d

Dependencies:   General C12832 FatFileSystemCpp mbed

Fork of MPU9150AHRS by Kris Winer

Committer:
Kekehoho
Date:
Fri Jun 17 20:35:28 2016 +0000
Revision:
1:4523d7cda75e
2nd try

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Kekehoho 1:4523d7cda75e 1 #include "DW1000.h"
Kekehoho 1:4523d7cda75e 2
Kekehoho 1:4523d7cda75e 3 DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS) {
Kekehoho 1:4523d7cda75e 4 setCallbacks(NULL, NULL);
Kekehoho 1:4523d7cda75e 5
Kekehoho 1:4523d7cda75e 6 deselect(); // Chip must be deselected first
Kekehoho 1:4523d7cda75e 7 spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
Kekehoho 1:4523d7cda75e 8 spi.frequency(5000000); // with a 1MHz clock rate (worked up to 49MHz in our Test)
Kekehoho 1:4523d7cda75e 9
Kekehoho 1:4523d7cda75e 10 resetAll(); // we do a soft reset of the DW1000 everytime the driver starts
Kekehoho 1:4523d7cda75e 11
Kekehoho 1:4523d7cda75e 12 // Configuration TODO: make method for that
Kekehoho 1:4523d7cda75e 13 // User Manual "2.5.5 Default Configurations that should be modified" p. 22
Kekehoho 1:4523d7cda75e 14 //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE!
Kekehoho 1:4523d7cda75e 15 // writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);
Kekehoho 1:4523d7cda75e 16 // writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);
Kekehoho 1:4523d7cda75e 17 // writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D);
Kekehoho 1:4523d7cda75e 18 // writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);
Kekehoho 1:4523d7cda75e 19 // writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);
Kekehoho 1:4523d7cda75e 20 // writeRegister32(DW1000_TX_POWER, 0, 0x0E082848);
Kekehoho 1:4523d7cda75e 21 // writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);
Kekehoho 1:4523d7cda75e 22 // writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);
Kekehoho 1:4523d7cda75e 23 // writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);
Kekehoho 1:4523d7cda75e 24
Kekehoho 1:4523d7cda75e 25
Kekehoho 1:4523d7cda75e 26 //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete
Kekehoho 1:4523d7cda75e 27 writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF
Kekehoho 1:4523d7cda75e 28 writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal)
Kekehoho 1:4523d7cda75e 29 writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal)
Kekehoho 1:4523d7cda75e 30
Kekehoho 1:4523d7cda75e 31 writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps
Kekehoho 1:4523d7cda75e 32 writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF
Kekehoho 1:4523d7cda75e 33 writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols
Kekehoho 1:4523d7cda75e 34 writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF
Kekehoho 1:4523d7cda75e 35 //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble
Kekehoho 1:4523d7cda75e 36
Kekehoho 1:4523d7cda75e 37 writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1
Kekehoho 1:4523d7cda75e 38 writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF
Kekehoho 1:4523d7cda75e 39
Kekehoho 1:4523d7cda75e 40 writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5
Kekehoho 1:4523d7cda75e 41
Kekehoho 1:4523d7cda75e 42 writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5
Kekehoho 1:4523d7cda75e 43 writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5
Kekehoho 1:4523d7cda75e 44
Kekehoho 1:4523d7cda75e 45 writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5
Kekehoho 1:4523d7cda75e 46
Kekehoho 1:4523d7cda75e 47 writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5
Kekehoho 1:4523d7cda75e 48 writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5
Kekehoho 1:4523d7cda75e 49
Kekehoho 1:4523d7cda75e 50 loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158
Kekehoho 1:4523d7cda75e 51
Kekehoho 1:4523d7cda75e 52 // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps
Kekehoho 1:4523d7cda75e 53 writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual
Kekehoho 1:4523d7cda75e 54 writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...]
Kekehoho 1:4523d7cda75e 55
Kekehoho 1:4523d7cda75e 56 writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards
Kekehoho 1:4523d7cda75e 57 writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1)
Kekehoho 1:4523d7cda75e 58
Kekehoho 1:4523d7cda75e 59 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
Kekehoho 1:4523d7cda75e 60
Kekehoho 1:4523d7cda75e 61 irq.rise(this, &DW1000::ISR); // attach interrupt handler to rising edge of interrupt pin from DW1000
Kekehoho 1:4523d7cda75e 62 }
Kekehoho 1:4523d7cda75e 63
Kekehoho 1:4523d7cda75e 64 void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) {
Kekehoho 1:4523d7cda75e 65 bool RX = false;
Kekehoho 1:4523d7cda75e 66 bool TX = false;
Kekehoho 1:4523d7cda75e 67 if (callbackRX) {
Kekehoho 1:4523d7cda75e 68 DW1000::callbackRX.attach(callbackRX);
Kekehoho 1:4523d7cda75e 69 RX = true;
Kekehoho 1:4523d7cda75e 70 }
Kekehoho 1:4523d7cda75e 71 if (callbackTX) {
Kekehoho 1:4523d7cda75e 72 DW1000::callbackTX.attach(callbackTX);
Kekehoho 1:4523d7cda75e 73 TX = true;
Kekehoho 1:4523d7cda75e 74 }
Kekehoho 1:4523d7cda75e 75 setInterrupt(RX,TX);
Kekehoho 1:4523d7cda75e 76 }
Kekehoho 1:4523d7cda75e 77
Kekehoho 1:4523d7cda75e 78 uint32_t DW1000::getDeviceID() {
Kekehoho 1:4523d7cda75e 79 uint32_t result;
Kekehoho 1:4523d7cda75e 80 readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
Kekehoho 1:4523d7cda75e 81 return result;
Kekehoho 1:4523d7cda75e 82 }
Kekehoho 1:4523d7cda75e 83
Kekehoho 1:4523d7cda75e 84 uint64_t DW1000::getEUI() {
Kekehoho 1:4523d7cda75e 85 uint64_t result;
Kekehoho 1:4523d7cda75e 86 readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
Kekehoho 1:4523d7cda75e 87 return result;
Kekehoho 1:4523d7cda75e 88 }
Kekehoho 1:4523d7cda75e 89
Kekehoho 1:4523d7cda75e 90 void DW1000::setEUI(uint64_t EUI) {
Kekehoho 1:4523d7cda75e 91 writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
Kekehoho 1:4523d7cda75e 92 }
Kekehoho 1:4523d7cda75e 93
Kekehoho 1:4523d7cda75e 94 uint64_t DW1000::getCIR_PWR() {
Kekehoho 1:4523d7cda75e 95 uint64_t result;
Kekehoho 1:4523d7cda75e 96 readRegister(DW1000_RX_FQUAL, 0,(uint8_t*)&result, 8);
Kekehoho 1:4523d7cda75e 97 return result;
Kekehoho 1:4523d7cda75e 98 }
Kekehoho 1:4523d7cda75e 99
Kekehoho 1:4523d7cda75e 100 uint32_t DW1000::getRXPACC() {
Kekehoho 1:4523d7cda75e 101 uint32_t result;
Kekehoho 1:4523d7cda75e 102 readRegister(DW1000_RX_FINFO, 0, (uint8_t*)&result, 8);
Kekehoho 1:4523d7cda75e 103 return result;
Kekehoho 1:4523d7cda75e 104 }
Kekehoho 1:4523d7cda75e 105
Kekehoho 1:4523d7cda75e 106 float DW1000::getVoltage() {
Kekehoho 1:4523d7cda75e 107 uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57
Kekehoho 1:4523d7cda75e 108 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
Kekehoho 1:4523d7cda75e 109 writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
Kekehoho 1:4523d7cda75e 110 writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
Kekehoho 1:4523d7cda75e 111 writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
Kekehoho 1:4523d7cda75e 112 readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature
Kekehoho 1:4523d7cda75e 113 float Voltage = buffer[5] * 0.0057 + 2.3;
Kekehoho 1:4523d7cda75e 114 //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration
Kekehoho 1:4523d7cda75e 115 return Voltage;
Kekehoho 1:4523d7cda75e 116 }
Kekehoho 1:4523d7cda75e 117
Kekehoho 1:4523d7cda75e 118 uint64_t DW1000::getStatus() {
Kekehoho 1:4523d7cda75e 119 return readRegister40(DW1000_SYS_STATUS, 0);
Kekehoho 1:4523d7cda75e 120 }
Kekehoho 1:4523d7cda75e 121
Kekehoho 1:4523d7cda75e 122 uint64_t DW1000::getRXTimestamp() {
Kekehoho 1:4523d7cda75e 123 return readRegister40(DW1000_RX_TIME, 0);
Kekehoho 1:4523d7cda75e 124 }
Kekehoho 1:4523d7cda75e 125
Kekehoho 1:4523d7cda75e 126 uint64_t DW1000::getTXTimestamp() {
Kekehoho 1:4523d7cda75e 127 return readRegister40(DW1000_TX_TIME, 0);
Kekehoho 1:4523d7cda75e 128 }
Kekehoho 1:4523d7cda75e 129
Kekehoho 1:4523d7cda75e 130 void DW1000::sendString(char* message) {
Kekehoho 1:4523d7cda75e 131 sendFrame((uint8_t*)message, strlen(message)+1);
Kekehoho 1:4523d7cda75e 132 }
Kekehoho 1:4523d7cda75e 133
Kekehoho 1:4523d7cda75e 134 void DW1000::receiveString(char* message) {
Kekehoho 1:4523d7cda75e 135 readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer
Kekehoho 1:4523d7cda75e 136 }
Kekehoho 1:4523d7cda75e 137
Kekehoho 1:4523d7cda75e 138 void DW1000::sendFrame(uint8_t* message, uint16_t length) {
Kekehoho 1:4523d7cda75e 139 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
Kekehoho 1:4523d7cda75e 140 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
Kekehoho 1:4523d7cda75e 141 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
Kekehoho 1:4523d7cda75e 142
Kekehoho 1:4523d7cda75e 143 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
Kekehoho 1:4523d7cda75e 144 length += 2; // including 2 CRC Bytes
Kekehoho 1:4523d7cda75e 145 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
Kekehoho 1:4523d7cda75e 146 writeRegister16(DW1000_TX_FCTRL, 0, length);
Kekehoho 1:4523d7cda75e 147
Kekehoho 1:4523d7cda75e 148 stopTRX(); // stop receiving
Kekehoho 1:4523d7cda75e 149 writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit
Kekehoho 1:4523d7cda75e 150 startRX(); // enable receiver again
Kekehoho 1:4523d7cda75e 151 }
Kekehoho 1:4523d7cda75e 152
Kekehoho 1:4523d7cda75e 153 void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) {
Kekehoho 1:4523d7cda75e 154 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
Kekehoho 1:4523d7cda75e 155 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
Kekehoho 1:4523d7cda75e 156 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
Kekehoho 1:4523d7cda75e 157
Kekehoho 1:4523d7cda75e 158 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
Kekehoho 1:4523d7cda75e 159 length += 2; // including 2 CRC Bytes
Kekehoho 1:4523d7cda75e 160 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
Kekehoho 1:4523d7cda75e 161 writeRegister16(DW1000_TX_FCTRL, 0, length);
Kekehoho 1:4523d7cda75e 162
Kekehoho 1:4523d7cda75e 163 writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message
Kekehoho 1:4523d7cda75e 164
Kekehoho 1:4523d7cda75e 165 stopTRX(); // stop receiving
Kekehoho 1:4523d7cda75e 166 writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit
Kekehoho 1:4523d7cda75e 167 startRX(); // enable receiver again
Kekehoho 1:4523d7cda75e 168 }
Kekehoho 1:4523d7cda75e 169
Kekehoho 1:4523d7cda75e 170 void DW1000::startRX() {
Kekehoho 1:4523d7cda75e 171 writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
Kekehoho 1:4523d7cda75e 172 }
Kekehoho 1:4523d7cda75e 173
Kekehoho 1:4523d7cda75e 174 void DW1000::stopTRX() {
Kekehoho 1:4523d7cda75e 175 writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode
Kekehoho 1:4523d7cda75e 176 }
Kekehoho 1:4523d7cda75e 177
Kekehoho 1:4523d7cda75e 178 // PRIVATE Methods ------------------------------------------------------------------------------------
Kekehoho 1:4523d7cda75e 179 void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22
Kekehoho 1:4523d7cda75e 180 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable
Kekehoho 1:4523d7cda75e 181 writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP
Kekehoho 1:4523d7cda75e 182 wait_us(150);
Kekehoho 1:4523d7cda75e 183 writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock
Kekehoho 1:4523d7cda75e 184 }
Kekehoho 1:4523d7cda75e 185
Kekehoho 1:4523d7cda75e 186 void DW1000::resetRX() {
Kekehoho 1:4523d7cda75e 187 writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
Kekehoho 1:4523d7cda75e 188 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
Kekehoho 1:4523d7cda75e 189 }
Kekehoho 1:4523d7cda75e 190
Kekehoho 1:4523d7cda75e 191 void DW1000::resetAll() {
Kekehoho 1:4523d7cda75e 192 writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
Kekehoho 1:4523d7cda75e 193 writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
Kekehoho 1:4523d7cda75e 194 wait_us(10); // wait for PLL to lock
Kekehoho 1:4523d7cda75e 195 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
Kekehoho 1:4523d7cda75e 196 }
Kekehoho 1:4523d7cda75e 197
Kekehoho 1:4523d7cda75e 198
Kekehoho 1:4523d7cda75e 199 void DW1000::setInterrupt(bool RX, bool TX) {
Kekehoho 1:4523d7cda75e 200 writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080
Kekehoho 1:4523d7cda75e 201 }
Kekehoho 1:4523d7cda75e 202
Kekehoho 1:4523d7cda75e 203 void DW1000::ISR() {
Kekehoho 1:4523d7cda75e 204 uint64_t status = getStatus();
Kekehoho 1:4523d7cda75e 205 if (status & 0x4000) { // a frame was received
Kekehoho 1:4523d7cda75e 206 callbackRX.call();
Kekehoho 1:4523d7cda75e 207 writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
Kekehoho 1:4523d7cda75e 208 }
Kekehoho 1:4523d7cda75e 209 if (status & 0x80) { // sending complete
Kekehoho 1:4523d7cda75e 210 callbackTX.call();
Kekehoho 1:4523d7cda75e 211 writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
Kekehoho 1:4523d7cda75e 212 }
Kekehoho 1:4523d7cda75e 213 }
Kekehoho 1:4523d7cda75e 214
Kekehoho 1:4523d7cda75e 215 uint16_t DW1000::getFramelength() {
Kekehoho 1:4523d7cda75e 216 uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength
Kekehoho 1:4523d7cda75e 217 framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
Kekehoho 1:4523d7cda75e 218 return framelength;
Kekehoho 1:4523d7cda75e 219 }
Kekehoho 1:4523d7cda75e 220
Kekehoho 1:4523d7cda75e 221 // SPI Interface ------------------------------------------------------------------------------------
Kekehoho 1:4523d7cda75e 222 uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
Kekehoho 1:4523d7cda75e 223 uint8_t result;
Kekehoho 1:4523d7cda75e 224 readRegister(reg, subaddress, &result, 1);
Kekehoho 1:4523d7cda75e 225 return result;
Kekehoho 1:4523d7cda75e 226 }
Kekehoho 1:4523d7cda75e 227
Kekehoho 1:4523d7cda75e 228 uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) {
Kekehoho 1:4523d7cda75e 229 uint16_t result;
Kekehoho 1:4523d7cda75e 230 readRegister(reg, subaddress, (uint8_t*)&result, 2);
Kekehoho 1:4523d7cda75e 231 return result;
Kekehoho 1:4523d7cda75e 232 }
Kekehoho 1:4523d7cda75e 233
Kekehoho 1:4523d7cda75e 234 uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) {
Kekehoho 1:4523d7cda75e 235 uint64_t result;
Kekehoho 1:4523d7cda75e 236 readRegister(reg, subaddress, (uint8_t*)&result, 5);
Kekehoho 1:4523d7cda75e 237 result &= 0xFFFFFFFFFF; // only 40-Bit
Kekehoho 1:4523d7cda75e 238 return result;
Kekehoho 1:4523d7cda75e 239 }
Kekehoho 1:4523d7cda75e 240
Kekehoho 1:4523d7cda75e 241 void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
Kekehoho 1:4523d7cda75e 242 writeRegister(reg, subaddress, &buffer, 1);
Kekehoho 1:4523d7cda75e 243 }
Kekehoho 1:4523d7cda75e 244
Kekehoho 1:4523d7cda75e 245 void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) {
Kekehoho 1:4523d7cda75e 246 writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
Kekehoho 1:4523d7cda75e 247 }
Kekehoho 1:4523d7cda75e 248
Kekehoho 1:4523d7cda75e 249 void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) {
Kekehoho 1:4523d7cda75e 250 writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
Kekehoho 1:4523d7cda75e 251 }
Kekehoho 1:4523d7cda75e 252
Kekehoho 1:4523d7cda75e 253 void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) {
Kekehoho 1:4523d7cda75e 254 writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
Kekehoho 1:4523d7cda75e 255 }
Kekehoho 1:4523d7cda75e 256
Kekehoho 1:4523d7cda75e 257 void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
Kekehoho 1:4523d7cda75e 258 setupTransaction(reg, subaddress, false);
Kekehoho 1:4523d7cda75e 259 for(int i=0; i<length; i++) // get data
Kekehoho 1:4523d7cda75e 260 buffer[i] = spi.write(0x00);
Kekehoho 1:4523d7cda75e 261 deselect();
Kekehoho 1:4523d7cda75e 262 }
Kekehoho 1:4523d7cda75e 263
Kekehoho 1:4523d7cda75e 264 void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
Kekehoho 1:4523d7cda75e 265 setupTransaction(reg, subaddress, true);
Kekehoho 1:4523d7cda75e 266 for(int i=0; i<length; i++) // put data
Kekehoho 1:4523d7cda75e 267 spi.write(buffer[i]);
Kekehoho 1:4523d7cda75e 268 deselect();
Kekehoho 1:4523d7cda75e 269 }
Kekehoho 1:4523d7cda75e 270
Kekehoho 1:4523d7cda75e 271 void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
Kekehoho 1:4523d7cda75e 272 reg |= (write * DW1000_WRITE_FLAG); // set read/write flag
Kekehoho 1:4523d7cda75e 273 select();
Kekehoho 1:4523d7cda75e 274 if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
Kekehoho 1:4523d7cda75e 275 spi.write(reg | DW1000_SUBADDRESS_FLAG);
Kekehoho 1:4523d7cda75e 276 if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte
Kekehoho 1:4523d7cda75e 277 spi.write((uint8_t)(subaddress & 0x7F)
Kekehoho 1:4523d7cda75e 278 | DW1000_2_SUBADDRESS_FLAG); // and
Kekehoho 1:4523d7cda75e 279 spi.write((uint8_t)(subaddress >> 7));
Kekehoho 1:4523d7cda75e 280 } else {
Kekehoho 1:4523d7cda75e 281 spi.write((uint8_t)subaddress);
Kekehoho 1:4523d7cda75e 282 }
Kekehoho 1:4523d7cda75e 283 } else {
Kekehoho 1:4523d7cda75e 284 spi.write(reg); // say which register address we want to access
Kekehoho 1:4523d7cda75e 285 }
Kekehoho 1:4523d7cda75e 286 }
Kekehoho 1:4523d7cda75e 287
Kekehoho 1:4523d7cda75e 288 void DW1000::select() { // always called to start an SPI transmission
Kekehoho 1:4523d7cda75e 289 irq.disable_irq(); // disable interrupts from DW1000 during SPI becaus this leads to crashes! TODO: if you have other interrupt handlers attached on the micro controller, they could also interfere.
Kekehoho 1:4523d7cda75e 290 cs = 0; // set Cable Select pin low to start transmission
Kekehoho 1:4523d7cda75e 291 }
Kekehoho 1:4523d7cda75e 292 void DW1000::deselect() { // always called to end an SPI transmission
Kekehoho 1:4523d7cda75e 293 cs = 1; // set Cable Select pin high to stop transmission
Kekehoho 1:4523d7cda75e 294 irq.enable_irq(); // reenable the interrupt handler
Kekehoho 1:4523d7cda75e 295 }