837 uint8_t temp = generator; 00838 if (andInterrupts) temp |= 0x80; 00839 xgWriteByte(INT_GEN_CFG_XL, temp); 00840 } 00841 00842 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) 00843 { 00844 // Write threshold value to INT_GEN_THS_?_XL. 00845 // axis will be 0, 1, or 2 (x, y, z respectively) 00846 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); 00847 00848 // Write duration and wait to INT_GEN_DUR_XL 00849 uint8_t temp; 00850 temp = (duration & 0x7F); 00851 if (wait) temp |= 0x80; 00852 xgWriteByte(INT_GEN_DUR_XL, temp); 00853 } 00854 00855 uint8_t LSM9DS1::getAccelIntSrc() 00856 { 00857 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); 00858 00859 // Check if the IA_XL (interrupt active) bit is set 00860 if (intSrc & (1<<6)) 00861 { 00862 return (intSrc & 0x3F); 00863 } 00864 00865 return 0; 00866 } 00867 00868 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) 00869 { 00870 // Use variables from accel_interrupt_generator, OR'd together to create 00871 // the [generator]value. 00872 uint8_t temp = generator; 00873 if (aoi) temp |= 0x80; 00874 if (latch) temp |= 0x40; 00875 xgWriteByte(INT_GEN_CFG_G, temp); 00876 } 00877 00878 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) 00879 { 00880 uint8_t buffer[2]; 00881 buffer[0] = (threshold & 0x7F00) >> 8; 00882 buffer[1] = (threshold & 0x00FF); 00883 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. 00884 // axis will be 0, 1, or 2 (x, y, z respectively) 00885 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); 00886 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); 00887 00888 // Write duration and wait to INT_GEN_DUR_XL 00889 uint8_t temp; 00890 temp = (duration & 0x7F); 00891 if (wait) temp |= 0x80; 00892 xgWriteByte(INT_GEN_DUR_G, temp); 00893 } 00894 00895 uint8_t LSM9DS1::getGyroIntSrc() 00896 { 00897 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); 00898 00899 // Check if the IA_G (interrupt active) bit is set 00900 if (intSrc & (1<<6)) 00901 { 00902 return (intSrc & 0x3F); 00903 } 00904 00905 return 0; 00906 } 00907 00908 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) 00909 { 00910 // Mask out non-generator bits (0-4) 00911 uint8_t config = (generator & 0xE0); 00912 // IEA bit is 0 for active-low, 1 for active-high. 00913 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); 00914 // IEL bit is 0 for latched, 1 for not-latched 00915 if (!latch) config |= (1<<1); 00916 // As long as we have at least 1 generator, enable the interrupt 00917 if (generator != 0) config |= (1<<0); 00918 00919 mWriteByte(INT_CFG_M, config); 00920 } 00921 00922 void LSM9DS1::configMagThs(uint16_t threshold) 00923 { 00924 // Write high eight bits of [threshold] to INT_THS_H_M 00925 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); 00926 // Write low eight bits of [threshold] to INT_THS_L_M 00927 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); 00928 } 00929 00930 uint8_t LSM9DS1::getMagIntSrc() 00931 { 00932 uint8_t intSrc = mReadByte(INT_SRC_M); 00933 00934 // Check if the INT (interrupt active) bit is set 00935 if (intSrc & (1<<0)) 00936 { 00937 return (intSrc & 0xFE); 00938 } 00939 00940 return 0; 00941 } 00942 00943 void LSM9DS1::sleepGyro(bool enable) 00944 { 00945 uint8_t temp = xgReadByte(CTRL_REG9); 00946 if (enable) temp |= (1<<6); 00947 else temp &= ~(1<<6); 00948 xgWriteByte(CTRL_REG9, temp); 00949 } 00950 00951 void LSM9DS1::enableFIFO(bool enable) 00952 { 00953 uint8_t temp = xgReadByte(CTRL_REG9); 00954 if (enable) temp |= (1<<1); 00955 else temp &= ~(1<<1); 00956 xgWriteByte(CTRL_REG9, temp); 00957 } 00958 00959 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) 00960 { 00961 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked 00962 // limit it to the maximum. 00963 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; 00964 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); 00965 } 00966 00967 uint8_t LSM9DS1::getFIFOSamples() 00968 { 00969 return (xgReadByte(FIFO_SRC) & 0x3F); 00970 } 00971 00972 void LSM9DS1::constrainScales() 00973 { 00974 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && 00975 (settings.gyro.scale != 2000)) 00976 { 00977 settings.gyro.scale = 245; 00978 } 00979 00980 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && 00981 (settings.accel.scale != 8) && (settings.accel.scale != 16)) 00982 { 00983 settings.accel.scale = 2; 00984 } 00985 00986 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && 00987 (settings.mag.scale != 12) && (settings.mag.scale != 16)) 00988 { 00989 settings.mag.scale = 4; 00990 } 00991 } 00992 00993 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) 00994 { 00995 // Whether we're using I2C or SPI, write a byte using the 00996 // gyro-specific I2C address or SPI CS pin. 00997 if (settings.device.commInterface == IMU_MODE_I2C) { 00998 printf("yo"); 00999 I2CwriteByte(_xgAddress, subAddress, data); 01000 } else if (settings.device.commInterface == IMU_MODE_SPI) { 01001 SPIwriteByte(_xgAddress, subAddress, data); 01002 } 01003 } 01004 01005 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) 01006 { 01007 // Whether we're using I2C or SPI, write a byte using the 01008 // accelerometer-specific I2C address or SPI CS pin. 01009 if (settings.device.commInterface == IMU_MODE_I2C) 01010 return I2CwriteByte(_mAddress, subAddress, data); 01011 else if (settings.device.commInterface == IMU_MODE_SPI) 01012 return SPIwriteByte(_mAddress, subAddress, data); 01013 } 01014 01015 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) 01016 { 01017 // Whether we're using I2C or SPI, read a byte using the 01018 // gyro-specific I2C address or SPI CS pin. 01019 if (settings.device.commInterface == IMU_MODE_I2C) 01020 return I2CreadByte(_xgAddress, subAddress); 01021 else if (settings.device.commInterface == IMU_MODE_SPI) 01022 return SPIreadByte(_xgAddress, subAddress); 01023 } 01024 01025 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) 01026 { 01027 // Whether we're using I2C or SPI, read multiple bytes using the 01028 // gyro-specific I2C address or SPI CS pin. 01029 if (settings.device.commInterface == IMU_MODE_I2C) { 01030 I2CreadBytes(_xgAddress, subAddress, dest, count); 01031 } else if (settings.device.commInterface == IMU_MODE_SPI) { 01032 SPIreadBytes(_xgAddress, subAddress, dest, count); 01033 } 01034 } 01035 01036 uint8_t LSM9DS1::mReadByte(uint8_t subAddress) 01037 { 01038 // Whether we're using I2C or SPI, read a byte using the 01039 // accelerometer-specific I2C address or SPI CS pin. 01040 if (settings.device.commInterface == IMU_MODE_I2C) 01041 return I2CreadByte(_mAddress, subAddress); 01042 else if (settings.device.commInterface == IMU_MODE_SPI) 01043 return SPIreadByte(_mAddress, subAddress); 01044 } 01045 01046 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) 01047 { 01048 // Whether we're using I2C or SPI, read multiple bytes using the 01049 // accelerometer-specific I2C address or SPI CS pin. 01050 if (settings.device.commInterface == IMU_MODE_I2C) 01051 I2CreadBytes(_mAddress, subAddress, dest, count); 01052 else if (settings.device.commInterface == IMU_MODE_SPI) 01053 SPIreadBytes(_mAddress, subAddress, dest, count); 01054 } 01055 01056 void LSM9DS1::initSPI() 01057 { 01058 /* 01059 pinMode(_xgAddress, OUTPUT); 01060 digitalWrite(_xgAddress, HIGH); 01061 pinMode(_mAddress, OUTPUT); 01062 digitalWrite(_mAddress, HIGH); 01063 01064 SPI.begin(); 01065 // Maximum SPI frequency is 10MHz, could divide by 2 here: 01066 SPI.setClockDivider(SPI_CLOCK_DIV2); 01067 // Data is read and written MSb first. 01068 SPI.setBitOrder(MSBFIRST); 01069 // Data is captured on rising edge of clock (CPHA = 0) 01070 // Base value of the clock is HIGH (CPOL = 1) 01071 SPI.setDataMode(SPI_MODE0); 01072 */ 01073 } 01074 01075 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) 01076 { 01077 /* 01078 digitalWrite(csPin, LOW); // Initiate communication 01079 01080 // If write, bit 0 (MSB) should be 0 01081 // If single write, bit 1 should be 0 01082 SPI.transfer(subAddress & 0x3F); // Send Address 01083 SPI.transfer(data); // Send data 01084 01085 digitalWrite(csPin, HIGH); // Close communication 01086 */ 01087 } 01088 01089 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) 01090 { 01091 uint8_t temp; 01092 // Use the multiple read function to read 1 byte. 01093 // Value is returned to `temp`. 01094 SPIreadBytes(csPin, subAddress, &temp, 1); 01095 return temp; 01096 } 01097 01098 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, 01099 uint8_t * dest, uint8_t count) 01100 { 01101 // To indicate a read, set bit 0 (msb) of first byte to 1 01102 uint8_t rAddress = 0x80 | (subAddress & 0x3F); 01103 // Mag SPI port is different. If we're reading multiple bytes, 01104 // set bit 1 to 1. The remaining six bytes are the address to be read 01105 if ((csPin == _mAddress) && count > 1) 01106 rAddress |= 0x40; 01107 01108 /* 01109 digitalWrite(csPin, LOW); // Initiate communication 01110 SPI.transfer(rAddress); 01111 for (int i=0; i<count; i++) 01112 { 01113 dest[i] = SPI.transfer(0x00); // Read into destination array 01114 } 01115 digitalWrite(csPin, HIGH); // Close communication 01116 */ 01117 } 01118 01119 void LSM9DS1::initI2C() 01120 { 01121 /* 01122 Wire.begin(); // Initialize I2C library 01123 */ 01124 01125 //already initialized in constructor! 01126 } 01127 01128 // Wire.h read and write protocols 01129 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) 01130 { 01131 /* 01132 Wire.beginTransmission(address); // Initialize the Tx buffer 01133 Wire.write(subAddress); // Put slave register address in Tx buffer 01134 Wire.write(data); // Put data in Tx buffer 01135 Wire.endTransmission(); // Send the Tx buffer 01136 */ 01137 char temp_data[2] = {subAddress, data}; 01138 i2c.write(address, temp_data, 2); 01139 } 01140 01141 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) 01142 { 01143 /* 01144 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; 01145 uint8_t data; // `data` will store the register data 01146 01147 Wire.beginTransmission(address); // Initialize the Tx buffer 01148 Wire.write(subAddress); // Put slave register address in Tx buffer 01149 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive 01150 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address 01151 while ((Wire.available() < 1) && (timeout-- > 0)) 01152 delay(1); 01153 01154 if (timeout <= 0) 01155 return 255; //! Bad! 255 will be misinterpreted as a good value. 01156 01157 data = Wire.read(); // Fill Rx buffer with result 01158 return data; // Return data read from slave register 01159 */ 01160 char data; 01161 char temp[1] = {subAddress}; 01162 01163 i2c.write(address, temp, 1); 01164 //i2c.write(address & 0xFE); 01165 temp[1] = 0x00; 01166 i2c.write(address, temp, 1); 01167 //i2c.write( address | 0x01); 01168 int a = i2c.read(address, &data, 1); 01169 return data; 01170 } 01171 01172 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) 01173 { 01174 /* 01175 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; 01176 Wire.beginTransmission(address); // Initialize the Tx buffer 01177 // Next send the register to be read. OR with 0x80 to indicate multi-read. 01178 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer 01179 01180 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive 01181 uint8_t i = 0; 01182 Wire.requestFrom(address, count); // Read bytes from slave register address 01183 while ((Wire.available() < count) && (timeout-- > 0)) 01184 delay(1); 01185 if (timeout <= 0) 01186 return -1; 01187 01188 for (int i=0; i<count;) 01189 { 01190 if (Wire.available()) 01191 { 01192 dest[i++] = Wire.read(); 01193 } 01194 } 01195 return count; 01196 */ 01197 int i; 01198 char temp_dest[count]; 01199 char temp[1] = {subAddress}; 01200 i2c.write(address, temp, 1); 01201 i2c.read(address, temp_dest, count); 01202 01203 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion 01204 for (i=0; i < count; i++) { 01205 dest[i] = temp_dest[i]; 01206 } 01207 return count; 01208 } 01209
Generated on Thu Jul 14 2022 22:08:52 by
1.7.2