Unina Corse EL / Mbed 2 deprecated f4_sd_imu_4

Dependencies:   SDFileSystem_conMOD mbed-rtos mbed

Fork of f4_sd_imu_4 by ratto killer

accellerometro.h

Committer:
rattokiller
Date:
2018-01-21
Revision:
11:3b5e035ffef9
Parent:
9:7f0c1261e905

File content as of revision 11:3b5e035ffef9:

#ifndef __ACCELLEROMETRO__
#define __ACCELLEROMETRO__

#include "MPU6050.h"
#include "setting.h"


float sum = 0;
uint32_t sumCount = 0;

MPU6050 mpu6050;
   
Timer t;

void initAccellerometro(){
    t.start();
    
    i2c.frequency(400000);                             
    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050 //DEBUG
    pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); //DEBUG
    
    if (whoami == 0x68){
            pc.printf("MPU6050 is online...");
            wait(1);
    
            mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
            pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
            pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
            pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
            pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
            pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
            pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
            wait(1);
    
            if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
            mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
        
            wait(2);
        }
        else{
            pc.printf("Device did not the pass self-test!\n\r");
        }
    }
    else{
        pc.printf("Could not connect to MPU6050: \n\r");
        pc.printf("%#x \n",  whoami);
    
        while(1) ; // Loop forever if communication doesn't happen
    }
}

void raccoltaDati(){
    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
        mpu6050.getAres();
    
        // Now we'll calculate the accleration value into actual g's
        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
        ay = (float)accelCount[1]*aRes - accelBias[1];   
        az = (float)accelCount[2]*aRes - accelBias[2];  
   
        fprintf(fp,"A%03.0f%03.0f%03.0f\n\r", 100*ax+400, 100*ay+400, 100*az+400); 

   
        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
        mpu6050.getGres();
     
        // Calculate the gyro value into actual degrees per second
        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   

    
        invia_m(1000*ax+4000,1000*ay+4000,1000*az+4000,0,0,0);
        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
    }  
   
    Now = t.read_us();
    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
    lastUpdate = Now;
    
    sum += deltat;
    sumCount++;
    
    if(lastUpdate - firstUpdate > 10000000.0f) {
        beta = 0.04;  // decrease filter gain after stabilized
        zeta = 0.015; // increasey bias drift gain after stabilized
    }
    
    // Pass gyro rate as rad/s
    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);

    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = t.read_ms() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate
        /*
        pc.printf("ax = %f", 1000*ax); 
        pc.printf(" ay = %f", 1000*ay); 
        pc.printf(" az = %f  mg\n\r", 1000*az); 
    
        pc.printf("gx = %f", gx); 
        pc.printf(" gy = %f", gy); 
        pc.printf(" gz = %f  deg/s\n\r", gz); 
        
        pc.printf(" temperature = %f  C\n\r", temperature); 
        
        pc.printf("q0 = %f\n\r", q[0]);
        pc.printf("q1 = %f\n\r", q[1]);
        pc.printf("q2 = %f\n\r", q[2]);
        pc.printf("q3 = %f\n\r", q[3]);      
        */
        
        // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
        // In this coordinate system, the positive z-axis is down toward Earth. 
        // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
        // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
        // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
        // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
        // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
        // applied in the correct order which for this configuration is yaw, pitch, and then roll.
        // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
        pitch *= 180.0f / PI;
        yaw   *= 180.0f / PI; 
        roll  *= 180.0f / PI;
    
        /*
        pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
        pc.printf("average rate = %f\n\r", (float) sumCount/sum);
        */

        count = t.read_ms(); 
        sum = 0;
        sumCount = 0; 
    }
}



#endif