first commit

Dependencies:   PM2_Libary

Revision:
33:70ea029a69e8
Parent:
32:bf35aeffc374
Child:
34:9f779e91168e
diff -r bf35aeffc374 -r 70ea029a69e8 main.cpp
--- a/main.cpp	Wed Apr 06 07:44:41 2022 +0000
+++ b/main.cpp	Wed Apr 06 12:38:20 2022 +0200
@@ -1,10 +1,6 @@
 #include "mbed.h"
 #include "PM2_Libary.h"
-
-
-
-
-//
+#include <cstdint>
 
 // logical variable main task
 bool do_execute_main_task = false;  // this variable will be toggled via the user button (blue button) to or not to execute the main task
@@ -19,183 +15,180 @@
 int main_task_period_ms = 50;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
 Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
 
-// led on nucleo board
-DigitalOut user_led(LED1);      // create DigitalOut object to command user led
-
-// additional Led
-DigitalOut extra_led(PB_9);     // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm)
-
-// mechanical button
-DigitalIn mechanical_button(PC_5);  // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below
-
 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
 float ir_distance_mV = 0.0f;    // define variable to store measurement
 AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
 
+
+
 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
 DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
 
 float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
-FastPWM pwm_M1(PB_13);              // motor M1 is used open loop
-FastPWM pwm_M2(PA_9);               // motor M2 is closed-loop speed controlled (angle velocity)
-FastPWM pwm_M3(PA_10);              // motor M3 is closed-loop position controlled (angle controlled)
+//motor pin declaration
+FastPWM pwm_M_right(PA_9);              
+FastPWM pwm_M_left(PB_13);
+FastPWM pwm_M_arm(PA_10);
 
-EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
-EncoderCounter  encoder_M2(PB_6, PB_7);
-EncoderCounter  encoder_M3(PA_0, PA_1);
+//Encoder pin declaration
+EncoderCounter  encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
+EncoderCounter  encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
+EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
 
 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
 float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
-float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
+float counts_per_turn_wheels = 2000.0f * 100.0f;    // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
+float counts_per_turn_arm = 40000.0f * 100.0f;      // define counts per turn at gearbox end (counts/turn * gearratio) for arm
 float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
 float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
 float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
 
-// SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box  with default contoller parameters
-SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
-
-float max_speed_rps = 0.5f;                 // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
-// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
-PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
+//motors for tracks
+PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
+PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
+//Arm Motor
+PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
 
-// Futaba Servo S3001 20mm 3kg Analog
-Servo servo_S1(PB_2);           // create servo objects
-Servo servo_S2(PC_8);
-float servo_S1_angle = 0;       // servo S1 normalized angle
-float servo_S2_angle = 0;       // servo S2 normalized angle
-int servo_period_mus = 20000;   // define servo period time in mus
+//float max_speed_rps = 0.5f;       not sure if needed          // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
+// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
+//PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
 
-int servo_counter = 0;          // define servo counter, this is an additional variable to make the servos move
-int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
-
-// Groove Ultrasonic Ranger V2.0
-float us_distance_cm = 0.0f;    // define variable to store measurement
-RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization
-// RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f,  7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization
 
 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
 
-int main()
+//Platzhalter Variabeln für die Positionierung
+int16_t PositionStair    = 20;
+int16_t PositionBackOff  = 100;
+int16_t degArmStart      = 40;
+int16_t degArmLift       = 18;
+int ToNextFunction = 1;
+
+int StartPosition(int16_t deg){
+
+    positionController_M_Arm.setDesiredRotation(deg);
+
+    return NULL;
+}
+//Drives forward into the next step
+int Drive(int16_t dist){
+    int8_t i = 0;         //prov condition variable
+
+    int8_t distance = dist; //distance which will be driven in [mm]
+    float factor = 1.0f; //factor for calculating the value in to the float which will be given to the setDesiredRotation function
+    float distanceValue = float(distance)*factor;
+
+        positionController_M_right.setDesiredRotation(distanceValue);
+        positionController_M_left.setDesiredRotation(distanceValue);
+
+    return 0;   
+}
+
+//only turns the arm until the robot is on the next step
+//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
+int LiftUp(int16_t deg){
+    int8_t rotation = deg;
+    int8_t i = 0;         //prov condition variable
+    
+        positionController_M_Arm.setDesiredRotation(deg);
+        
+    
+    return 0;
+}
+//pow function is here so we dont have to use the math.h library
+//it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
+double powerx(double base, double pow2){
+    double result = -1;
+    double power = pow2;
+    double basis = base;
+    result = 1;
+    //handling negative exponents
+    if(power<0){
+        for(double i=1; i<=(power*(-1.0)); i++) {
+            result *= basis;
+        }
+        result = 1.0/result;
+    }
+    //handling positive exponents
+    else{
+    for(double i=1; i<=power; i++){
+    result *= basis;}}
+
+    return result;
+    }
+
+double mapping(float adc_value_mV){
+    double distance = 0.0f; //distance in mm
+    double infY =360 , supY = 2360; //Window for sensor values
+    double voltage_mV = adc_value_mV;
+    double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
+    if(voltage_mV > infY && voltage_mV < supY){
+        distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
+    }
+    return (distance);
+}
+
+
+int main(void)
 {
     // attach button fall and rise functions to user button object
-    user_button.fall(&user_button_pressed_fcn);
-    user_button.rise(&user_button_released_fcn);
-
-    // start timer
-    main_task_timer.start();
-
-    // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
-    mechanical_button.mode(PullUp);
+user_button.fall(&user_button_pressed_fcn);
+   user_button.rise(&user_button_released_fcn);
+  
 
-    // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
-    enable_motors = 1;
-
-    // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
-    pwm_M1.period(pwm_period_s);
-    pwm_M1.write(0.5f);
-
-    // enable servos, you can also disable them at any point in your program if you don't want your servos to become warm
-    servo_S1.Enable(servo_S1_angle, servo_period_mus);
-    servo_S2.Enable(servo_S2_angle, servo_period_mus);
 
-    while (true) { // this loop will run forever
-
-        main_task_timer.reset();
-
-        if (do_execute_main_task) {
-
-            // read analog input
-            ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
+    while (true){
+         ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
+        
+         printf("test pow function 2 ^ 2 %lf\n",powerx(2,2));
+         printf("test mapping function %f\n", mapping(ir_distance_mV));
 
-            // command dc motors if mechanical button is pressed
-            if (mechanical_button.read()) {
-                pwm_M1.write(0.75f); // write output voltage to motor M1
-                speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
-                positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3
-            } else {
-                pwm_M1.write(0.5f);
-                speedController_M2.setDesiredSpeedRPS(0.0f);
-                positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
-            }
+         printf("IR sensor (mV): %3.3f\n", ir_distance_mV);
+        
 
-            // check if servos are enabled
-            if (!servo_S1.isEnabled()) servo_S1.Enable(servo_S1_angle, servo_period_mus);
-            if (!servo_S2.isEnabled()) servo_S2.Enable(servo_S2_angle, servo_period_mus);
-            // command servo position, this needs to be calibrated
-            servo_S1.SetPosition(servo_S1_angle);
-            if (servo_S1_angle <= 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S1_angle += 0.01f;
-            }
-            servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S2_angle <= 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S2_angle += 0.01f;
-            }
-            servo_counter++;
-
-            // read ultra sonic distance sensor
-            us_distance_cm = us_range_finder.read_cm();
-
-            // visual feedback that the main task is executed
-            extra_led = 1;
-
-        } else {
-
-            ir_distance_mV = 0.0f;
-
-            pwm_M1.write(0.5f);
-            speedController_M2.setDesiredSpeedRPS(0.0f);
-            positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
+       switch (ToNextFunction) {
+        case 1: StartPosition(degArmStart);
+            printf("a");
+             //   ToNextFunction+=1;
+            break;
+        case 2: Drive(PositionStair);
+            printf("b");
+            // ToNextFunction+=1;
+            break;
+        case 3:// LiftUp(degArmLift);
+            //  ToNextFunction+=1;
+            printf("c");
+             break;
+        case 4: Drive(PositionBackOff);
+            printf("d");
+            //   ToNextFunction+=1;
+            break;
+        case 5: LiftUp(degArmStart);
+                printf("d");
+            //  ToNextFunction = 0;
+            break;  
+        } 
 
-            servo_S1_angle = 0;
-            servo_S2_angle = 0;
-            // servo_S1.SetPosition(servo_S1_angle);
-            // servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S1.isEnabled()) servo_S1.Disable();
-            if (servo_S2.isEnabled()) servo_S2.Disable();
-
-            us_distance_cm = 0.0f;
-
-            extra_led = 0;
-        }
-
-        user_led = !user_led;
-
-        // do only output via serial what's really necessary (this makes your code slow)
-        printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n",
-               ir_distance_mV,
-               encoder_M1.read(),
-               speedController_M2.getSpeedRPS(),
-               positionController_M3.getRotation(),
-               servo_S1_angle,
-               servo_S2_angle,
-               us_distance_cm);
-
-        // read out the imu, the actual frames of the sensor reading needs to be figured out
-        // imu.updateGyro();
-        // imu.updateAcc();
-        // imu.updateMag();
-        // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
-        // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
-
-        // read timer and make the main thread sleep for the remaining time span (non blocking)
+    
+    
+    }
+       // read timer and make the main thread sleep for the remaining time span (non blocking)
         int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
         thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
-    }
+    return 0;
 }
 
+
 void user_button_pressed_fcn()
 {
     user_button_timer.start();
     user_button_timer.reset();
 }
 
-void user_button_released_fcn()
-{
+void user_button_released_fcn() {
     // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
     int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
     user_button_timer.stop();
     if (user_button_elapsed_time_ms > 200) {
-        do_execute_main_task = !do_execute_main_task;
-    }
-}
\ No newline at end of file
+       ToNextFunction += 1;}
+       }
\ No newline at end of file