first commit
Dependencies: PM2_Libary
main.cpp
- Committer:
- lupomic
- Date:
- 2022-05-18
- Branch:
- lupo
- Revision:
- 40:04b032b01dd5
- Parent:
- 39:4c5e4ff386da
- Child:
- 41:a8557360c15e
File content as of revision 40:04b032b01dd5:
#include "mbed.h" #include "PM2_Libary.h" #include <cstdint> #include <cstdio> #include "math.h" //******************************************************************************************************************************************************************* // Defined Variables in mm coming from Hardware-team. Need to be updated const float wheel_diameter = 30; // diameter of wheel with caterpillar to calculate mm per wheel turn (4) const float arm_length = 118.5; // lenght of arm from pivotpoint to pivotpoint (3) const float dist_arm_attach_distsensor = 20; // distance between pivot point arm on body to start distancesensor on top in horizontal (6) const float dist_distsensors = 200; // distance between the two distancesensors on top of Wall-E (9) const float dist_arm_ground = 51; // distance between pivotpoint arm and ground (5) const float dist_arm_attach_OK_griparea = 10.5 ; // Height of Grappler cutout to grapple Stair (8) (maybe add 1mm so gripper is a bit over the plate) const float dist_grappleratt_grappler_uk = 36.5; // distance between pivotpoint Grappler and bottom edge (?) const float height_stairs = 100; // height to top of next stairstep in mm //*********************************************************************************************************************************************************** // declaration of Input - Output pins // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor // define variable to store measurement from infrared distancesensor in mm float ir_distance_mm_L; float ir_distance_mm_R; float ir_distance_mm_Lookdown_B; float ir_distance_mm_Lookdown_F; AnalogIn ir_analog_in_Distance_L(PC_2); AnalogIn ir_analog_in_Lookdown_B(PC_5); AnalogIn ir_analog_in_Lookdown_F(PB_1); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 DigitalIn mechanical_button(PC_3); // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors //motor pin declaration FastPWM pwm_M_right (PB_13); //motor pin decalaration for wheels right side FastPWM pwm_M_left (PA_9); //motor pin decalaration for wheels left side FastPWM pwm_M_arm (PA_10); //motor pin decalaration for arm //Encoder pin declaration EncoderCounter encoder_M_right (PA_6, PC_7); //encoder pin decalaration for wheels right side EncoderCounter encoder_M_left (PB_6, PB_7); //encoder pin decalaration for wheels left side EncoderCounter encoder_M_arm (PA_0, PA_1); //encoder pin decalaration for arm //*********************************************************************************************************************************************************** // Hardware controll Setup and functions (motors and sensors) //these variables represent relative position NOT absolut float startPos = -0.525; //from last lift up position to start position float liftPos = -0.555; //from start position to lift up position // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack const float counts_per_turn_wheels = 20.0f * 78.125f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels const float counts_per_turn_arm = 20.0f * 78.125f * 19.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm const float kn = 180.0f / 12.0f; // define motor constant in rpm per V const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 (DC with 100:1 has 2'000 turns for 360°) const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 //motors for tracks PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //Arm Motor PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //*********************************************************************************************************************************************************** // calculations for basic movment and controll //placeholder variables for prototype testing const int drive_straight_mm = 2; // placeholder for testing drives amount forward const int drive_back_mm = -2; // placeholder for testing drives amount backwards int ToNextFunction = 0; // current state of the system (which function is beeing executed) int state=0; float desired_pos; int nextStep=0; // definition variables for calculations const float pi = 2 * acos(0.0); // definiton of pi const float end_pos_lift_deg = 180 + asin((dist_arm_ground-(dist_grappleratt_grappler_uk))/arm_length) * 180 / pi; // calculates the degree which the arm has to have when lift_up has been executed. const float start_deg_arm = -asin((dist_arm_ground - dist_grappleratt_grappler_uk) / arm_length) * 180.0/pi ; //calculates the starting degree of the arm (gripper has to touch ground in frotn of Wall-E) // definition of rotation speeds for motors 0 = none 1.0 = max. const float max_speed_rps_wheel = 0.7f; // define maximum speed that the position controller is changig the speed for the wheels, has to be smaller or equal to kn * max_voltage const float max_speed_rps_arm = 0.9f; // define maximum speed that the position controller is changig the speed for the arm, has to be smaller or equal to kn * max_voltage // calculates the deg which the arm has to take to reach a certain height (the input height has to be the height of OK Gripper area) // PARAM: height_mm = height which OK Gripperarea has to reach. // RETURN: deg_arm = absolut Position in deg that the arm has to take. float calc_arm_deg_for_height(int height_mm) { float height_arm = height_mm - (dist_arm_ground - dist_arm_attach_OK_griparea); // calculates the height which only the arm has to cover (- attachement height (arm to robot) etc.) float deg_arm = asin(height_arm / arm_length) * 180.0/pi; // calculates the absolute degrees which the arm has to reach return deg_arm; } //calculates the deg which the wheels have to turn in order to cover specified distance in mm //PARAM: distance = distance to drive in milimeter //RETURN: deg_wheel = degree which the motor has to turn in order to cover distance(mm) float wheel_dist_to_deg(int distance) { float deg_wheel = distance / (wheel_diameter * pi) * 360; return deg_wheel; } // increments the Motor for defined degree from the current one // PARAM: deg_to_turn = degree to turn the Motor // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) // RETURN: new_turn_rotation = new Rotation value in rotations float turn_relative_deg(float deg_to_turn, float current_rotation) { float new_turn_rotation = current_rotation + deg_to_turn; return new_turn_rotation; } // sets the Motor to a specified degree in one rotation // PARAM: end_deg = new position of the arm in degree 0 <= value >=360 // PARAM: current_rotation = the current rotation of the Motor (Motor.getRotation()) // RETURN: new_partial_rotation = new deg value in rotations float turn_absolut_deg(float end_deg, float current_rotations) { int full_rotations; if(current_rotations > 0) { full_rotations = round(current_rotations - 0.5); } else if(current_rotations < 0) { full_rotations = round(current_rotations + 0.5); } else { full_rotations = 0; } float new_partial_rotation = full_rotations - start_deg_arm/360 + end_deg/360; return new_partial_rotation; } //calculates position of arm when lift up has ended. //RETURN: end_deg = degree which the motor has to turn in order to reach end lift position. float calc_pos_end_lift() { float end_deg; end_deg = asin((dist_arm_ground-(dist_grappleratt_grappler_uk-dist_grappleratt_grappler_uk))/arm_length) + start_deg_arm; end_deg = end_deg * 180 / pi; return end_deg; } //*********************************************************************************************************************************************************** // important calculatet constant for Wall-E const double deg_up_from_horizon_to_stair = calc_arm_deg_for_height(height_stairs); // import functions from file mapping extern double powerx(double base, double pow2); extern double mapping (float adc_value_mV); // //simple check if there is an object in proximity //returns 0 if there is NO object present //returns 1 if there is an object present //returns 2 if the distance isn't in the expected range uint8_t nextStepDetection(double distanceCm,double setpointDistance){ double distance = distanceCm; double setpoint = setpointDistance; if(distance == 0){ return 10; //sensor value is outside the expected range } if((distance <= (setpoint + 5)) && (distance >= (setpoint - 5))){ return 3; //the distance to the next step is in ±1cm of the setpoint } if(distance < setpoint){ return 0; //the robot is to close to the step to rotate the arm unhindered } if(distance > setpoint){ return 1; //the robot is too far away from the next step } else{ return 2; } } //simple check if there is an object in proximity //returns 0 if there is NO object present //returns 1 if there is an object present //returns 2 if the distance isn't in the expected range uint8_t StepDetection_down(float sensor) { double d_valueMM = mapping(sensor*1.0e3f*3.3f); if(d_valueMM >= 4) return 0; else if( d_valueMM > 100 ) return 2; else if((d_valueMM < 4)||(d_valueMM==0)) return 1; else return 5; } // bring arm in starting position. Height of stairs. int set_arm_stair_height() { float diff; if (desired_pos==0) { desired_pos=turn_relative_deg(startPos, positionController_M_Arm.getRotation()); } positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm); // command to turn motor to desired deg. diff =abs( desired_pos-(positionController_M_Arm.getRotation())); printf("Set arm Position ARM (rot): %3.3f Desired:%3.3f State:%d ToNextfunction:%d Diff:%3.3f\n", positionController_M_Arm.getRotation(), desired_pos, state, ToNextFunction, diff); if (diff<=0.009){ return 1; } else { return NULL; } } //Drives forward into the next step //Prameter:distance in milimeter int drive_straight(float distance) { float diff_R; float diff_L; if (desired_pos==0) { desired_pos= wheel_dist_to_deg(distance); float relativ_turns_rightmotor = turn_relative_deg(desired_pos, positionController_M_right.getRotation()); float relativ_turns_leftmotor = turn_relative_deg(desired_pos, positionController_M_left.getRotation()); } positionController_M_right.setDesiredRotation(desired_pos, max_speed_rps_wheel); positionController_M_left.setDesiredRotation(desired_pos, max_speed_rps_wheel); diff_R= abs(desired_pos-(positionController_M_right.getRotation())); diff_L= abs(desired_pos-(positionController_M_left.getRotation())); // printf("Drive Straight Position Right(rot): %3.3f; Position Left (rot): %3.3f Desired: %3.3f Diff:%3.3f State:%d ToNextfunction:%d\n", // positionController_M_right.getRotation(),positionController_M_left.getRotation(),desired_pos,diff_L, state, ToNextFunction); if ((diff_R<=0.03) && (diff_L<=0.03)) { return 1; } else { return 0; } } //turns the arm until the robot is on the next step int lift_up() { float diff; if (desired_pos==0) { desired_pos = turn_relative_deg(liftPos,positionController_M_Arm.getRotation()); } positionController_M_Arm.setDesiredRotation(desired_pos, max_speed_rps_arm); diff=abs(desired_pos-positionController_M_Arm.getRotation()); // printf("Lift Up: Position ARM (rot): %3.3f Desired:%3.3f State:%d ToNextfunction:%d\n",positionController_M_Arm.getRotation(),desired_pos, state, ToNextFunction); if(diff<=0.03) { return 1; } else { return 0; } } //*********************************************************************************************************************************************************** // while loop gets executed every main_task_period_ms milliseconds int main_task_period_ms = 30; // define main task period time in ms e.g. 30 ms -> main task runns ~33,33 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms //*********************************************************************************************************************************************************** int main(void) { // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); mechanical_button.mode(PullDown); printf("test"); while (true) { ir_distance_mm_L= mapping(ir_analog_in_Distance_L.read()*1.0e3f * 3.3f); if (ToNextFunction>=1||(mechanical_button.read()!=1)) { enable_motors=1; } switch (ToNextFunction) { case 0: while (mechanical_button.read()!=1) { positionController_M_Arm.setDesiredRotation(-1,0.5); } if (mechanical_button){ positionController_M_Arm.setDesiredRotation(positionController_M_Arm.getRotation()); } break; case 1: ToNextFunction +=1; state=0; break; case 2: state=drive_straight(drive_straight_mm); if (state==1){ ToNextFunction += 1; state=0; desired_pos=0; } break; case 3: state=lift_up(); if (state==1){ ToNextFunction += 1; state=0; desired_pos=0; } break; case 4: state=nextStepDetection(ir_distance_mm_L,10); if (state==3){ nextStep=1; } printf("distance:%3.3f Output:%d\n NextStep:%d", ir_distance_mm_L, nextStepDetection(ir_distance_mm_L,10), nextStep); ToNextFunction +=1; state=0; break; case 5: state=drive_straight(drive_back_mm); if (StepDetection_down(ir_analog_in_Lookdown_B) != 1) { ToNextFunction += 1; state=0; desired_pos=0; positionController_M_left.setDesiredRotation(positionController_M_left.getRotation()); positionController_M_right.setDesiredRotation(positionController_M_right.getRotation()); } break; case 6: state=set_arm_stair_height(); if ((state==1) && (nextStep)){ ToNextFunction = 1; state=0; desired_pos=0; nextStep=0; } if ((state==1) && (nextStep!=1)) { ToNextFunction=0; state=0; desired_pos=0; nextStep=0; } break; default: ; } } // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); return 0; } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { ToNextFunction =1; } }