Unina Corse EL / Mbed 2 deprecated f4_sd_imu_4

Dependencies:   SDFileSystem_conMOD mbed-rtos mbed

Fork of f4_sd_imu_4 by ratto killer

Revision:
3:3b2b8b0955f9
Child:
9:7f0c1261e905
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/accellerometro.h	Wed Nov 22 02:41:36 2017 +0000
@@ -0,0 +1,142 @@
+#ifndef __ACCELLEROMETRO__
+#define __ACCELLEROMETRO__
+
+#include "MPU6050.h"
+#include "setting.h"
+
+
+float sum = 0;
+uint32_t sumCount = 0;
+
+MPU6050 mpu6050;
+   
+Timer t;
+
+void initAccellerometro(){
+    t.start();
+    
+    i2c.frequency(400000);                             
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050 //DEBUG
+    pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); //DEBUG
+    
+    if (whoami == 0x68){
+            pc.printf("MPU6050 is online...");
+            wait(1);
+    
+            mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+            pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
+            pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
+            pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
+            pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
+            pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
+            pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
+            wait(1);
+    
+            if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+            mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        
+            wait(2);
+        }
+        else{
+            pc.printf("Device did not the pass self-test!\n\r");
+        }
+    }
+    else{
+        pc.printf("Could not connect to MPU6050: \n\r");
+        pc.printf("%#x \n",  whoami);
+    
+        while(1) ; // Loop forever if communication doesn't happen
+    }
+}
+
+void raccoltaDati(){
+    if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+        mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+        mpu6050.getAres();
+    
+        // Now we'll calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];   
+        az = (float)accelCount[2]*aRes - accelBias[2];  
+   
+        mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+        mpu6050.getGres();
+     
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
+        gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+
+        tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+        temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+    }  
+   
+    Now = t.read_us();
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+    lastUpdate = Now;
+    
+    sum += deltat;
+    sumCount++;
+    
+    if(lastUpdate - firstUpdate > 10000000.0f) {
+        beta = 0.04;  // decrease filter gain after stabilized
+        zeta = 0.015; // increasey bias drift gain after stabilized
+    }
+    
+    // Pass gyro rate as rad/s
+    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+    // Serial print and/or display at 0.5 s rate independent of data rates
+    delt_t = t.read_ms() - count;
+    if (delt_t > 500) { // update LCD once per half-second independent of read rate
+        /*
+        pc.printf("ax = %f", 1000*ax); 
+        pc.printf(" ay = %f", 1000*ay); 
+        pc.printf(" az = %f  mg\n\r", 1000*az); 
+    
+        pc.printf("gx = %f", gx); 
+        pc.printf(" gy = %f", gy); 
+        pc.printf(" gz = %f  deg/s\n\r", gz); 
+        
+        pc.printf(" temperature = %f  C\n\r", temperature); 
+        
+        pc.printf("q0 = %f\n\r", q[0]);
+        pc.printf("q1 = %f\n\r", q[1]);
+        pc.printf("q2 = %f\n\r", q[2]);
+        pc.printf("q3 = %f\n\r", q[3]);      
+        */
+    
+        
+        
+        // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+        // In this coordinate system, the positive z-axis is down toward Earth. 
+        // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+        // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+        // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+        // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+        // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+        // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+        // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI; 
+        roll  *= 180.0f / PI;
+    
+        /*
+        pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+        pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+        */
+
+        count = t.read_ms(); 
+        sum = 0;
+        sumCount = 0; 
+    }
+}
+
+
+
+#endif
\ No newline at end of file