University of Texas Solar Vehicles Team / Mbed 2 deprecated motor-control

Dependencies:   mbed

main.cpp

Committer:
jjohnle
Date:
2019-11-09
Revision:
0:c61d18b01f8c
Child:
1:863bdd011cf8

File content as of revision 0:c61d18b01f8c:

#include "mbed.h"
#include "shared_values.h"

#define DC_BASE 0x220  // Driver controls base address
#define DC_DRIVE 0x01  // Offset for motor drive command
#define DC_POWER 0x02  // Offset for motor power command
#define DC_RESET 0x03  // Offset for reset command
#define DC_SWITCH 0x04 // Offset for phase current measurement

#define MC_BASE 0x240 // Motor controls base address
#define MC_BUS 0x02   // Bus measurement offset
#define MC_VEL 0x03   // Velocity measurement offset
#define MC_PHCUR 0x04 // Phase Current offset
#define MC_VOVEC 0x05 // Voltage Vector offset
#define MC_CUVEC 0x06 // current vector offset
#define MC_BEMF 0x07  // back emf offset
#define MC_TEMP 0x0B  // heat sink and motor temp offset
#define MC_AMPH 0x0E  // odometer and bus amp ohours measuremeant
#define MAX_VELOCITY 100 // motor velocity in m/s
#define MAX_CURRENT 1.0  // desired motor current as percentage of max current

#define DC_BUS_CURRENT 0x900
#define DC_BUS_VOLTAGE 0x901
#define PHASE_B_CURRENT 0x902
#define PHASE_C_CURRENT 0x903
#define VEHICLE_VELOCITY 0x904
#define MOTOR_VELOCITY 0x905
#define VD 0x906
#define VQ 0x907
#define ID 0x908
#define IQ 0x909
#define BEMFD 0x90A
#define BEMFQ 0x90B
#define HEAT_SINK_TEMPERATURE 0x90C
#define MOTOR_TEMPERATURE 0x90D
#define DC_BUS_AMP_HOURS 0x90E
#define ODOMETER 0x90F

float current = MAX_CURRENT;
float velocity = MAX_VELOCITY;
float bus_current = MAX_CURRENT;
double pedal_position;
double avgval;
float data[2];
float data2[2];
float meas = 0;
int n;
int dummy;
int alive;

int id = DC_BASE + DC_DRIVE;
int id2 = DC_BASE + DC_POWER;
int id3 = MC_BASE + DC_POWER;

CAN can1(PD_0, PD_1 /*, 125000*/); // can1 is car CAN  (Rx, Tx, speed)
CAN can2(PB_5, PB_6 /*, 50000*/);  // can2 is motor controller CAN  (Rx, Tx, speed)
AnalogIn poop(PB_0);
Serial pc(USBTX, USBRX);

// https://stackoverflow.com/questions/24420246/c-function-to-convert-float-to-byte-array
void float2Bytes(float val,uint8_t* bytes_array){
    uint8_t temp;
    // Create union of shared memory space
    union {
        float float_variable;
        uint8_t temp_array[4];
    } u;
    // Overite bytes of union with float variable
    u.float_variable = val;
    // Assign bytes to input array
    memcpy(bytes_array, u.temp_array, 4);
    temp = bytes_array[3];
    bytes_array[3] = bytes_array[0];
    bytes_array[0] = temp;
    temp = bytes_array[2];
    bytes_array[2] = bytes_array[1];
    bytes_array[1] = temp;
}
 
float bytes2Float(uint8_t* bytes_array) {
    union {
        float f;
        uint8_t b[4];
    } u;
    u.b[3] = bytes_array[0];
    u.b[2] = bytes_array[1];
    u.b[1] = bytes_array[2];
    u.b[0] = bytes_array[3];
    return u.f;
}

union {
    char rcvdata[4];
    float rxdata;
} urxdata;

CANMessage msg;
char rdata[8];


void pedal()
{
    while (1)
    {
        n = 0;
        avgval = 0.0;
        while (n < 100)
        {
            meas = poop.read();
            avgval = avgval + meas;
            n++;
        }
        pedal_position = avgval / 100.0;

        current = MAX_CURRENT * pedal_position;
        velocity = 9.0;

        data[1] = current; // Flipped because of endianness
        data[0] = velocity;

        if (!can2.write(CANMessage(id, (char *)data, 8))) // send current and velocity to Tritum
            printf("Drive failed \n\r");

        data2[1] = bus_current;
        data2[0] = 0.0;
        if (!can2.write(CANMessage(id2, (char *)data2, 8)))
            dummy = 0;

        wait_ms(10); // Need message every 250ms to maintain operation
    }
}


void receiveCAN()
{
    can1.frequency(125000);
    can2.frequency(50000);
    while (1)
    {
        pc.printf("inside thread \r\n");
        if (can2.read(msg) && msg.id == (MC_BASE + MC_BUS))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            DCbuscur = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            DCbusvolt = urxdata.rxdata;
        }
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_VEL))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            vehicleVel = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            motorVel = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading phase currents
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_PHCUR))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            phaseCcurrent = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            phaseBcurrent = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading motor voltage vector
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_VOVEC))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            vd = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            vq = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading current vector
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_CUVEC))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            Id = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            Iq = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading back emf
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_BEMF))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            BEMFd = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            BEMFq = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading heatsink and motor temp
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_TEMP))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            heatSinkTemp = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            motorTemp = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        // reading odometer and bus amp ohours measuremeant
        else if (can2.read(msg) && msg.id == (MC_BASE + MC_AMPH))
        {
            for (int i = 0; i < msg.len; i++)
            {
                rdata[i] = msg.data[i];
            }
            urxdata.rcvdata[3] = rdata[7];
            urxdata.rcvdata[2] = rdata[6];
            urxdata.rcvdata[1] = rdata[5];
            urxdata.rcvdata[0] = rdata[4];
            DCBusAmpHours = urxdata.rxdata;
            urxdata.rcvdata[3] = rdata[3];
            urxdata.rcvdata[2] = rdata[2];
            urxdata.rcvdata[1] = rdata[1];
            urxdata.rcvdata[0] = rdata[0];
            odometerValue = urxdata.rxdata;
            wait_ms(10); // wait to reset
        }

        if (alive % 100 == 0)
        {

            printf("Motor board is running");
            printf("\r\n");
            //printf(" Requested Motor Current: %f\n\r", current);
            //printf(" Requested Motor Velocity: %f\n\r", velocity);
            printf(" DC Bus Current (A) = %f", DCbuscur);
            printf("\r\n");
            printf(" DC Bus Voltage (V) = %f", DCbusvolt);
            printf("\r\n");

            // Printing other values
            printf(" Vehicle Velocity (RPM) = %f", vehicleVel);
            printf("\r\n");
            printf(" Motor Velocity (V) = %f", motorVel);
            printf("\r\n");
            printf(" Phase B Current (A-rms) = %f", phaseBcurrent);
            printf("\r\n");
            printf(" Phase C Current (A-rms) = %f", phaseCcurrent);
            printf("\r\n");
            printf(" Vd (V) = %f", vd);
            printf("\r\n");
            printf(" Vq (V) = %f", vq);
            printf("\r\n");

            printf(" Id (A) = %f", Id);
            printf("\r\n");
            printf(" Iq (A) = %f", Iq);
            printf("\r\n");
            printf(" BEMFd (V) = %f", BEMFd);
            printf("\r\n");
            printf(" BEMFq (V) = %f", BEMFq);
            printf("\r\n");
            printf(" Heat Sink Temperature (Celsius) = %f", heatSinkTemp);
            printf("\r\n");
            printf(" Motor Temperature (Celsius) = %f", motorTemp);
            printf("\r\n");
            printf(" DC Bus (Ah) = %f", DCBusAmpHours);
            printf("\r\n");
            printf(" Odometer (Distance) (m) = %f", odometerValue);
            printf("\r\n");
        }
    }
}

int counter = 0;
int CAN_FLAG = 0;

void sendCAN()
{
    while (1)
    {
        uint8_t bytes1[4];
        float2Bytes(DCbuscur, &bytes1[0]);
        if (can1.write(CANMessage(DC_BUS_CURRENT, (char*)(bytes1), 4))) {
            pc.printf("Sent DC Bus Current");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes2[4];
        float2Bytes(DCbusvolt, &bytes2[0]);
        if (can1.write(CANMessage(DC_BUS_VOLTAGE, (char*)(bytes2), 4))) {
            pc.printf("Sent DC Bus Voltage");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes3[4];
        float2Bytes(vehicleVel, &bytes3[0]);
        if (can1.write(CANMessage(VEHICLE_VELOCITY, (char*)(bytes3), 4))) {
            pc.printf("Sent Vehicle Velocity (RPM)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes4[4];
        float2Bytes(motorVel, &bytes4[0]);
        if (can1.write(CANMessage(MOTOR_VELOCITY, (char*)(bytes4), 4))) {
            pc.printf("Sent Motor Velocity (V)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes5[4];
        float2Bytes(phaseBcurrent, &bytes5[0]);
        if (can1.write(CANMessage(PHASE_B_CURRENT, (char*)(bytes5), 4))) {
            pc.printf("Sent Phase B Current");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes6[4];
        float2Bytes(phaseCcurrent, &bytes6[0]);
        if (can1.write(CANMessage(PHASE_C_CURRENT, (char*)(bytes6), 4))) {
            pc.printf("Sent Phase C Current");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes7[4];
        float2Bytes(vd, &bytes7[0]);
        if (can1.write(CANMessage(VD, (char*)(bytes7), 4))) {
            pc.printf("Sent Vd (V)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes8[4];
        float2Bytes(vq, &bytes8[0]);
        if (can1.write(CANMessage(VQ, (char*)(bytes8), 4))) {
            pc.printf("Sent Vq (V)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes9[4];
        float2Bytes(Id, &bytes9[0]);
        if (can1.write(CANMessage(ID, (char*)(bytes9), 4))) {
            pc.printf("Sent Id (A)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes10[4];
        float2Bytes(Iq, &bytes10[0]);
        if (can1.write(CANMessage(IQ, (char*)(bytes10), 4))) {
            pc.printf("Sent Iq (A)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes11[4];
        float2Bytes(BEMFd, &bytes11[0]);
        if (can1.write(CANMessage(BEMFD, (char*)(bytes11), 4))) {
            pc.printf("Sent BEMFd");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes12[4];
        float2Bytes(BEMFq, &bytes12[0]);
        if (can1.write(CANMessage(BEMFQ, (char*)(bytes12), 4))) {
            pc.printf("Sent BEMFq");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes13[4];
        float2Bytes(heatSinkTemp, &bytes13[0]);
        if (can1.write(CANMessage(HEAT_SINK_TEMPERATURE, (char*)(bytes13), 4))) {
            pc.printf("Sent Heat Sink Temperature (Celsius)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes14[4];
        float2Bytes(motorTemp, &bytes14[0]);
        if (can1.write(CANMessage(MOTOR_TEMPERATURE, (char*)(bytes14), 4))) {
            pc.printf("Sent Motor Temperature (Celsius)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes15[4];
        float2Bytes(DCBusAmpHours, &bytes15[0]);
        if (can1.write(CANMessage(DC_BUS_AMP_HOURS, (char*)(bytes15), 4))) {
            pc.printf("Sent DC Bus (Ah)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }

        uint8_t bytes16[4];
        float2Bytes(odometerValue, &bytes16[0]);
        if (can1.write(CANMessage(ODOMETER, (char*)(bytes16), 4))) {
            pc.printf("Sent Odometer (Distance) (m)");
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }
    }
}


int main()
{
    Thread recc(receiveCAN);
    wait(1);
    Thread Indicators(pedal);
    wait(2);
   // Thread send(sendCAN);

    while (1)
    {
        uint8_t bytes1[4];
        float foo = 42.0;
        float2Bytes(foo, &bytes1[0]);
        if (can1.write(CANMessage(DC_BUS_CURRENT, (char*)(bytes1), 4))) {
            pc.printf("Sent DC Bus Current = %f", foo);
        }
        else {
            pc.printf("Cannot write to CAN\n");
        }
        wait(0.1);
    }
}