first commit

Dependencies:   PM2_Libary

Committer:
lupomic
Date:
Wed Apr 13 07:11:14 2022 +0000
Revision:
35:96ed18b1af94
Parent:
34:9f779e91168e
Child:
36:a48b21a9635c
first commit;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 1:93d997d6b232 1 #include "mbed.h"
pmic 17:c19b471f05cb 2 #include "PM2_Libary.h"
lupomic 33:70ea029a69e8 3 #include <cstdint>
lupomic 31:24081337c9ed 4
lupomic 35:96ed18b1af94 5
lupomic 35:96ed18b1af94 6
pmic 24:86f1a63e35a0 7 // logical variable main task
pmic 24:86f1a63e35a0 8 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 9
pmic 24:86f1a63e35a0 10 // user button on nucleo board
pmic 24:86f1a63e35a0 11 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 12 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 13 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 14 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 15
pmic 24:86f1a63e35a0 16 // while loop gets executed every main_task_period_ms milliseconds
lupomic 34:9f779e91168e 17 int main_task_period_ms = 30; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 24:86f1a63e35a0 18 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 6:e1fa1a2d7483 19
pmic 24:86f1a63e35a0 20 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 24:86f1a63e35a0 21 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 24:86f1a63e35a0 22 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 6:e1fa1a2d7483 23
lupomic 33:70ea029a69e8 24
lupomic 33:70ea029a69e8 25
pmic 24:86f1a63e35a0 26 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 24:86f1a63e35a0 27 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 17:c19b471f05cb 28
pmic 24:86f1a63e35a0 29 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
lupomic 33:70ea029a69e8 30 //motor pin declaration
lupomic 34:9f779e91168e 31 FastPWM pwm_M_right(PB_13);
lupomic 34:9f779e91168e 32 FastPWM pwm_M_left(PA_9);
lupomic 33:70ea029a69e8 33 FastPWM pwm_M_arm(PA_10);
pmic 17:c19b471f05cb 34
lupomic 33:70ea029a69e8 35 //Encoder pin declaration
lupomic 33:70ea029a69e8 36 EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side
lupomic 33:70ea029a69e8 37 EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side
lupomic 33:70ea029a69e8 38 EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm
pmic 17:c19b471f05cb 39
pmic 30:1e8295770bc1 40 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 24:86f1a63e35a0 41 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
lupomic 33:70ea029a69e8 42 float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels
lupomic 34:9f779e91168e 43 float counts_per_turn_arm = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm
pmic 25:ea1d6e27c895 44 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 30:1e8295770bc1 45 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 30:1e8295770bc1 46 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 6:e1fa1a2d7483 47
lupomic 33:70ea029a69e8 48 //motors for tracks
lupomic 33:70ea029a69e8 49 PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 50 PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
lupomic 33:70ea029a69e8 51 //Arm Motor
lupomic 33:70ea029a69e8 52 PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 53
lupomic 33:70ea029a69e8 54 //float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
lupomic 33:70ea029a69e8 55 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
lupomic 33:70ea029a69e8 56 //PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 17:c19b471f05cb 57
pmic 17:c19b471f05cb 58
pmic 24:86f1a63e35a0 59 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
pmic 25:ea1d6e27c895 60 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
pmic 20:7e7325edcf5c 61
lupomic 33:70ea029a69e8 62 //Platzhalter Variabeln für die Positionierung
lupomic 34:9f779e91168e 63 float PositionStair = 0.2;
lupomic 34:9f779e91168e 64 float PositionBackOff = -0.5;
lupomic 34:9f779e91168e 65 float degArmStart = 0.5;
lupomic 34:9f779e91168e 66 float degArmLift = -0.5;
lupomic 34:9f779e91168e 67 int ToNextFunction = 0;
lupomic 34:9f779e91168e 68 float max_speed_rps = 0.5f;
lupomic 33:70ea029a69e8 69
lupomic 34:9f779e91168e 70 int StartPosition(float deg){
lupomic 33:70ea029a69e8 71
lupomic 33:70ea029a69e8 72 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 73
lupomic 33:70ea029a69e8 74 return NULL;
lupomic 33:70ea029a69e8 75 }
lupomic 33:70ea029a69e8 76 //Drives forward into the next step
lupomic 34:9f779e91168e 77 int Drive(float dist){
lupomic 34:9f779e91168e 78
lupomic 34:9f779e91168e 79 float distance;
lupomic 33:70ea029a69e8 80
lupomic 34:9f779e91168e 81 distance=dist;
lupomic 34:9f779e91168e 82
lupomic 33:70ea029a69e8 83
lupomic 34:9f779e91168e 84 positionController_M_right.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 85 positionController_M_left.setDesiredRotation(distance,max_speed_rps);
lupomic 34:9f779e91168e 86
lupomic 33:70ea029a69e8 87
lupomic 33:70ea029a69e8 88 return 0;
lupomic 33:70ea029a69e8 89 }
lupomic 33:70ea029a69e8 90
lupomic 33:70ea029a69e8 91 //only turns the arm until the robot is on the next step
lupomic 33:70ea029a69e8 92 //not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position
lupomic 34:9f779e91168e 93 int LiftUp(float deg){
lupomic 34:9f779e91168e 94
lupomic 33:70ea029a69e8 95 int8_t i = 0; //prov condition variable
lupomic 33:70ea029a69e8 96
lupomic 33:70ea029a69e8 97 positionController_M_Arm.setDesiredRotation(deg);
lupomic 33:70ea029a69e8 98
lupomic 33:70ea029a69e8 99
lupomic 33:70ea029a69e8 100 return 0;
lupomic 33:70ea029a69e8 101 }
lupomic 33:70ea029a69e8 102 //pow function is here so we dont have to use the math.h library
lupomic 33:70ea029a69e8 103 //it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double
lupomic 33:70ea029a69e8 104 double powerx(double base, double pow2){
lupomic 33:70ea029a69e8 105 double result = -1;
lupomic 33:70ea029a69e8 106 double power = pow2;
lupomic 33:70ea029a69e8 107 double basis = base;
lupomic 33:70ea029a69e8 108 result = 1;
lupomic 33:70ea029a69e8 109 //handling negative exponents
lupomic 33:70ea029a69e8 110 if(power<0){
lupomic 33:70ea029a69e8 111 for(double i=1; i<=(power*(-1.0)); i++) {
lupomic 33:70ea029a69e8 112 result *= basis;
lupomic 33:70ea029a69e8 113 }
lupomic 33:70ea029a69e8 114 result = 1.0/result;
lupomic 33:70ea029a69e8 115 }
lupomic 33:70ea029a69e8 116 //handling positive exponents
lupomic 33:70ea029a69e8 117 else{
lupomic 33:70ea029a69e8 118 for(double i=1; i<=power; i++){
lupomic 33:70ea029a69e8 119 result *= basis;}}
lupomic 33:70ea029a69e8 120
lupomic 33:70ea029a69e8 121 return result;
lupomic 33:70ea029a69e8 122 }
lupomic 33:70ea029a69e8 123
lupomic 33:70ea029a69e8 124 double mapping(float adc_value_mV){
lupomic 33:70ea029a69e8 125 double distance = 0.0f; //distance in mm
lupomic 33:70ea029a69e8 126 double infY =360 , supY = 2360; //Window for sensor values
lupomic 33:70ea029a69e8 127 double voltage_mV = adc_value_mV;
lupomic 33:70ea029a69e8 128 double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert
lupomic 33:70ea029a69e8 129 if(voltage_mV > infY && voltage_mV < supY){
lupomic 33:70ea029a69e8 130 distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6;
lupomic 33:70ea029a69e8 131 }
lupomic 33:70ea029a69e8 132 return (distance);
lupomic 33:70ea029a69e8 133 }
lupomic 33:70ea029a69e8 134
lupomic 33:70ea029a69e8 135
lupomic 33:70ea029a69e8 136 int main(void)
pmic 23:26b3a25fc637 137 {
pmic 24:86f1a63e35a0 138 // attach button fall and rise functions to user button object
lupomic 33:70ea029a69e8 139 user_button.fall(&user_button_pressed_fcn);
lupomic 34:9f779e91168e 140 user_button.rise(&user_button_released_fcn);
lupomic 33:70ea029a69e8 141
pmic 24:86f1a63e35a0 142
pmic 6:e1fa1a2d7483 143
lupomic 33:70ea029a69e8 144 while (true){
lupomic 34:9f779e91168e 145 enable_motors = 1;
lupomic 34:9f779e91168e 146
lupomic 33:70ea029a69e8 147 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
lupomic 33:70ea029a69e8 148
lupomic 34:9f779e91168e 149 // printf("test pow function 2 ^ 2 %lf\n",powerx(2,2));
lupomic 34:9f779e91168e 150 //printf("test mapping function %f\n", mapping(ir_distance_mV));
pmic 6:e1fa1a2d7483 151
lupomic 34:9f779e91168e 152 //printf("IR sensor (mV): %3.3f\n", ir_distance_mV);
lupomic 33:70ea029a69e8 153
pmic 6:e1fa1a2d7483 154
lupomic 33:70ea029a69e8 155 switch (ToNextFunction) {
lupomic 33:70ea029a69e8 156 case 1: StartPosition(degArmStart);
lupomic 34:9f779e91168e 157 printf("Case 1: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 158 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 159 break;
lupomic 33:70ea029a69e8 160 case 2: Drive(PositionStair);
lupomic 34:9f779e91168e 161 printf("Case 2: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 162 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 163 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 164 break;
lupomic 34:9f779e91168e 165 case 3: LiftUp(degArmLift);
lupomic 33:70ea029a69e8 166 // ToNextFunction+=1;
lupomic 34:9f779e91168e 167 printf("Case 3: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 168 break;
lupomic 33:70ea029a69e8 169 case 4: Drive(PositionBackOff);
lupomic 34:9f779e91168e 170 printf("Case 4: Position Right(rot): %3.3f; Position Left (rot): %3.3f\n",
lupomic 34:9f779e91168e 171 positionController_M_right.getRotation(),positionController_M_left.getRotation());
lupomic 33:70ea029a69e8 172 // ToNextFunction+=1;
lupomic 33:70ea029a69e8 173 break;
lupomic 33:70ea029a69e8 174 case 5: LiftUp(degArmStart);
lupomic 34:9f779e91168e 175 printf("Case 5: Position ARM (rot): %3.3f\n",positionController_M_Arm.getRotation());
lupomic 33:70ea029a69e8 176 // ToNextFunction = 0;
lupomic 33:70ea029a69e8 177 break;
lupomic 34:9f779e91168e 178 default: ;
lupomic 33:70ea029a69e8 179 }
pmic 6:e1fa1a2d7483 180
lupomic 33:70ea029a69e8 181
lupomic 33:70ea029a69e8 182
lupomic 33:70ea029a69e8 183 }
lupomic 33:70ea029a69e8 184 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 185 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 186 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
lupomic 33:70ea029a69e8 187 return 0;
pmic 1:93d997d6b232 188 }
pmic 6:e1fa1a2d7483 189
lupomic 33:70ea029a69e8 190
pmic 24:86f1a63e35a0 191 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 192 {
pmic 26:28693b369945 193 user_button_timer.start();
pmic 6:e1fa1a2d7483 194 user_button_timer.reset();
pmic 6:e1fa1a2d7483 195 }
pmic 6:e1fa1a2d7483 196
lupomic 33:70ea029a69e8 197 void user_button_released_fcn() {
pmic 24:86f1a63e35a0 198 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 199 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 200 user_button_timer.stop();
pmic 24:86f1a63e35a0 201 if (user_button_elapsed_time_ms > 200) {
lupomic 33:70ea029a69e8 202 ToNextFunction += 1;}
lupomic 33:70ea029a69e8 203 }