test
Dependencies: Nanopb iSerial mbed BaseJpegDecode FatFileSystem SDFileSystem RingBuffer Camera_LS_Y201
extlib/BaseJpegDecode/aanIDCT.cpp
- Committer:
- cgraham
- Date:
- 2014-09-18
- Revision:
- 0:d69efd0ee139
File content as of revision 0:d69efd0ee139:
// aanIDCT.cpp 2013/2/1 // based: http://www.ijg.org/ libjpeg(jpeg-8d)jidctfst.c jidctflt.c jidctmgr.c #include "mbed.h" #include "aanIDCT.h" #define DCTSIZE 8 #define DCTSIZE2 64 #define CONST_BITS 8 #define PASS1_BITS 2 #define SCALE_BITS 14 #define LOG2_CONST 3 #define FIX_1_082392200 277 #define FIX_1_414213562 362 #define FIX_1_847759065 473 #define FIX_2_613125930 668 const uint16_t aanscales[] = { 16384, 22725, 21406, 19265, 16384, 12872, 8866, 4520, 22725, 31520, 29691, 26722, 22725, 17855, 12298, 6269, 21406, 29691, 27969, 25171, 21406, 16819, 11585, 5906, 19265, 26722, 25171, 22653, 19265, 15136, 10426, 5315, 16384, 22725, 21406, 19265, 16384, 12872, 8866, 4520, 12872, 17855, 16819, 15136, 12872, 10114, 6966, 3551, 8866, 12298, 11585, 10426, 8866, 6966, 4798, 2446, 4520, 6269, 5906, 5315, 4520, 3551, 2446, 1247, }; #if 0 inline int DESCALE(int x, int n) { return (x / (1<<(n))); } #else #define DESCALE(x, n) ((x)/(1<<(n))) #endif int DEQUANTIZE(int coef, int quantval) { return DESCALE(coef * quantval, SCALE_BITS-PASS1_BITS); } #if 1 int MULTIPLY(int a, int b) { return DESCALE(a * b, CONST_BITS); } #else #define MULTIPLY(a, b) (((a)*(b))/(1<<CONST_BITS)) #endif int IDESCALE(int x) { return DESCALE(x, PASS1_BITS+LOG2_CONST); } #if 1 int8_t range_limit(int val) { if (val < -128) { return -128; } else if (val > 127) { return 127; } return val; } #else inline int8_t range_limit(int val) { if (val < -128) { return -128; } else if (val > 127) { return 127; } return val; } #endif void aanIDCT::conv(int8_t output[], int16_t input[]) { uint16_t* quant = (uint16_t*)aanscales; for(int pos = 0; pos < DCTSIZE; pos++) { if (input[pos+DCTSIZE*1] == 0 && input[pos+DCTSIZE*2] == 0 && input[pos+DCTSIZE*3] == 0 && input[pos+DCTSIZE*4] == 0 && input[pos+DCTSIZE*5] == 0 && input[pos+DCTSIZE*6] == 0 && input[pos+DCTSIZE*7] == 0) { int dcval = DEQUANTIZE(input[pos+DCTSIZE*0], quant[pos+DCTSIZE*0]); for(int y = 0; y < DCTSIZE; y++) { ws[pos+DCTSIZE*y] = dcval; } continue; } // Even part int tmp0 = DEQUANTIZE(input[pos+DCTSIZE*0], quant[pos+DCTSIZE*0]); int tmp1 = DEQUANTIZE(input[pos+DCTSIZE*2], quant[pos+DCTSIZE*2]); int tmp2 = DEQUANTIZE(input[pos+DCTSIZE*4], quant[pos+DCTSIZE*4]); int tmp3 = DEQUANTIZE(input[pos+DCTSIZE*6], quant[pos+DCTSIZE*6]); int tmp10 = tmp0 + tmp2; // phase 3 int tmp11 = tmp0 - tmp2; int tmp13 = tmp1 + tmp3; // phases 5-3 int tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; // 2*c4 tmp0 = tmp10 + tmp13; // phase 2 tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; // Odd part int tmp4 = DEQUANTIZE(input[pos+DCTSIZE*1], quant[pos+DCTSIZE*1]); int tmp5 = DEQUANTIZE(input[pos+DCTSIZE*3], quant[pos+DCTSIZE*3]); int tmp6 = DEQUANTIZE(input[pos+DCTSIZE*5], quant[pos+DCTSIZE*5]); int tmp7 = DEQUANTIZE(input[pos+DCTSIZE*7], quant[pos+DCTSIZE*7]); int z13 = tmp6 + tmp5; // phase 6 int z10 = tmp6 - tmp5; int z11 = tmp4 + tmp7; int z12 = tmp4 - tmp7; tmp7 = z11 + z13; // phase 5 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); // 2*c4 int z5 = MULTIPLY(z10 + z12, FIX_1_847759065); // 2*c2 tmp10 = MULTIPLY(z12, - FIX_1_082392200) + z5; // 2*(c2-c6) tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; // -2*(c2+c6) tmp6 = tmp12 - tmp7; // phase 2 tmp5 = tmp11 - tmp6; tmp4 = tmp10 - tmp5; ws[pos+DCTSIZE*0] = tmp0 + tmp7; ws[pos+DCTSIZE*7] = tmp0 - tmp7; ws[pos+DCTSIZE*1] = tmp1 + tmp6; ws[pos+DCTSIZE*6] = tmp1 - tmp6; ws[pos+DCTSIZE*2] = tmp2 + tmp5; ws[pos+DCTSIZE*5] = tmp2 - tmp5; ws[pos+DCTSIZE*3] = tmp3 + tmp4; ws[pos+DCTSIZE*4] = tmp3 - tmp4; } for(int pos = 0; pos < DCTSIZE2; pos += DCTSIZE) { if (ws[pos+1] == 0 && ws[pos+2] == 0 && ws[pos+3] == 0 && ws[pos+4] == 0 && ws[pos+5] == 0 && ws[pos+6] == 0 && ws[pos+7] == 0) { int dcval = ws[pos+0]; for(int x = 0; x < DCTSIZE; x++) { output[pos+x] = range_limit(IDESCALE(dcval)); } continue; } // Even part int tmp10 = ws[pos+0] + ws[pos+4]; int tmp11 = ws[pos+0] - ws[pos+4]; int tmp13 = ws[pos+2] + ws[pos+6]; int tmp12 = MULTIPLY(ws[pos+2] - ws[pos+6], FIX_1_414213562) - tmp13; int tmp0 = tmp10 + tmp13; int tmp3 = tmp10 - tmp13; int tmp1 = tmp11 + tmp12; int tmp2 = tmp11 - tmp12; // Odd part int z13 = ws[pos+5] + ws[pos+3]; int z10 = ws[pos+5] - ws[pos+3]; int z11 = ws[pos+1] + ws[pos+7]; int z12 = ws[pos+1] - ws[pos+7]; int tmp7 = z11 + z13; // phase 5 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); // 2*c4 int z5 = MULTIPLY(z10 + z12, FIX_1_847759065); // 2*c2 tmp10 = MULTIPLY(z12, - FIX_1_082392200) + z5; // 2*(c2-c6) tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; // -2*(c2+c6) int tmp6 = tmp12 - tmp7; // phase 2 int tmp5 = tmp11 - tmp6; int tmp4 = tmp10 - tmp5; output[pos+0] = range_limit(IDESCALE(tmp0 + tmp7)); output[pos+7] = range_limit(IDESCALE(tmp0 - tmp7)); output[pos+1] = range_limit(IDESCALE(tmp1 + tmp6)); output[pos+6] = range_limit(IDESCALE(tmp1 - tmp6)); output[pos+2] = range_limit(IDESCALE(tmp2 + tmp5)); output[pos+5] = range_limit(IDESCALE(tmp2 - tmp5)); output[pos+3] = range_limit(IDESCALE(tmp3 + tmp4)); output[pos+4] = range_limit(IDESCALE(tmp3 - tmp4)); } }