Tests Yaw angle

Dependencies:   MPU6050IMU mbed

Revision:
0:98f7c7d55051
Child:
2:8b8ea2b74666
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Sun Feb 15 17:40:56 2015 +0000
@@ -0,0 +1,125 @@
+// SDA --- A4
+// SCL --- A5
+
+#include "mbed.h"
+#include "MPU6050.h"
+
+float sum = 0;
+uint32_t sumCount = 0;
+
+MPU6050 mpu6050;
+Timer t;
+Serial pc(USBTX, USBRX); // tx, rx
+
+int main(){
+    pc.baud(9600);
+
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
+    t.start();
+
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x68\n\r");
+
+    if (whoami == 0x68){
+        pc.printf("MPU6050 is online...");
+        wait(1);
+
+        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+        pc.printf("x-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[0]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[1]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: acceleration trim within : ");
+        pc.printf("%f", SelfTest[2]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("x-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[3]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("y-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[4]);
+        pc.printf("% of factory value \n\r");
+        pc.printf("z-axis self test: gyration trim within : ");
+        pc.printf("%f", SelfTest[5]);
+        pc.printf("% of factory value \n\r");
+        wait(1);
+
+        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+            mpu6050.initMPU6050();
+            pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+
+            pc.printf("\nMPU6050 passed self test... Initializing");
+            wait(2);
+        } else pc.printf("\nDevice did not the pass self-test!\n\r");
+    } else {
+        pc.printf("Could not connect to MPU6050: \n\r");
+        pc.printf("%#x \n",  whoami);
+        while(1) ; // Loop forever if communication doesn't happen
+    }
+
+    while(1) {
+
+        // If data ready bit set, all data registers have new data
+        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+            mpu6050.getAres();
+
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];
+            az = (float)accelCount[2]*aRes - accelBias[2];
+
+            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+            mpu6050.getGres();
+
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+        }
+
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        lastUpdate = Now;
+
+        sum += deltat;
+        sumCount++;
+
+        if(lastUpdate - firstUpdate > 10000000.0f) {
+            beta = 0.04;  // decrease filter gain after stabilized
+            zeta = 0.015; // increasey bias drift gain after stabilized
+        }
+
+        // Pass gyro rate as rad/s
+        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+        // Serial print and/or display at 0.5 s rate independent of data rates
+        delt_t = t.read_ms() - count;
+        if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+            pitch *= 180.0f / PI;
+            yaw   *= 180.0f / PI;
+            roll  *= 180.0f / PI;
+
+            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+            pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+            count = t.read_ms();
+            sum = 0;
+            sumCount = 0;
+        }
+    }
+
+}
\ No newline at end of file