da testare

Dependencies:   mbed

Fork of programmaACC by Unina_corse

Committer:
NdA994
Date:
Wed Apr 25 11:59:37 2018 +0000
Revision:
4:fa71806deb67
Parent:
0:7d3cc2de8dd2
ProgrammaACC_daTestare;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
giuseppe_guida 0:7d3cc2de8dd2 1 #ifndef MPU6050_H
giuseppe_guida 0:7d3cc2de8dd2 2 #define MPU6050_H
giuseppe_guida 0:7d3cc2de8dd2 3
giuseppe_guida 0:7d3cc2de8dd2 4 #include "mbed.h"
giuseppe_guida 0:7d3cc2de8dd2 5 #include "math.h"
giuseppe_guida 0:7d3cc2de8dd2 6
giuseppe_guida 0:7d3cc2de8dd2 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
giuseppe_guida 0:7d3cc2de8dd2 8 // Invensense Inc., www.invensense.com
giuseppe_guida 0:7d3cc2de8dd2 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
giuseppe_guida 0:7d3cc2de8dd2 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
giuseppe_guida 0:7d3cc2de8dd2 11 //
giuseppe_guida 0:7d3cc2de8dd2 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
giuseppe_guida 0:7d3cc2de8dd2 13 #define YGOFFS_TC 0x01
giuseppe_guida 0:7d3cc2de8dd2 14 #define ZGOFFS_TC 0x02
giuseppe_guida 0:7d3cc2de8dd2 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
giuseppe_guida 0:7d3cc2de8dd2 16 #define Y_FINE_GAIN 0x04
giuseppe_guida 0:7d3cc2de8dd2 17 #define Z_FINE_GAIN 0x05
giuseppe_guida 0:7d3cc2de8dd2 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
giuseppe_guida 0:7d3cc2de8dd2 19 #define XA_OFFSET_L_TC 0x07
giuseppe_guida 0:7d3cc2de8dd2 20 #define YA_OFFSET_H 0x08
giuseppe_guida 0:7d3cc2de8dd2 21 #define YA_OFFSET_L_TC 0x09
giuseppe_guida 0:7d3cc2de8dd2 22 #define ZA_OFFSET_H 0x0A
giuseppe_guida 0:7d3cc2de8dd2 23 #define ZA_OFFSET_L_TC 0x0B
giuseppe_guida 0:7d3cc2de8dd2 24 #define SELF_TEST_X 0x0D
giuseppe_guida 0:7d3cc2de8dd2 25 #define SELF_TEST_Y 0x0E
giuseppe_guida 0:7d3cc2de8dd2 26 #define SELF_TEST_Z 0x0F
giuseppe_guida 0:7d3cc2de8dd2 27 #define SELF_TEST_A 0x10
giuseppe_guida 0:7d3cc2de8dd2 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
giuseppe_guida 0:7d3cc2de8dd2 29 #define XG_OFFS_USRL 0x14
giuseppe_guida 0:7d3cc2de8dd2 30 #define YG_OFFS_USRH 0x15
giuseppe_guida 0:7d3cc2de8dd2 31 #define YG_OFFS_USRL 0x16
giuseppe_guida 0:7d3cc2de8dd2 32 #define ZG_OFFS_USRH 0x17
giuseppe_guida 0:7d3cc2de8dd2 33 #define ZG_OFFS_USRL 0x18
giuseppe_guida 0:7d3cc2de8dd2 34 #define SMPLRT_DIV 0x19
giuseppe_guida 0:7d3cc2de8dd2 35 #define CONFIG 0x1A
giuseppe_guida 0:7d3cc2de8dd2 36 #define GYRO_CONFIG 0x1B
giuseppe_guida 0:7d3cc2de8dd2 37 #define ACCEL_CONFIG 0x1C
giuseppe_guida 0:7d3cc2de8dd2 38 #define FF_THR 0x1D // Free-fall
giuseppe_guida 0:7d3cc2de8dd2 39 #define FF_DUR 0x1E // Free-fall
giuseppe_guida 0:7d3cc2de8dd2 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
giuseppe_guida 0:7d3cc2de8dd2 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
giuseppe_guida 0:7d3cc2de8dd2 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
giuseppe_guida 0:7d3cc2de8dd2 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
giuseppe_guida 0:7d3cc2de8dd2 44 #define FIFO_EN 0x23
giuseppe_guida 0:7d3cc2de8dd2 45 #define I2C_MST_CTRL 0x24
giuseppe_guida 0:7d3cc2de8dd2 46 #define I2C_SLV0_ADDR 0x25
giuseppe_guida 0:7d3cc2de8dd2 47 #define I2C_SLV0_REG 0x26
giuseppe_guida 0:7d3cc2de8dd2 48 #define I2C_SLV0_CTRL 0x27
giuseppe_guida 0:7d3cc2de8dd2 49 #define I2C_SLV1_ADDR 0x28
giuseppe_guida 0:7d3cc2de8dd2 50 #define I2C_SLV1_REG 0x29
giuseppe_guida 0:7d3cc2de8dd2 51 #define I2C_SLV1_CTRL 0x2A
giuseppe_guida 0:7d3cc2de8dd2 52 #define I2C_SLV2_ADDR 0x2B
giuseppe_guida 0:7d3cc2de8dd2 53 #define I2C_SLV2_REG 0x2C
giuseppe_guida 0:7d3cc2de8dd2 54 #define I2C_SLV2_CTRL 0x2D
giuseppe_guida 0:7d3cc2de8dd2 55 #define I2C_SLV3_ADDR 0x2E
giuseppe_guida 0:7d3cc2de8dd2 56 #define I2C_SLV3_REG 0x2F
giuseppe_guida 0:7d3cc2de8dd2 57 #define I2C_SLV3_CTRL 0x30
giuseppe_guida 0:7d3cc2de8dd2 58 #define I2C_SLV4_ADDR 0x31
giuseppe_guida 0:7d3cc2de8dd2 59 #define I2C_SLV4_REG 0x32
giuseppe_guida 0:7d3cc2de8dd2 60 #define I2C_SLV4_DO 0x33
giuseppe_guida 0:7d3cc2de8dd2 61 #define I2C_SLV4_CTRL 0x34
giuseppe_guida 0:7d3cc2de8dd2 62 #define I2C_SLV4_DI 0x35
giuseppe_guida 0:7d3cc2de8dd2 63 #define I2C_MST_STATUS 0x36
giuseppe_guida 0:7d3cc2de8dd2 64 #define INT_PIN_CFG 0x37
giuseppe_guida 0:7d3cc2de8dd2 65 #define INT_ENABLE 0x38
giuseppe_guida 0:7d3cc2de8dd2 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
giuseppe_guida 0:7d3cc2de8dd2 67 #define INT_STATUS 0x3A
giuseppe_guida 0:7d3cc2de8dd2 68 #define ACCEL_XOUT_H 0x3B
giuseppe_guida 0:7d3cc2de8dd2 69 #define ACCEL_XOUT_L 0x3C
giuseppe_guida 0:7d3cc2de8dd2 70 #define ACCEL_YOUT_H 0x3D
giuseppe_guida 0:7d3cc2de8dd2 71 #define ACCEL_YOUT_L 0x3E
giuseppe_guida 0:7d3cc2de8dd2 72 #define ACCEL_ZOUT_H 0x3F
giuseppe_guida 0:7d3cc2de8dd2 73 #define ACCEL_ZOUT_L 0x40
giuseppe_guida 0:7d3cc2de8dd2 74 #define TEMP_OUT_H 0x41
giuseppe_guida 0:7d3cc2de8dd2 75 #define TEMP_OUT_L 0x42
giuseppe_guida 0:7d3cc2de8dd2 76 #define GYRO_XOUT_H 0x43
giuseppe_guida 0:7d3cc2de8dd2 77 #define GYRO_XOUT_L 0x44
giuseppe_guida 0:7d3cc2de8dd2 78 #define GYRO_YOUT_H 0x45
giuseppe_guida 0:7d3cc2de8dd2 79 #define GYRO_YOUT_L 0x46
giuseppe_guida 0:7d3cc2de8dd2 80 #define GYRO_ZOUT_H 0x47
giuseppe_guida 0:7d3cc2de8dd2 81 #define GYRO_ZOUT_L 0x48
giuseppe_guida 0:7d3cc2de8dd2 82 #define EXT_SENS_DATA_00 0x49
giuseppe_guida 0:7d3cc2de8dd2 83 #define EXT_SENS_DATA_01 0x4A
giuseppe_guida 0:7d3cc2de8dd2 84 #define EXT_SENS_DATA_02 0x4B
giuseppe_guida 0:7d3cc2de8dd2 85 #define EXT_SENS_DATA_03 0x4C
giuseppe_guida 0:7d3cc2de8dd2 86 #define EXT_SENS_DATA_04 0x4D
giuseppe_guida 0:7d3cc2de8dd2 87 #define EXT_SENS_DATA_05 0x4E
giuseppe_guida 0:7d3cc2de8dd2 88 #define EXT_SENS_DATA_06 0x4F
giuseppe_guida 0:7d3cc2de8dd2 89 #define EXT_SENS_DATA_07 0x50
giuseppe_guida 0:7d3cc2de8dd2 90 #define EXT_SENS_DATA_08 0x51
giuseppe_guida 0:7d3cc2de8dd2 91 #define EXT_SENS_DATA_09 0x52
giuseppe_guida 0:7d3cc2de8dd2 92 #define EXT_SENS_DATA_10 0x53
giuseppe_guida 0:7d3cc2de8dd2 93 #define EXT_SENS_DATA_11 0x54
giuseppe_guida 0:7d3cc2de8dd2 94 #define EXT_SENS_DATA_12 0x55
giuseppe_guida 0:7d3cc2de8dd2 95 #define EXT_SENS_DATA_13 0x56
giuseppe_guida 0:7d3cc2de8dd2 96 #define EXT_SENS_DATA_14 0x57
giuseppe_guida 0:7d3cc2de8dd2 97 #define EXT_SENS_DATA_15 0x58
giuseppe_guida 0:7d3cc2de8dd2 98 #define EXT_SENS_DATA_16 0x59
giuseppe_guida 0:7d3cc2de8dd2 99 #define EXT_SENS_DATA_17 0x5A
giuseppe_guida 0:7d3cc2de8dd2 100 #define EXT_SENS_DATA_18 0x5B
giuseppe_guida 0:7d3cc2de8dd2 101 #define EXT_SENS_DATA_19 0x5C
giuseppe_guida 0:7d3cc2de8dd2 102 #define EXT_SENS_DATA_20 0x5D
giuseppe_guida 0:7d3cc2de8dd2 103 #define EXT_SENS_DATA_21 0x5E
giuseppe_guida 0:7d3cc2de8dd2 104 #define EXT_SENS_DATA_22 0x5F
giuseppe_guida 0:7d3cc2de8dd2 105 #define EXT_SENS_DATA_23 0x60
giuseppe_guida 0:7d3cc2de8dd2 106 #define MOT_DETECT_STATUS 0x61
giuseppe_guida 0:7d3cc2de8dd2 107 #define I2C_SLV0_DO 0x63
giuseppe_guida 0:7d3cc2de8dd2 108 #define I2C_SLV1_DO 0x64
giuseppe_guida 0:7d3cc2de8dd2 109 #define I2C_SLV2_DO 0x65
giuseppe_guida 0:7d3cc2de8dd2 110 #define I2C_SLV3_DO 0x66
giuseppe_guida 0:7d3cc2de8dd2 111 #define I2C_MST_DELAY_CTRL 0x67
giuseppe_guida 0:7d3cc2de8dd2 112 #define SIGNAL_PATH_RESET 0x68
giuseppe_guida 0:7d3cc2de8dd2 113 #define MOT_DETECT_CTRL 0x69
giuseppe_guida 0:7d3cc2de8dd2 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
giuseppe_guida 0:7d3cc2de8dd2 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
giuseppe_guida 0:7d3cc2de8dd2 116 #define PWR_MGMT_2 0x6C
giuseppe_guida 0:7d3cc2de8dd2 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
giuseppe_guida 0:7d3cc2de8dd2 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
giuseppe_guida 0:7d3cc2de8dd2 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
giuseppe_guida 0:7d3cc2de8dd2 120 #define DMP_REG_1 0x70
giuseppe_guida 0:7d3cc2de8dd2 121 #define DMP_REG_2 0x71
giuseppe_guida 0:7d3cc2de8dd2 122 #define FIFO_COUNTH 0x72
giuseppe_guida 0:7d3cc2de8dd2 123 #define FIFO_COUNTL 0x73
giuseppe_guida 0:7d3cc2de8dd2 124 #define FIFO_R_W 0x74
giuseppe_guida 0:7d3cc2de8dd2 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
giuseppe_guida 0:7d3cc2de8dd2 126
giuseppe_guida 0:7d3cc2de8dd2 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
giuseppe_guida 0:7d3cc2de8dd2 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
giuseppe_guida 0:7d3cc2de8dd2 129 #define ADO 0
giuseppe_guida 0:7d3cc2de8dd2 130 #if ADO
giuseppe_guida 0:7d3cc2de8dd2 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
giuseppe_guida 0:7d3cc2de8dd2 132 #else
giuseppe_guida 0:7d3cc2de8dd2 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
giuseppe_guida 0:7d3cc2de8dd2 134 #endif
giuseppe_guida 0:7d3cc2de8dd2 135
giuseppe_guida 0:7d3cc2de8dd2 136
giuseppe_guida 0:7d3cc2de8dd2 137 // Set initial input parameters
giuseppe_guida 0:7d3cc2de8dd2 138 enum Ascale {
giuseppe_guida 0:7d3cc2de8dd2 139 AFS_2G = 0,
giuseppe_guida 0:7d3cc2de8dd2 140 AFS_4G,
giuseppe_guida 0:7d3cc2de8dd2 141 AFS_8G,
giuseppe_guida 0:7d3cc2de8dd2 142 AFS_16G
giuseppe_guida 0:7d3cc2de8dd2 143 };
giuseppe_guida 0:7d3cc2de8dd2 144
giuseppe_guida 0:7d3cc2de8dd2 145 enum Gscale {
giuseppe_guida 0:7d3cc2de8dd2 146 GFS_250DPS = 0,
giuseppe_guida 0:7d3cc2de8dd2 147 GFS_500DPS,
giuseppe_guida 0:7d3cc2de8dd2 148 GFS_1000DPS,
giuseppe_guida 0:7d3cc2de8dd2 149 GFS_2000DPS
giuseppe_guida 0:7d3cc2de8dd2 150 };
giuseppe_guida 0:7d3cc2de8dd2 151
giuseppe_guida 0:7d3cc2de8dd2 152 // Specify sensor full scale
giuseppe_guida 0:7d3cc2de8dd2 153 int Gscale = GFS_250DPS;
NdA994 4:fa71806deb67 154 int Ascale = AFS_4G;
giuseppe_guida 0:7d3cc2de8dd2 155
giuseppe_guida 0:7d3cc2de8dd2 156 //Set up I2C, (SDA,SCL)
giuseppe_guida 0:7d3cc2de8dd2 157 I2C i2c(I2C_SDA, I2C_SCL);
giuseppe_guida 0:7d3cc2de8dd2 158
giuseppe_guida 0:7d3cc2de8dd2 159 DigitalOut myled(LED1);
giuseppe_guida 0:7d3cc2de8dd2 160
giuseppe_guida 0:7d3cc2de8dd2 161 float aRes, gRes; // scale resolutions per LSB for the sensors
giuseppe_guida 0:7d3cc2de8dd2 162
giuseppe_guida 0:7d3cc2de8dd2 163 // Pin definitions
giuseppe_guida 0:7d3cc2de8dd2 164 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
giuseppe_guida 0:7d3cc2de8dd2 165
giuseppe_guida 0:7d3cc2de8dd2 166 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
giuseppe_guida 0:7d3cc2de8dd2 167 float ax, ay, az; // Stores the real accel value in g's
giuseppe_guida 0:7d3cc2de8dd2 168 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
giuseppe_guida 0:7d3cc2de8dd2 169 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
giuseppe_guida 0:7d3cc2de8dd2 170 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
giuseppe_guida 0:7d3cc2de8dd2 171 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
giuseppe_guida 0:7d3cc2de8dd2 172 float temperature;
giuseppe_guida 0:7d3cc2de8dd2 173 float SelfTest[6];
giuseppe_guida 0:7d3cc2de8dd2 174
giuseppe_guida 0:7d3cc2de8dd2 175 int delt_t = 0; // used to control display output rate
giuseppe_guida 0:7d3cc2de8dd2 176 int count = 0; // used to control display output rate
giuseppe_guida 0:7d3cc2de8dd2 177
giuseppe_guida 0:7d3cc2de8dd2 178 // parameters for 6 DoF sensor fusion calculations
giuseppe_guida 0:7d3cc2de8dd2 179 float PI = 3.14159265358979323846f;
giuseppe_guida 0:7d3cc2de8dd2 180 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
giuseppe_guida 0:7d3cc2de8dd2 181 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
giuseppe_guida 0:7d3cc2de8dd2 182 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
giuseppe_guida 0:7d3cc2de8dd2 183 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
giuseppe_guida 0:7d3cc2de8dd2 184 float pitch, yaw, roll;
giuseppe_guida 0:7d3cc2de8dd2 185 float deltat = 0.0f; // integration interval for both filter schemes
giuseppe_guida 0:7d3cc2de8dd2 186 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
giuseppe_guida 0:7d3cc2de8dd2 187 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
giuseppe_guida 0:7d3cc2de8dd2 188
giuseppe_guida 0:7d3cc2de8dd2 189 class MPU6050 {
giuseppe_guida 0:7d3cc2de8dd2 190
giuseppe_guida 0:7d3cc2de8dd2 191 protected:
giuseppe_guida 0:7d3cc2de8dd2 192
giuseppe_guida 0:7d3cc2de8dd2 193 public:
giuseppe_guida 0:7d3cc2de8dd2 194 //===================================================================================================================
giuseppe_guida 0:7d3cc2de8dd2 195 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
giuseppe_guida 0:7d3cc2de8dd2 196 //===================================================================================================================
giuseppe_guida 0:7d3cc2de8dd2 197
giuseppe_guida 0:7d3cc2de8dd2 198 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
giuseppe_guida 0:7d3cc2de8dd2 199 {
giuseppe_guida 0:7d3cc2de8dd2 200 char data_write[2];
giuseppe_guida 0:7d3cc2de8dd2 201 data_write[0] = subAddress;
giuseppe_guida 0:7d3cc2de8dd2 202 data_write[1] = data;
giuseppe_guida 0:7d3cc2de8dd2 203 i2c.write(address, data_write, 2, 0);
giuseppe_guida 0:7d3cc2de8dd2 204 }
giuseppe_guida 0:7d3cc2de8dd2 205
giuseppe_guida 0:7d3cc2de8dd2 206 char readByte(uint8_t address, uint8_t subAddress)
giuseppe_guida 0:7d3cc2de8dd2 207 {
giuseppe_guida 0:7d3cc2de8dd2 208 char data[1]; // `data` will store the register data
giuseppe_guida 0:7d3cc2de8dd2 209 char data_write[1];
giuseppe_guida 0:7d3cc2de8dd2 210 data_write[0] = subAddress;
giuseppe_guida 0:7d3cc2de8dd2 211 i2c.write(address, data_write, 1, 1); // no stop
giuseppe_guida 0:7d3cc2de8dd2 212 i2c.read(address, data, 1, 0);
giuseppe_guida 0:7d3cc2de8dd2 213 return data[0];
giuseppe_guida 0:7d3cc2de8dd2 214 }
giuseppe_guida 0:7d3cc2de8dd2 215
giuseppe_guida 0:7d3cc2de8dd2 216 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
giuseppe_guida 0:7d3cc2de8dd2 217 {
giuseppe_guida 0:7d3cc2de8dd2 218 char data[14];
giuseppe_guida 0:7d3cc2de8dd2 219 char data_write[1];
giuseppe_guida 0:7d3cc2de8dd2 220 data_write[0] = subAddress;
giuseppe_guida 0:7d3cc2de8dd2 221 i2c.write(address, data_write, 1, 1); // no stop
giuseppe_guida 0:7d3cc2de8dd2 222 i2c.read(address, data, count, 0);
giuseppe_guida 0:7d3cc2de8dd2 223 for(int ii = 0; ii < count; ii++) {
giuseppe_guida 0:7d3cc2de8dd2 224 dest[ii] = data[ii];
giuseppe_guida 0:7d3cc2de8dd2 225 }
giuseppe_guida 0:7d3cc2de8dd2 226 }
giuseppe_guida 0:7d3cc2de8dd2 227
giuseppe_guida 0:7d3cc2de8dd2 228
giuseppe_guida 0:7d3cc2de8dd2 229 void getGres() {
giuseppe_guida 0:7d3cc2de8dd2 230 switch (Gscale)
giuseppe_guida 0:7d3cc2de8dd2 231 {
giuseppe_guida 0:7d3cc2de8dd2 232 // Possible gyro scales (and their register bit settings) are:
giuseppe_guida 0:7d3cc2de8dd2 233 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
giuseppe_guida 0:7d3cc2de8dd2 234 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
giuseppe_guida 0:7d3cc2de8dd2 235 case GFS_250DPS:
giuseppe_guida 0:7d3cc2de8dd2 236 gRes = 250.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 237 break;
giuseppe_guida 0:7d3cc2de8dd2 238 case GFS_500DPS:
giuseppe_guida 0:7d3cc2de8dd2 239 gRes = 500.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 240 break;
giuseppe_guida 0:7d3cc2de8dd2 241 case GFS_1000DPS:
giuseppe_guida 0:7d3cc2de8dd2 242 gRes = 1000.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 243 break;
giuseppe_guida 0:7d3cc2de8dd2 244 case GFS_2000DPS:
giuseppe_guida 0:7d3cc2de8dd2 245 gRes = 2000.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 246 break;
giuseppe_guida 0:7d3cc2de8dd2 247 }
giuseppe_guida 0:7d3cc2de8dd2 248 }
giuseppe_guida 0:7d3cc2de8dd2 249
giuseppe_guida 0:7d3cc2de8dd2 250 void getAres() {
giuseppe_guida 0:7d3cc2de8dd2 251 switch (Ascale)
giuseppe_guida 0:7d3cc2de8dd2 252 {
giuseppe_guida 0:7d3cc2de8dd2 253 // Possible accelerometer scales (and their register bit settings) are:
giuseppe_guida 0:7d3cc2de8dd2 254 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
giuseppe_guida 0:7d3cc2de8dd2 255 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
giuseppe_guida 0:7d3cc2de8dd2 256 case AFS_2G:
giuseppe_guida 0:7d3cc2de8dd2 257 aRes = 2.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 258 break;
giuseppe_guida 0:7d3cc2de8dd2 259 case AFS_4G:
giuseppe_guida 0:7d3cc2de8dd2 260 aRes = 4.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 261 break;
giuseppe_guida 0:7d3cc2de8dd2 262 case AFS_8G:
giuseppe_guida 0:7d3cc2de8dd2 263 aRes = 8.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 264 break;
giuseppe_guida 0:7d3cc2de8dd2 265 case AFS_16G:
giuseppe_guida 0:7d3cc2de8dd2 266 aRes = 16.0/32768.0;
giuseppe_guida 0:7d3cc2de8dd2 267 break;
giuseppe_guida 0:7d3cc2de8dd2 268 }
giuseppe_guida 0:7d3cc2de8dd2 269 }
giuseppe_guida 0:7d3cc2de8dd2 270
giuseppe_guida 0:7d3cc2de8dd2 271
giuseppe_guida 0:7d3cc2de8dd2 272 void readAccelData(int16_t * destination)
giuseppe_guida 0:7d3cc2de8dd2 273 {
giuseppe_guida 0:7d3cc2de8dd2 274 uint8_t rawData[6]; // x/y/z accel register data stored here
giuseppe_guida 0:7d3cc2de8dd2 275 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
giuseppe_guida 0:7d3cc2de8dd2 276 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
giuseppe_guida 0:7d3cc2de8dd2 277 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
giuseppe_guida 0:7d3cc2de8dd2 278 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
giuseppe_guida 0:7d3cc2de8dd2 279 }
giuseppe_guida 0:7d3cc2de8dd2 280
giuseppe_guida 0:7d3cc2de8dd2 281 void readGyroData(int16_t * destination)
giuseppe_guida 0:7d3cc2de8dd2 282 {
giuseppe_guida 0:7d3cc2de8dd2 283 uint8_t rawData[6]; // x/y/z gyro register data stored here
giuseppe_guida 0:7d3cc2de8dd2 284 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
giuseppe_guida 0:7d3cc2de8dd2 285 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
giuseppe_guida 0:7d3cc2de8dd2 286 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
giuseppe_guida 0:7d3cc2de8dd2 287 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
giuseppe_guida 0:7d3cc2de8dd2 288 }
giuseppe_guida 0:7d3cc2de8dd2 289
giuseppe_guida 0:7d3cc2de8dd2 290 int16_t readTempData()
giuseppe_guida 0:7d3cc2de8dd2 291 {
giuseppe_guida 0:7d3cc2de8dd2 292 uint8_t rawData[2]; // x/y/z gyro register data stored here
giuseppe_guida 0:7d3cc2de8dd2 293 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
giuseppe_guida 0:7d3cc2de8dd2 294 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
giuseppe_guida 0:7d3cc2de8dd2 295 }
giuseppe_guida 0:7d3cc2de8dd2 296
giuseppe_guida 0:7d3cc2de8dd2 297
giuseppe_guida 0:7d3cc2de8dd2 298
giuseppe_guida 0:7d3cc2de8dd2 299 // Configure the motion detection control for low power accelerometer mode
giuseppe_guida 0:7d3cc2de8dd2 300 void LowPowerAccelOnly()
giuseppe_guida 0:7d3cc2de8dd2 301 {
giuseppe_guida 0:7d3cc2de8dd2 302
giuseppe_guida 0:7d3cc2de8dd2 303 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
giuseppe_guida 0:7d3cc2de8dd2 304 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
giuseppe_guida 0:7d3cc2de8dd2 305 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
giuseppe_guida 0:7d3cc2de8dd2 306 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
giuseppe_guida 0:7d3cc2de8dd2 307 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
giuseppe_guida 0:7d3cc2de8dd2 308
giuseppe_guida 0:7d3cc2de8dd2 309 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
giuseppe_guida 0:7d3cc2de8dd2 310 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
giuseppe_guida 0:7d3cc2de8dd2 311 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
giuseppe_guida 0:7d3cc2de8dd2 312
giuseppe_guida 0:7d3cc2de8dd2 313 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
giuseppe_guida 0:7d3cc2de8dd2 314 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
giuseppe_guida 0:7d3cc2de8dd2 315 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
giuseppe_guida 0:7d3cc2de8dd2 316
giuseppe_guida 0:7d3cc2de8dd2 317 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
giuseppe_guida 0:7d3cc2de8dd2 318 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
giuseppe_guida 0:7d3cc2de8dd2 319 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
giuseppe_guida 0:7d3cc2de8dd2 320 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
giuseppe_guida 0:7d3cc2de8dd2 321
giuseppe_guida 0:7d3cc2de8dd2 322 c = readByte(MPU6050_ADDRESS, CONFIG);
giuseppe_guida 0:7d3cc2de8dd2 323 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
giuseppe_guida 0:7d3cc2de8dd2 324 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
giuseppe_guida 0:7d3cc2de8dd2 325
giuseppe_guida 0:7d3cc2de8dd2 326 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
giuseppe_guida 0:7d3cc2de8dd2 327 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
giuseppe_guida 0:7d3cc2de8dd2 328 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
giuseppe_guida 0:7d3cc2de8dd2 329
giuseppe_guida 0:7d3cc2de8dd2 330 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
giuseppe_guida 0:7d3cc2de8dd2 331 // for at least the counter duration
giuseppe_guida 0:7d3cc2de8dd2 332 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
giuseppe_guida 0:7d3cc2de8dd2 333 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
giuseppe_guida 0:7d3cc2de8dd2 334
giuseppe_guida 0:7d3cc2de8dd2 335 wait(0.1); // Add delay for accumulation of samples
giuseppe_guida 0:7d3cc2de8dd2 336
giuseppe_guida 0:7d3cc2de8dd2 337 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
giuseppe_guida 0:7d3cc2de8dd2 338 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
giuseppe_guida 0:7d3cc2de8dd2 339 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
giuseppe_guida 0:7d3cc2de8dd2 340
giuseppe_guida 0:7d3cc2de8dd2 341 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
giuseppe_guida 0:7d3cc2de8dd2 342 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
giuseppe_guida 0:7d3cc2de8dd2 343 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
giuseppe_guida 0:7d3cc2de8dd2 344
giuseppe_guida 0:7d3cc2de8dd2 345 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
giuseppe_guida 0:7d3cc2de8dd2 346 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
giuseppe_guida 0:7d3cc2de8dd2 347 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
giuseppe_guida 0:7d3cc2de8dd2 348
giuseppe_guida 0:7d3cc2de8dd2 349 }
giuseppe_guida 0:7d3cc2de8dd2 350
giuseppe_guida 0:7d3cc2de8dd2 351
giuseppe_guida 0:7d3cc2de8dd2 352 void resetMPU6050() {
giuseppe_guida 0:7d3cc2de8dd2 353 // reset device
giuseppe_guida 0:7d3cc2de8dd2 354 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
giuseppe_guida 0:7d3cc2de8dd2 355 wait(0.1);
giuseppe_guida 0:7d3cc2de8dd2 356 }
giuseppe_guida 0:7d3cc2de8dd2 357
giuseppe_guida 0:7d3cc2de8dd2 358
giuseppe_guida 0:7d3cc2de8dd2 359 void initMPU6050()
giuseppe_guida 0:7d3cc2de8dd2 360 {
giuseppe_guida 0:7d3cc2de8dd2 361 // Initialize MPU6050 device
giuseppe_guida 0:7d3cc2de8dd2 362 // wake up device
giuseppe_guida 0:7d3cc2de8dd2 363 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
giuseppe_guida 0:7d3cc2de8dd2 364 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
giuseppe_guida 0:7d3cc2de8dd2 365
giuseppe_guida 0:7d3cc2de8dd2 366 // get stable time source
giuseppe_guida 0:7d3cc2de8dd2 367 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
giuseppe_guida 0:7d3cc2de8dd2 368
giuseppe_guida 0:7d3cc2de8dd2 369 // Configure Gyro and Accelerometer
giuseppe_guida 0:7d3cc2de8dd2 370 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
giuseppe_guida 0:7d3cc2de8dd2 371 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
giuseppe_guida 0:7d3cc2de8dd2 372 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
giuseppe_guida 0:7d3cc2de8dd2 373 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
giuseppe_guida 0:7d3cc2de8dd2 374
giuseppe_guida 0:7d3cc2de8dd2 375 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
giuseppe_guida 0:7d3cc2de8dd2 376 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
giuseppe_guida 0:7d3cc2de8dd2 377
giuseppe_guida 0:7d3cc2de8dd2 378 // Set gyroscope full scale range
giuseppe_guida 0:7d3cc2de8dd2 379 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
giuseppe_guida 0:7d3cc2de8dd2 380 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
giuseppe_guida 0:7d3cc2de8dd2 381 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
giuseppe_guida 0:7d3cc2de8dd2 382 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
giuseppe_guida 0:7d3cc2de8dd2 383 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
giuseppe_guida 0:7d3cc2de8dd2 384
giuseppe_guida 0:7d3cc2de8dd2 385 // Set accelerometer configuration
giuseppe_guida 0:7d3cc2de8dd2 386 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
giuseppe_guida 0:7d3cc2de8dd2 387 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
giuseppe_guida 0:7d3cc2de8dd2 388 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
giuseppe_guida 0:7d3cc2de8dd2 389 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
giuseppe_guida 0:7d3cc2de8dd2 390
giuseppe_guida 0:7d3cc2de8dd2 391 // Configure Interrupts and Bypass Enable
giuseppe_guida 0:7d3cc2de8dd2 392 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
giuseppe_guida 0:7d3cc2de8dd2 393 // can join the I2C bus and all can be controlled by the Arduino as master
giuseppe_guida 0:7d3cc2de8dd2 394 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
giuseppe_guida 0:7d3cc2de8dd2 395 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
giuseppe_guida 0:7d3cc2de8dd2 396 }
giuseppe_guida 0:7d3cc2de8dd2 397
giuseppe_guida 0:7d3cc2de8dd2 398 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
giuseppe_guida 0:7d3cc2de8dd2 399 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
giuseppe_guida 0:7d3cc2de8dd2 400 void calibrateMPU6050(float * dest1, float * dest2)
giuseppe_guida 0:7d3cc2de8dd2 401 {
giuseppe_guida 0:7d3cc2de8dd2 402 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
giuseppe_guida 0:7d3cc2de8dd2 403 uint16_t ii, packet_count, fifo_count;
giuseppe_guida 0:7d3cc2de8dd2 404 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
giuseppe_guida 0:7d3cc2de8dd2 405
giuseppe_guida 0:7d3cc2de8dd2 406 // reset device, reset all registers, clear gyro and accelerometer bias registers
giuseppe_guida 0:7d3cc2de8dd2 407 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
giuseppe_guida 0:7d3cc2de8dd2 408 wait(0.1);
giuseppe_guida 0:7d3cc2de8dd2 409
giuseppe_guida 0:7d3cc2de8dd2 410 // get stable time source
giuseppe_guida 0:7d3cc2de8dd2 411 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
giuseppe_guida 0:7d3cc2de8dd2 412 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
giuseppe_guida 0:7d3cc2de8dd2 413 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
giuseppe_guida 0:7d3cc2de8dd2 414 wait(0.2);
giuseppe_guida 0:7d3cc2de8dd2 415
giuseppe_guida 0:7d3cc2de8dd2 416 // Configure device for bias calculation
giuseppe_guida 0:7d3cc2de8dd2 417 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
giuseppe_guida 0:7d3cc2de8dd2 418 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
giuseppe_guida 0:7d3cc2de8dd2 419 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
giuseppe_guida 0:7d3cc2de8dd2 420 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
giuseppe_guida 0:7d3cc2de8dd2 421 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
giuseppe_guida 0:7d3cc2de8dd2 422 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
giuseppe_guida 0:7d3cc2de8dd2 423 wait(0.015);
giuseppe_guida 0:7d3cc2de8dd2 424
giuseppe_guida 0:7d3cc2de8dd2 425 // Configure MPU6050 gyro and accelerometer for bias calculation
giuseppe_guida 0:7d3cc2de8dd2 426 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
giuseppe_guida 0:7d3cc2de8dd2 427 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
giuseppe_guida 0:7d3cc2de8dd2 428 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
giuseppe_guida 0:7d3cc2de8dd2 429 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
giuseppe_guida 0:7d3cc2de8dd2 430
giuseppe_guida 0:7d3cc2de8dd2 431 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
giuseppe_guida 0:7d3cc2de8dd2 432 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
giuseppe_guida 0:7d3cc2de8dd2 433
giuseppe_guida 0:7d3cc2de8dd2 434 // Configure FIFO to capture accelerometer and gyro data for bias calculation
giuseppe_guida 0:7d3cc2de8dd2 435 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
giuseppe_guida 0:7d3cc2de8dd2 436 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
giuseppe_guida 0:7d3cc2de8dd2 437 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
giuseppe_guida 0:7d3cc2de8dd2 438
giuseppe_guida 0:7d3cc2de8dd2 439 // At end of sample accumulation, turn off FIFO sensor read
giuseppe_guida 0:7d3cc2de8dd2 440 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
giuseppe_guida 0:7d3cc2de8dd2 441 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
giuseppe_guida 0:7d3cc2de8dd2 442 fifo_count = ((uint16_t)data[0] << 8) | data[1];
giuseppe_guida 0:7d3cc2de8dd2 443 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
giuseppe_guida 0:7d3cc2de8dd2 444
NdA994 4:fa71806deb67 445 /* for (ii = 0; ii < packet_count; ii++) {
giuseppe_guida 0:7d3cc2de8dd2 446 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
giuseppe_guida 0:7d3cc2de8dd2 447 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
giuseppe_guida 0:7d3cc2de8dd2 448 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
giuseppe_guida 0:7d3cc2de8dd2 449 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
giuseppe_guida 0:7d3cc2de8dd2 450 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
giuseppe_guida 0:7d3cc2de8dd2 451 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
giuseppe_guida 0:7d3cc2de8dd2 452 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
giuseppe_guida 0:7d3cc2de8dd2 453 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
giuseppe_guida 0:7d3cc2de8dd2 454
giuseppe_guida 0:7d3cc2de8dd2 455 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
giuseppe_guida 0:7d3cc2de8dd2 456 accel_bias[1] += (int32_t) accel_temp[1];
giuseppe_guida 0:7d3cc2de8dd2 457 accel_bias[2] += (int32_t) accel_temp[2];
giuseppe_guida 0:7d3cc2de8dd2 458 gyro_bias[0] += (int32_t) gyro_temp[0];
giuseppe_guida 0:7d3cc2de8dd2 459 gyro_bias[1] += (int32_t) gyro_temp[1];
giuseppe_guida 0:7d3cc2de8dd2 460 gyro_bias[2] += (int32_t) gyro_temp[2];
giuseppe_guida 0:7d3cc2de8dd2 461
NdA994 4:fa71806deb67 462 }*/
NdA994 4:fa71806deb67 463 /* accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
giuseppe_guida 0:7d3cc2de8dd2 464 accel_bias[1] /= (int32_t) packet_count;
giuseppe_guida 0:7d3cc2de8dd2 465 accel_bias[2] /= (int32_t) packet_count;
giuseppe_guida 0:7d3cc2de8dd2 466 gyro_bias[0] /= (int32_t) packet_count;
giuseppe_guida 0:7d3cc2de8dd2 467 gyro_bias[1] /= (int32_t) packet_count;
giuseppe_guida 0:7d3cc2de8dd2 468 gyro_bias[2] /= (int32_t) packet_count;
giuseppe_guida 0:7d3cc2de8dd2 469
giuseppe_guida 0:7d3cc2de8dd2 470 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
giuseppe_guida 0:7d3cc2de8dd2 471 else {accel_bias[2] += (int32_t) accelsensitivity;}
giuseppe_guida 0:7d3cc2de8dd2 472
giuseppe_guida 0:7d3cc2de8dd2 473 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
giuseppe_guida 0:7d3cc2de8dd2 474 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
giuseppe_guida 0:7d3cc2de8dd2 475 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
giuseppe_guida 0:7d3cc2de8dd2 476 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 477 data[3] = (-gyro_bias[1]/4) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 478 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 479 data[5] = (-gyro_bias[2]/4) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 480
giuseppe_guida 0:7d3cc2de8dd2 481 // Push gyro biases to hardware registers
giuseppe_guida 0:7d3cc2de8dd2 482 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
giuseppe_guida 0:7d3cc2de8dd2 483 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
giuseppe_guida 0:7d3cc2de8dd2 484 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
giuseppe_guida 0:7d3cc2de8dd2 485 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
giuseppe_guida 0:7d3cc2de8dd2 486 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
giuseppe_guida 0:7d3cc2de8dd2 487 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
giuseppe_guida 0:7d3cc2de8dd2 488
giuseppe_guida 0:7d3cc2de8dd2 489 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
giuseppe_guida 0:7d3cc2de8dd2 490 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
giuseppe_guida 0:7d3cc2de8dd2 491 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
giuseppe_guida 0:7d3cc2de8dd2 492
giuseppe_guida 0:7d3cc2de8dd2 493 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
giuseppe_guida 0:7d3cc2de8dd2 494 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
giuseppe_guida 0:7d3cc2de8dd2 495 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
giuseppe_guida 0:7d3cc2de8dd2 496 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
giuseppe_guida 0:7d3cc2de8dd2 497 // the accelerometer biases calculated above must be divided by 8.
giuseppe_guida 0:7d3cc2de8dd2 498
giuseppe_guida 0:7d3cc2de8dd2 499 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
giuseppe_guida 0:7d3cc2de8dd2 500 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
giuseppe_guida 0:7d3cc2de8dd2 501 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
giuseppe_guida 0:7d3cc2de8dd2 502 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
giuseppe_guida 0:7d3cc2de8dd2 503 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
giuseppe_guida 0:7d3cc2de8dd2 504 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
giuseppe_guida 0:7d3cc2de8dd2 505 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
giuseppe_guida 0:7d3cc2de8dd2 506
giuseppe_guida 0:7d3cc2de8dd2 507 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
giuseppe_guida 0:7d3cc2de8dd2 508 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
giuseppe_guida 0:7d3cc2de8dd2 509
giuseppe_guida 0:7d3cc2de8dd2 510 for(ii = 0; ii < 3; ii++) {
giuseppe_guida 0:7d3cc2de8dd2 511 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
giuseppe_guida 0:7d3cc2de8dd2 512 }
giuseppe_guida 0:7d3cc2de8dd2 513
giuseppe_guida 0:7d3cc2de8dd2 514 // Construct total accelerometer bias, including calculated average accelerometer bias from above
giuseppe_guida 0:7d3cc2de8dd2 515 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
giuseppe_guida 0:7d3cc2de8dd2 516 accel_bias_reg[1] -= (accel_bias[1]/8);
giuseppe_guida 0:7d3cc2de8dd2 517 accel_bias_reg[2] -= (accel_bias[2]/8);
giuseppe_guida 0:7d3cc2de8dd2 518
giuseppe_guida 0:7d3cc2de8dd2 519 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 520 data[1] = (accel_bias_reg[0]) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 521 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
giuseppe_guida 0:7d3cc2de8dd2 522 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 523 data[3] = (accel_bias_reg[1]) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 524 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
giuseppe_guida 0:7d3cc2de8dd2 525 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 526 data[5] = (accel_bias_reg[2]) & 0xFF;
giuseppe_guida 0:7d3cc2de8dd2 527 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
giuseppe_guida 0:7d3cc2de8dd2 528
giuseppe_guida 0:7d3cc2de8dd2 529 // Push accelerometer biases to hardware registers
giuseppe_guida 0:7d3cc2de8dd2 530 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
giuseppe_guida 0:7d3cc2de8dd2 531 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
giuseppe_guida 0:7d3cc2de8dd2 532 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
giuseppe_guida 0:7d3cc2de8dd2 533 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
giuseppe_guida 0:7d3cc2de8dd2 534 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
giuseppe_guida 0:7d3cc2de8dd2 535 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
giuseppe_guida 0:7d3cc2de8dd2 536
giuseppe_guida 0:7d3cc2de8dd2 537 // Output scaled accelerometer biases for manual subtraction in the main program
giuseppe_guida 0:7d3cc2de8dd2 538 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
giuseppe_guida 0:7d3cc2de8dd2 539 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
NdA994 4:fa71806deb67 540 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;*/
giuseppe_guida 0:7d3cc2de8dd2 541 }
giuseppe_guida 0:7d3cc2de8dd2 542
giuseppe_guida 0:7d3cc2de8dd2 543
giuseppe_guida 0:7d3cc2de8dd2 544 // Accelerometer and gyroscope self test; check calibration wrt factory settings
giuseppe_guida 0:7d3cc2de8dd2 545 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
giuseppe_guida 0:7d3cc2de8dd2 546 {
giuseppe_guida 0:7d3cc2de8dd2 547 uint8_t rawData[4] = {0, 0, 0, 0};
giuseppe_guida 0:7d3cc2de8dd2 548 uint8_t selfTest[6];
giuseppe_guida 0:7d3cc2de8dd2 549 float factoryTrim[6];
giuseppe_guida 0:7d3cc2de8dd2 550
giuseppe_guida 0:7d3cc2de8dd2 551 // Configure the accelerometer for self-test
giuseppe_guida 0:7d3cc2de8dd2 552 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
giuseppe_guida 0:7d3cc2de8dd2 553 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
giuseppe_guida 0:7d3cc2de8dd2 554 wait(0.25); // Delay a while to let the device execute the self-test
giuseppe_guida 0:7d3cc2de8dd2 555 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
giuseppe_guida 0:7d3cc2de8dd2 556 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
giuseppe_guida 0:7d3cc2de8dd2 557 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
giuseppe_guida 0:7d3cc2de8dd2 558 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
giuseppe_guida 0:7d3cc2de8dd2 559 // Extract the acceleration test results first
giuseppe_guida 0:7d3cc2de8dd2 560 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 561 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 562 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 563 // Extract the gyration test results first
giuseppe_guida 0:7d3cc2de8dd2 564 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 565 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 566 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
giuseppe_guida 0:7d3cc2de8dd2 567 // Process results to allow final comparison with factory set values
giuseppe_guida 0:7d3cc2de8dd2 568 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 569 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 570 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 571 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 572 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 573 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
giuseppe_guida 0:7d3cc2de8dd2 574
giuseppe_guida 0:7d3cc2de8dd2 575 // Output self-test results and factory trim calculation if desired
giuseppe_guida 0:7d3cc2de8dd2 576 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
giuseppe_guida 0:7d3cc2de8dd2 577 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
giuseppe_guida 0:7d3cc2de8dd2 578 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
giuseppe_guida 0:7d3cc2de8dd2 579 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
giuseppe_guida 0:7d3cc2de8dd2 580
giuseppe_guida 0:7d3cc2de8dd2 581 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
giuseppe_guida 0:7d3cc2de8dd2 582 // To get to percent, must multiply by 100 and subtract result from 100
giuseppe_guida 0:7d3cc2de8dd2 583 for (int i = 0; i < 6; i++) {
giuseppe_guida 0:7d3cc2de8dd2 584 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
giuseppe_guida 0:7d3cc2de8dd2 585 }
giuseppe_guida 0:7d3cc2de8dd2 586
giuseppe_guida 0:7d3cc2de8dd2 587 }
giuseppe_guida 0:7d3cc2de8dd2 588
giuseppe_guida 0:7d3cc2de8dd2 589
giuseppe_guida 0:7d3cc2de8dd2 590 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
giuseppe_guida 0:7d3cc2de8dd2 591 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
giuseppe_guida 0:7d3cc2de8dd2 592 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
giuseppe_guida 0:7d3cc2de8dd2 593 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
giuseppe_guida 0:7d3cc2de8dd2 594 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
giuseppe_guida 0:7d3cc2de8dd2 595 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
giuseppe_guida 0:7d3cc2de8dd2 596 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
giuseppe_guida 0:7d3cc2de8dd2 597 {
giuseppe_guida 0:7d3cc2de8dd2 598 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
giuseppe_guida 0:7d3cc2de8dd2 599 float norm; // vector norm
giuseppe_guida 0:7d3cc2de8dd2 600 float f1, f2, f3; // objective funcyion elements
giuseppe_guida 0:7d3cc2de8dd2 601 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
giuseppe_guida 0:7d3cc2de8dd2 602 float qDot1, qDot2, qDot3, qDot4;
giuseppe_guida 0:7d3cc2de8dd2 603 float hatDot1, hatDot2, hatDot3, hatDot4;
giuseppe_guida 0:7d3cc2de8dd2 604 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
giuseppe_guida 0:7d3cc2de8dd2 605
giuseppe_guida 0:7d3cc2de8dd2 606 // Auxiliary variables to avoid repeated arithmetic
giuseppe_guida 0:7d3cc2de8dd2 607 float _halfq1 = 0.5f * q1;
giuseppe_guida 0:7d3cc2de8dd2 608 float _halfq2 = 0.5f * q2;
giuseppe_guida 0:7d3cc2de8dd2 609 float _halfq3 = 0.5f * q3;
giuseppe_guida 0:7d3cc2de8dd2 610 float _halfq4 = 0.5f * q4;
giuseppe_guida 0:7d3cc2de8dd2 611 float _2q1 = 2.0f * q1;
giuseppe_guida 0:7d3cc2de8dd2 612 float _2q2 = 2.0f * q2;
giuseppe_guida 0:7d3cc2de8dd2 613 float _2q3 = 2.0f * q3;
giuseppe_guida 0:7d3cc2de8dd2 614 float _2q4 = 2.0f * q4;
giuseppe_guida 0:7d3cc2de8dd2 615 // float _2q1q3 = 2.0f * q1 * q3;
giuseppe_guida 0:7d3cc2de8dd2 616 // float _2q3q4 = 2.0f * q3 * q4;
giuseppe_guida 0:7d3cc2de8dd2 617
giuseppe_guida 0:7d3cc2de8dd2 618 // Normalise accelerometer measurement
giuseppe_guida 0:7d3cc2de8dd2 619 norm = sqrt(ax * ax + ay * ay + az * az);
giuseppe_guida 0:7d3cc2de8dd2 620 if (norm == 0.0f) return; // handle NaN
giuseppe_guida 0:7d3cc2de8dd2 621 norm = 1.0f/norm;
giuseppe_guida 0:7d3cc2de8dd2 622 ax *= norm;
giuseppe_guida 0:7d3cc2de8dd2 623 ay *= norm;
giuseppe_guida 0:7d3cc2de8dd2 624 az *= norm;
giuseppe_guida 0:7d3cc2de8dd2 625
giuseppe_guida 0:7d3cc2de8dd2 626 // Compute the objective function and Jacobian
giuseppe_guida 0:7d3cc2de8dd2 627 f1 = _2q2 * q4 - _2q1 * q3 - ax;
giuseppe_guida 0:7d3cc2de8dd2 628 f2 = _2q1 * q2 + _2q3 * q4 - ay;
giuseppe_guida 0:7d3cc2de8dd2 629 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
giuseppe_guida 0:7d3cc2de8dd2 630 J_11or24 = _2q3;
giuseppe_guida 0:7d3cc2de8dd2 631 J_12or23 = _2q4;
giuseppe_guida 0:7d3cc2de8dd2 632 J_13or22 = _2q1;
giuseppe_guida 0:7d3cc2de8dd2 633 J_14or21 = _2q2;
giuseppe_guida 0:7d3cc2de8dd2 634 J_32 = 2.0f * J_14or21;
giuseppe_guida 0:7d3cc2de8dd2 635 J_33 = 2.0f * J_11or24;
giuseppe_guida 0:7d3cc2de8dd2 636
giuseppe_guida 0:7d3cc2de8dd2 637 // Compute the gradient (matrix multiplication)
giuseppe_guida 0:7d3cc2de8dd2 638 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
giuseppe_guida 0:7d3cc2de8dd2 639 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
giuseppe_guida 0:7d3cc2de8dd2 640 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
giuseppe_guida 0:7d3cc2de8dd2 641 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
giuseppe_guida 0:7d3cc2de8dd2 642
giuseppe_guida 0:7d3cc2de8dd2 643 // Normalize the gradient
giuseppe_guida 0:7d3cc2de8dd2 644 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
giuseppe_guida 0:7d3cc2de8dd2 645 hatDot1 /= norm;
giuseppe_guida 0:7d3cc2de8dd2 646 hatDot2 /= norm;
giuseppe_guida 0:7d3cc2de8dd2 647 hatDot3 /= norm;
giuseppe_guida 0:7d3cc2de8dd2 648 hatDot4 /= norm;
giuseppe_guida 0:7d3cc2de8dd2 649
giuseppe_guida 0:7d3cc2de8dd2 650 // Compute estimated gyroscope biases
giuseppe_guida 0:7d3cc2de8dd2 651 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
giuseppe_guida 0:7d3cc2de8dd2 652 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
giuseppe_guida 0:7d3cc2de8dd2 653 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
giuseppe_guida 0:7d3cc2de8dd2 654
giuseppe_guida 0:7d3cc2de8dd2 655 // Compute and remove gyroscope biases
giuseppe_guida 0:7d3cc2de8dd2 656 gbiasx += gerrx * deltat * zeta;
giuseppe_guida 0:7d3cc2de8dd2 657 gbiasy += gerry * deltat * zeta;
giuseppe_guida 0:7d3cc2de8dd2 658 gbiasz += gerrz * deltat * zeta;
giuseppe_guida 0:7d3cc2de8dd2 659 // gx -= gbiasx;
giuseppe_guida 0:7d3cc2de8dd2 660 // gy -= gbiasy;
giuseppe_guida 0:7d3cc2de8dd2 661 // gz -= gbiasz;
giuseppe_guida 0:7d3cc2de8dd2 662
giuseppe_guida 0:7d3cc2de8dd2 663 // Compute the quaternion derivative
giuseppe_guida 0:7d3cc2de8dd2 664 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
giuseppe_guida 0:7d3cc2de8dd2 665 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
giuseppe_guida 0:7d3cc2de8dd2 666 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
giuseppe_guida 0:7d3cc2de8dd2 667 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
giuseppe_guida 0:7d3cc2de8dd2 668
giuseppe_guida 0:7d3cc2de8dd2 669 // Compute then integrate estimated quaternion derivative
giuseppe_guida 0:7d3cc2de8dd2 670 q1 += (qDot1 -(beta * hatDot1)) * deltat;
giuseppe_guida 0:7d3cc2de8dd2 671 q2 += (qDot2 -(beta * hatDot2)) * deltat;
giuseppe_guida 0:7d3cc2de8dd2 672 q3 += (qDot3 -(beta * hatDot3)) * deltat;
giuseppe_guida 0:7d3cc2de8dd2 673 q4 += (qDot4 -(beta * hatDot4)) * deltat;
giuseppe_guida 0:7d3cc2de8dd2 674
giuseppe_guida 0:7d3cc2de8dd2 675 // Normalize the quaternion
giuseppe_guida 0:7d3cc2de8dd2 676 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
giuseppe_guida 0:7d3cc2de8dd2 677 norm = 1.0f/norm;
giuseppe_guida 0:7d3cc2de8dd2 678 q[0] = q1 * norm;
giuseppe_guida 0:7d3cc2de8dd2 679 q[1] = q2 * norm;
giuseppe_guida 0:7d3cc2de8dd2 680 q[2] = q3 * norm;
giuseppe_guida 0:7d3cc2de8dd2 681 q[3] = q4 * norm;
giuseppe_guida 0:7d3cc2de8dd2 682
giuseppe_guida 0:7d3cc2de8dd2 683 }
giuseppe_guida 0:7d3cc2de8dd2 684
giuseppe_guida 0:7d3cc2de8dd2 685
giuseppe_guida 0:7d3cc2de8dd2 686 };
giuseppe_guida 0:7d3cc2de8dd2 687 #endif