Changing about IMU

Dependencies:   Servo mbed-rtos mbed

Fork of TurtleBot_V1 by TurtleBot

Revision:
3:5bfa7291c639
Parent:
2:d4bd9ff10e8e
--- a/main.cpp	Fri Mar 23 16:25:17 2018 +0000
+++ b/main.cpp	Fri Mar 23 18:32:18 2018 +0000
@@ -19,6 +19,8 @@
 
 /////////////////////////   IMU   ////////////////////////////////
 //////////////////////////////////////////////////////////////////
+#include "attitude.h"
+/*
 #include "MPU9250.h"
 
 float sum = 0;
@@ -28,7 +30,7 @@
 
 MPU9250 mpu9250;
 Timer t;
-
+*/
 
 ///////////////////////// Servo   ////////////////////////////////
 //////////////////////////////////////////////////////////////////
@@ -58,9 +60,10 @@
 //////////////////////////////////////////////////////////////////
 int main()
 {
+
+    IMU();
     thread1.start(myservoLeft);
     thread2.start(myservoRight);
-    IMU();
 /*    while(1) 
     {
         printf("Hello World! Turtlebot is READY\n");
@@ -199,182 +202,13 @@
 
 /////////////////////////      IMU         ///////////////////////
 //////////////////////////////////////////////////////////////////
+
 void IMU()
 {
-    //Set up I2C
-    i2c.frequency(400000);  // use fast (400 kHz) I2C  
-  
-    //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
-    t.start();        
-      
-    // Read the WHO_AM_I register, this is a good test of communication
-    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-    //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-  
-    if (whoami == 0x73 ) // WHO_AM_I should always be 0x68
-    {  
-        //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-        //pc.printf("MPU9250 is online...\n\r");
-        sprintf(buffer, "0x%x", whoami);  
-        wait(1);
-    
-        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-        pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
-        pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
-        pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
-        pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
-        pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
-        pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
-        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-        pc.printf("x accel bias = %f\n\r", accelBias[0]);
-        pc.printf("y accel bias = %f\n\r", accelBias[1]);
-        pc.printf("z accel bias = %f\n\r", accelBias[2]);
-        wait(2);
-        mpu9250.initMPU9250(); 
-        pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-        mpu9250.initAK8963(magCalibration);
-        pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-        
-        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-        wait(1);
-    }
-    else
+    attitude_setup();
+    while(1)
     {
-        pc.printf("Could not connect to MPU9250: \n\r");
-        pc.printf("%#x \n",  whoami);
- 
-        sprintf(buffer, "WHO_AM_I 0x%x", whoami); 
- 
-        while(1) ; // Loop forever if communication doesn't happen
-        }
-
-            mpu9250.getAres(); // Get accelerometer sensitivity
-            mpu9250.getGres(); // Get gyro sensitivity
-            mpu9250.getMres(); // Get magnetometer sensitivity
-            pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
-            pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-            pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-            magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-            magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-            magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-
-
-            while(1) 
-            {
-                // If intPin goes high, all data registers have new data
-                if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-
-                mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-                // Now we'll calculate the accleration value into actual g's
-                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-                ay = (float)accelCount[1]*aRes - accelBias[1];   
-                az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-                mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-                // Calculate the gyro value into actual degrees per second
-                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-                gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-                gz = (float)gyroCount[2]*gRes - gyroBias[2];   
-  
-                mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-                // Calculate the magnetometer values in milliGauss
-                // Include factory calibration per data sheet and user environmental corrections
-                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
-            }
-   
-            Now = t.read_us();
-            deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-            lastUpdate = Now;
-    
-            sum += deltat;
-            sumCount++;
-    
-            //if(lastUpdate - firstUpdate > 10000000.0f) 
-            //{
-                //beta = 0.04;  // decrease filter gain after stabilized
-                //zeta = 0.015; // increasey bias drift gain after stabilized
-            //}
-    
-            //Pass gyro rate as rad/s
-            mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-            //mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
-
-            //Serial print and/or display at 0.5 s rate independent of data rates
-            delt_t = t.read_ms() - count;
-    
-            if (delt_t > 10) 
-            { // update LCD once per half-second independent of read rate
-
-                //pc.printf("ax = %f", 1000*ax); 
-                //pc.printf(" ay = %f", 1000*ay); 
-                //pc.printf(" az = %f  mg\n\r", 1000*az); 
-
-                //pc.printf("gx = %f", gx); 
-                //pc.printf(" gy = %f", gy); 
-                //pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-                //pc.printf("gx = %f", mx); 
-                //pc.printf(" gy = %f", my); 
-                //pc.printf(" gz = %f  mG\n\r", mz); 
-    
-                //tempCount = mpu9250.readTempData();  // Read the adc values
-                //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-                //pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-                //pc.printf("q0 = %f\n\r", q[0]);
-                //pc.printf("q1 = %f\n\r", q[1]);
-                //pc.printf("q2 = %f\n\r", q[2]);
-                //pc.printf("q3 = %f\n\r", q[3]);      
-    
- 
-                // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-                // In this coordinate system, the positive z-axis is down toward Earth. 
-                // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-                // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-                // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-                // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-                // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-                // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-                // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-                yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-                pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-                roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-                pitch *= 180.0f / PI;
-                yaw   *= 180.0f / PI; 
-                //yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-                yaw   += 0.8f; 
-                roll  *= 180.0f / PI;
-
-                pc.printf("%f  %f  %f  %f \n\r",roll, pitch, yaw,origin);
-                //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-                //sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
-                //lcd.printString(buffer, 0, 4);
-                //sprintf(buffer, "rate = %f", (float) sumCount/sum);
-                //lcd.printString(buffer, 0, 5);
-    
-                myled= !myled;
-                count = t.read_ms(); 
-
-                if(count > 1<<21) 
-                {
-                    t.start(); // start the timer over again if ~30 minutes has passed
-                    count = 0;
-                    deltat= 0;
-                    lastUpdate = t.read_us();
-                }
-                sum = 0;
-                sumCount = 0; 
-            }
-        }
-}
\ No newline at end of file
+        attitude_get();
+        pc.printf("%.0f  %.0f  %.0f \n\r",  roll,   pitch, yaw );
+    }
+}