20160815 計器最新版

Dependencies:   SDFileSystem mbed

Fork of keiki2016verRtos by albatross

main.cpp

Committer:
taurin
Date:
2016-02-23
Revision:
0:085b2c5e3254
Child:
1:5ec2409854da

File content as of revision 0:085b2c5e3254:

#include "mbed.h"
#include "Fusokukei.h"
#include "MPU6050.h"
#include "SDFileSystem.h"

#define KX_VALUE_MIN 0.4
#define KX_VALUE_MAX 0.8
#define SOUDA_DATAS_NUM 14
#define WRITE_DATAS_NUM 28
#define MPU_LOOP_TIME 0.01
#define AIR_LOOP_TIME 0.01
#define WRITE_DATAS_LOOP_TIME 0.5
#define ROLL_R_MAX_DEG 5
#define ROLL_L_MAX_DEG 5

Serial pc(USBTX,USBRX);
Serial soudaSerial(p13,p14);
Serial twelite(p9,p10);
Ticker writeDatasTicker;

InterruptIn FusokukeiPin(p30);
Ticker FusokukeiTicker;
Fusokukei air;
volatile int air_kaitensu= 0;

float sum = 0;
uint32_t sumCount = 0;
MPU6050 mpu6050;
Timer t;
Ticker mpu6050Ticker;

AnalogIn kx_X(p17);
AnalogIn kx_Y(p16);
AnalogIn kx_Z(p15);

DigitalOut RollAlarmR(p20);
DigitalOut RollAlarmL(p19);
DigitalOut led(LED1);

SDFileSystem sd(p5, p6, p7, p8, "sd");
FILE* fp;

char soudaDatas[SOUDA_DATAS_NUM];
char writeDatas[WRITE_DATAS_NUM];

void air_countUp();
void call_calcAirSpeed();
void init();
void FusokukeiInit();
void MpuInit();
void mpuProcessing();
void SdInit();
void DataReceiveFromSouda();
void WriteDatas();
float calcAttackAngle();
float calcKXdeg(float x);

void air_countUp(){
    air_kaitensu++;
}

void call_calcAirSpeed(){
    air.calcAirSpeed(air_kaitensu);
    air_kaitensu = 0;
}

void init(){
    soudaSerial.attach(DataReceiveFromSouda, Serial::RxIrq);
    //wait(0.01);
    FusokukeiInit();
    MpuInit(); 
   // SdInit();
}

void FusokukeiInit(){
    FusokukeiPin.rise(air_countUp);
    FusokukeiTicker.attach(&call_calcAirSpeed, AIR_LOOP_TIME);
}

void MpuInit(){
    i2c.frequency(400000);  // use fast (400 kHz) I2C
    t.start();
    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
    if (whoami == 0x68) { // WHO_AM_I should always be 0x68
        wait(1);
        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
        wait(1);
        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
            mpu6050.initMPU6050(); //pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
            wait(2);
        } else {
        }
    } else {
        pc.printf("out\n\r"); // Loop forever if communication doesn't happen
    }   
}

void mpuProcessing(){
    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
            mpu6050.getAres();
            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
            ay = (float)accelCount[1]*aRes - accelBias[1];
            az = (float)accelCount[2]*aRes - accelBias[2];
            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
            mpu6050.getGres();
            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
        }
        Now = t.read_us();
        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
        lastUpdate = Now;
        sum += deltat;
        sumCount++;
        if(lastUpdate - firstUpdate > 10000000.0f) {
            beta = 0.04;  // decrease filter gain after stabilized
            zeta = 0.015; // increasey bias drift gain after stabilized
        }
        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
        delt_t = t.read_ms() - count;
        if (delt_t > 200) { // update LCD once per half-second independent of read rate
            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
            pitch *= 180.0f / PI;
            yaw   *= 180.0f / PI;
            roll  *= 180.0f / PI;
            pc.printf("p:%f,r:%f,y:%f\n\r",pitch,roll,yaw);
            myled= !myled;
            count = t.read_ms();
            sum = 0;
            sumCount = 0;
    }
}

void SdInit(){
    mkdir("/sd/mydir", 0777);
    fp = fopen("/sd/mydir/sdtest2.csv", "w");
    if(fp == NULL) {
        error("Could not open file for write\n");
    }
    fprintf(fp, "Hello fun SD Card World!\n\r");
    fclose(fp);
}

void DataReceiveFromSouda(){
    int soudaDatasIndex = 0;
    while(soudaSerial.readable()){
        soudaDatas[soudaDatasIndex++] = soudaSerial.getc();     
    }
}

void WriteDatas(){
    //for(int i = 0; i < WRITE_DATAS_NUM; i++){
//        pc.printf("%i\t",writeDatas[i]);
//        if(i % 7 == 0){
//            pc.printf("\n\r");
//        }
//    }
    //pc.printf("p:%f,r:%f,y:%f\n\r",pitch,roll,yaw);
   // pc.printf("gx:%f,gy:%f,gz:%f\n\r",gx,gy,gz);   
   // pc.printf("angleX:%f,angleY:%f,angleZ:%f\n\r",calcKXdeg(gx),calcKXdeg(gy),calcKXdeg(gz));
    //pc.printf("as:%f\n\r",airSpeed);
    //fp = fopen("/sd/mydir/sdtest.csv", "a");
//    if(fp == NULL) {
//        error("Could not open file for write\n");
//    }
//    fprintf(fp, "p:%f,r:%f,y:%f\n",pitch,roll,yaw);
//    fprintf(fp, "gx:%f,gy:%f,gz:%f\n",gx,gy,gz);
//    fprintf(fp, "as:%f\n",airSpeed);
//    fclose(fp);
}

float calcKXdeg(float x){
    return -310.54*x+156.65;
}

float calcAttackAngle(){
    return pitch-calcKXdeg(kx_Z.read());
}

void kxRead(){
    gx = kx_X.read();
    gy = kx_Y.read();
    gz = kx_Z.read();
}

void RollAlarm(){ 
    if((roll < 0) && (roll > ROLL_L_MAX_DEG-180)){
        RollAlarmL = 1;
    }
    else{
        RollAlarmL = 0;
    }
    
    if((roll > 0) && (roll < 180-ROLL_R_MAX_DEG)){
        RollAlarmR = 1;
    }
    else{
        RollAlarmR = 0;
    }
}

int main(){
    pc.printf("test\n\r");
    init();
    while(1){
        mpuProcessing();
        kxRead();
        WriteDatas();
        RollAlarm();
        wait(0.01);
    }
}