Program to control UPAS with MicroChip BLE chip + iPhone App

Dependencies:   ADS1115 BME280 Calibration CronoDot EEPROM LSM303 MCP40D17 MicroBLE NCP5623BMUTBG SDFileSystem SI1145 STC3100 mbed

Revision:
0:2cb2b2ea316f
Child:
1:9fbb5b665068
diff -r 000000000000 -r 2cb2b2ea316f main.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Mon Jan 18 22:09:51 2016 +0000
@@ -0,0 +1,410 @@
+#include "mbed.h"
+#include "SDFileSystem.h"
+#include "Adafruit_ADS1015.h"
+#include "MCP40D17.h"
+#include "STC3100.h"
+#include "LSM303.h"
+#include "BME280.h"
+#include "SI1145.h"
+#include "NCP5623BMUTBG.h"
+#include "CronoDot.h"
+#include "EEPROM.h"
+#include "Calibration.h"
+
+#define SCL         20
+#define SDA         22
+
+
+uint8_t startAndEndTime[12] = {0,};
+uint8_t logIntervalReadOut[1] = {0,}; 
+
+I2C                 i2c(p22, p20);
+Adafruit_ADS1115    ads(&i2c);
+MCP40D17            DigPot(&i2c);
+BME280              bmesensor(p22, p20);
+STC3100             gasG(p22, p20);
+
+Serial              microChannel(P0_9,P0_11);
+
+DigitalOut          blower(p29, 0);
+DigitalOut          pbKill(p18, 1);
+LSM303              movementsensor(p22, p20);
+SI1145              lightsensor(p22, p20);
+NCP5623BMUTBG       RGB_LED(p22, p20);
+CronoDot            RTC(p22, p20);
+EEPROM              E2PROM(p22, p20);
+DigitalOut          GPS_EN(p4,0);       //pin 4 is used to enable and disable the GPS, in order to recive serial communications
+Calibration         calibrations(1);     //Default serial/calibration if there are no values for the selected option
+
+Timeout         stop;   //This is the stop call back object
+Timeout         logg;   //This is the logging call back object
+
+uint16_t serial_num = 1;                // Default serial/calibration number
+int RunReady =0;
+
+
+float press;
+float temp;
+float rh;
+
+int uv;
+int vis;
+int ir;
+
+float compass;
+float accel_x;
+float accel_y;
+float accel_z;
+float accel_comp;
+float mag_x;
+float mag_y;
+float mag_z;
+
+int vInReading;
+int vBlowerReading;
+int omronDiff;
+float omronVolt; //V
+int omronReading;
+float atmoRho; //g/L
+
+float massflow; //g/min
+float volflow; //L/min
+float volflowSet = 1.0; //L/min
+int   logInerval = 10; //seconds
+double secondsD = 0;
+float massflowSet;
+float deltaVflow = 0.0;
+float deltaMflow = 0.0;
+float gainFlow;
+float sampledVol; //L, total sampled volume
+
+int digital_pot_setpoint; //min = 0x7F, max = 0x00
+int digital_pot_set;
+int digital_pot_change;
+int digitalpotMax = 127;
+int digitalpotMin = 2;
+
+int dutyUp;
+int dutyDown;
+
+// variables are only place holders for the US_Menu //
+int refreshtime;
+float home_lat, home_lon, work_lat, work_lon;
+//*************************************************//
+
+//int refresh_Time = 10;   // refresh time in s, note calling read_GPS()(or similar) will still take how ever long it needs(hopefully < 1s)
+
+char filename[] = "/sd/XXXX0000LOG000000000000---------------.txt";
+SDFileSystem sd(SPIS_PSELMOSI, SPIS_PSELMISO, SPIS_PSELSCK, SPIS_PSELSS, "sd"); // I believe this matches Todd's pinout, let me know if this doesn't work. (p12, p13, p15, p14)
+
+
+
+void check_stop()   // this checks if it's time to stop and shutdown
+{
+    
+    if(RTC.compare(startAndEndTime[6], startAndEndTime[7], startAndEndTime[8], startAndEndTime[9], startAndEndTime[10], startAndEndTime[11])) {
+        pbKill = 0; // this is were we shut everything down
+    }
+    stop.detach();
+    stop.attach(&check_stop, 9);
+    
+}
+
+
+void log_data()
+{
+    logg.detach();
+
+    logg.attach(&log_data, logInerval);     // reading and logging data must take significintly less than 0.5s. This can be increased.
+
+    RTC.get_time();
+
+    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
+    omronVolt = (omronReading*4.096)/(32768*2);
+
+    if(omronVolt<=calibrations.omronVMin) {
+        massflow = calibrations.omronMFMin;
+    } else if(omronVolt>=calibrations.omronVMax) {
+        massflow = calibrations.omronMFMax;
+    } else {
+        massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
+    }
+
+    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
+    volflow = massflow/atmoRho;
+    sampledVol = sampledVol + ((((float)logInerval)/60.0)*volflow);
+    deltaVflow = volflow-volflowSet;
+    massflowSet = volflowSet*atmoRho;
+    deltaMflow = massflow-massflowSet;
+    if(abs(deltaMflow)>.025) {
+        digital_pot_change = (int)(gainFlow*deltaMflow);
+
+
+        if(abs(digital_pot_change)>=50) {
+            digital_pot_set = (int)(digital_pot_set+(int)((10.0*deltaMflow)));
+            RGB_LED.set_led(1,0,0);
+
+        } else if(digital_pot_change+digital_pot_set>=digitalpotMax&abs(digital_pot_change)<50) {
+            digital_pot_set = digitalpotMax;
+            RGB_LED.set_led(1,0,0);
+        } else if(digital_pot_change+digital_pot_set<=digitalpotMin&abs(digital_pot_change)<50) {
+            digital_pot_set = digitalpotMin;
+            RGB_LED.set_led(1,0,0);
+        } else {
+            digital_pot_set = (digital_pot_set+ digital_pot_change);
+            RGB_LED.set_led(1,1,0);
+        }
+
+        DigPot.writeRegister(digital_pot_set);
+
+    } else {
+        RGB_LED.set_led(0,1,0);
+    }
+    movementsensor.getACCEL();
+    movementsensor.getCOMPASS();
+    compass = movementsensor.getCOMPASS_HEADING();
+    accel_x = movementsensor.AccelData.x;
+    accel_y = movementsensor.AccelData.y;
+    accel_z = movementsensor.AccelData.z;
+    accel_comp = pow(accel_x,(float)2)+pow(accel_y,(float)2)+pow(accel_z,(float)2)-1.0;
+    mag_x = movementsensor.MagData.x;
+    mag_y = movementsensor.MagData.y;
+    mag_z = movementsensor.MagData.z;
+    vInReading = ads.readADC_SingleEnded(1, 0xD583); // read channel 0
+    vBlowerReading = ads.readADC_SingleEnded(2, 0xE783); // read channel 0
+    omronDiff = ads.readADC_Differential(0x8583); // differential channel 2-3
+    press = bmesensor.getPressure();
+    temp = bmesensor.getTemperature()-5.0;
+    rh = bmesensor.getHumidity();
+    uv =  lightsensor.getUV();
+    vis = lightsensor.getVIS();
+    ir = lightsensor.getIR();
+    FILE *fp = fopen(filename, "a");
+    fprintf(fp, "%02d,%02d,%02d,%02d,%02d,%02d,%1.3f,%1.3f,%2.2f,%4.2f,%2.1f,%1.3f,%1.3f,%5.1f,%1.1f,%1.1f,%1.1f,%1.1f,%d,%d,%d,%d,%d,%d,%d,%d,%d,%1.3f,%1.3f,%f\r\n",RTC.year, RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,omronVolt,massflow,temp,press,rh,atmoRho,volflow,sampledVol,accel_x,accel_y,accel_z,accel_comp,uv,omronReading, vInReading, vBlowerReading, omronDiff,gasG.getAmps(), gasG.getVolts(), gasG.getCharge(),digital_pot_set, deltaMflow, deltaVflow, compass);
+    fclose(fp);
+    
+}
+
+static uint8_t rx_buf[20];
+static uint8_t rx_len=0;
+
+void uartMicro(void){
+    int j = 0;
+    while(microChannel.readable()){
+        rx_buf[rx_len++] = microChannel.getc();
+        if(rx_len>=20 ||rx_buf[rx_len-1]=='\0' || rx_buf[rx_len-1]=='\n')break; 
+        j++; 
+    }
+    for(int i=0; i<rx_len; i++){
+            microChannel.putc(rx_buf[i]);        
+    }
+    rx_len = 0;  
+
+}
+/*EEPROM ADDRESSING:
+    0:Status bit-Unused
+    1-15:Device Name
+    16-19:Flow Rate
+    20: Data Log Interval
+    21-26: Start Time: ssmmHHddMMyy
+    27-32: Stop Time: ssmmHHddMMyy
+    33: Duty Up
+    34: Duty Down
+    35-38: Home Latitude
+    39-42: Home Longitude
+    43-46: Work Latitude
+    47-50: Work Longitude
+    51: Runready: Currently useless, should be 0
+    52-53: Device Calibration
+    54: Consider RunReady
+    55-56: Menu Options
+    57+ Nothing*/
+int main()
+{
+    RGB_LED.set_led(1,1,1);
+    microChannel.baud(115200);
+    microChannel.attach(uartMicro,microChannel.RxIrq);
+// Setup and Initialization
+//---------------------------------------------------------------------------------------------//
+    RTC.get_time();
+    uint8_t rtcPassValues[7] = {0x00,RTC.seconds, RTC.minutes,RTC.hour,RTC.date,RTC.month,RTC.year};
+    uint8_t sampleTimePassValues[13] = {0x01,};
+    uint8_t subjectLabelOriginal[9] = {0x02,};
+    uint8_t dataLogOriginal[2] = {0x03,};
+    uint8_t flowRateOriginal[5] = {0x04,};
+    //uint8_t presetRunModeCheck[1] = {0,}; Commented and currently unused to prevent mem issues
+    E2PROM.read(0x00015, sampleTimePassValues+1, 12);
+    E2PROM.read(0x00001, subjectLabelOriginal+1,8);
+    E2PROM.read(0x00014,dataLogOriginal+1,1);
+    E2PROM.read(0x00010,flowRateOriginal+1,4);
+    //E2PROM.read(0x00033,presetRunModeCheck,1); //commented out mem issue
+
+    while (1) {
+             
+        for(int i=0; i<7; i++){
+            microChannel.putc(rtcPassValues[i]);        
+        }  
+        wait(2);
+        
+        for(int i=0; i<13; i++){
+            microChannel.putc(sampleTimePassValues[i]);        
+        }  
+        wait(2);
+        
+        for(int i=0; i<9; i++){
+            microChannel.putc(subjectLabelOriginal[i]);        
+        }  
+        wait(2);
+        
+        for(int i=0; i<2; i++){
+            microChannel.putc(dataLogOriginal[i]);        
+        }  
+        wait(2);
+        
+        for(int i=0; i<5; i++){
+            microChannel.putc(flowRateOriginal[i]);        
+        }  
+        wait(2);
+        
+        if(RunReady==10){ //Check to see if app is done with configurations         
+            break;
+        }
+        
+        if(RunReady==12){ //If 24 hour mode has been set, then shut down the UPAS for automatic start later.       
+            pbKill = 0;
+        }
+    }
+    
+    E2PROM.read(0x00015, startAndEndTime, 12); //Grab start and end times from EEPROM
+    while(!RTC.compare(startAndEndTime[0], startAndEndTime[1], startAndEndTime[2], startAndEndTime[3], startAndEndTime[4], startAndEndTime[5])) {  // this while waits for the start time by looping until the start time
+            wait(0.5);
+            
+            RTC.get_time(); 
+
+    }
+
+    
+    RGB_LED.set_led(0,1,0);
+    
+    //Get the proper serial number
+    E2PROM.read(0x00034, flowRateOriginal,2);    
+    serial_num = ((uint16_t)flowRateOriginal[1] << 8) | flowRateOriginal[0];
+    calibrations.initialize(serial_num);
+    blower=1;
+    E2PROM.read(0x00014,logIntervalReadOut,1);
+    logInerval = logIntervalReadOut[0];
+     
+    RunReady = 0;
+
+
+    stop.attach(&check_stop, 30);    // check if we should shut down every 9 seconds, starting 60s after the start.
+
+    //Use the flow rate value stored in eeprom
+    E2PROM.read(0x00010,flowRateOriginal,4);
+    E2PROM.byteToFloat(flowRateOriginal, &volflowSet);
+    
+    if(volflowSet<=1.0) {
+        gainFlow = 100;
+    } else if(volflowSet>=2.0) {
+        gainFlow = 25;
+    } else {
+        gainFlow = 25;
+    }
+
+    RGB_LED.set_led(1,0,0);
+    press = bmesensor.getPressure();
+    temp = bmesensor.getTemperature();
+    rh = bmesensor.getHumidity();
+
+    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
+    massflowSet = volflowSet*atmoRho;
+    //Digtal pot tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
+
+
+    digital_pot_setpoint = (int)floor(calibrations.DP4*pow(massflowSet,4)+calibrations.DP3*pow(massflowSet,3)+calibrations.DP2*pow(massflowSet,2)+calibrations.DP1*massflowSet+calibrations.DP0); //min = 0x7F, max = 0x00
+
+    if(digital_pot_setpoint>=digitalpotMax) {
+        digital_pot_setpoint = digitalpotMax;
+    } else if(digital_pot_setpoint<=digitalpotMin) {
+        digital_pot_setpoint = digitalpotMin;
+    }
+
+    DigPot.writeRegister(digital_pot_setpoint);
+    wait(1);
+    blower = 1;
+
+    
+    E2PROM.read(0x00001, subjectLabelOriginal,8);        
+    //sprintf(filename, "/sd/%c%c%c%c%c%c%c%cLOG_%02d-%02d-%02d_%02d=%02d=%02d.txt",subjectLabelOriginal[0],subjectLabelOriginal[1],subjectLabelOriginal[2],subjectLabelOriginal[3],subjectLabelOriginal[4],subjectLabelOriginal[5],subjectLabelOriginal[6],subjectLabelOriginal[7],RTC.year,RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds);
+    sprintf(filename, "/sd/UPAS%04dLOG_%02d-%02d-%02d_%02d=%02d=%02d_%c%c%c%c%c%c%c%c.txt",serial_num,RTC.year,RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,subjectLabelOriginal[0],subjectLabelOriginal[1],subjectLabelOriginal[2],subjectLabelOriginal[3],subjectLabelOriginal[4],subjectLabelOriginal[5],subjectLabelOriginal[6],subjectLabelOriginal[7]);
+    FILE *fp = fopen(filename, "w");
+    fclose(fp);
+
+    //---------------------------------------------------------------------------------------------//
+    //Following lines are needed to enter into the initiallization flow control loop
+
+    wait(10);
+
+    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
+    omronVolt = (omronReading*4.096)/(32768*2);
+    if(omronVolt<=calibrations.omronVMin) {
+        massflow = calibrations.omronMFMin;
+    } else if(omronVolt>=calibrations.omronVMax) {
+        massflow = calibrations.omronMFMax;
+    } else {
+        massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
+    }
+    deltaMflow = massflow-massflowSet;
+    digital_pot_set = digital_pot_setpoint;
+    wait(5);
+
+    //---------------------------------------------------------------------------------------------//
+    //Sets the flow withen +-1.5% of the desired flow rate based on mass flow
+
+    while(abs(deltaMflow)>.015) {
+
+        omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
+        omronVolt = (omronReading*4.096)/(32768*2);
+        //Mass Flow tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
+        if(omronVolt<=calibrations.omronVMin) {
+            massflow = calibrations.omronMFMin;
+        } else if(omronVolt>=calibrations.omronVMax) {
+            massflow = calibrations.omronMFMax;
+        } else {
+            massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
+        }
+
+        atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
+        volflow = massflow/atmoRho;
+        massflowSet = volflowSet*atmoRho;
+        deltaMflow = massflow-massflowSet;
+
+        digital_pot_set = (int)(digital_pot_set+(int)((gainFlow*deltaMflow)));
+        if(digital_pot_set>=digitalpotMax) {
+            digital_pot_set = digitalpotMax;
+        } else if(digital_pot_set<=digitalpotMin) {
+            digital_pot_set = digitalpotMin;
+        }
+
+        wait(2);
+        DigPot.writeRegister(digital_pot_set);
+        wait(1);
+
+
+    }
+
+    sampledVol = 0.0;
+    RGB_LED.set_led(0,1,0);
+
+
+
+    //** end of initalization **//
+    //---------------------------------------------------------------------------------------------//
+    //---------------------------------------------------------------------------------------------//
+    // Main Control Loop
+
+
+    logg.attach(&log_data, logInerval); // uses callbacks or block Interrupts for anything that uses i2c
+
+}
+