Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Library/Controller.cpp
- Committer:
- kueenste
- Date:
- 2018-03-23
- Revision:
- 1:7bf9b6c007a1
- Parent:
- 0:7cf5bf7e9486
File content as of revision 1:7bf9b6c007a1:
/*
* Controller.cpp
* Copyright (c) 2018, ZHAW
* All rights reserved.
*/
#include <cmath>
#include "Controller.h"
using namespace std;
const float Controller::PERIOD = 0.001f; // period of control task, given in [s]
const float Controller::PI = 3.14159265f; // the constant PI
const float Controller::WHEEL_DISTANCE = 0.170f; // distance between wheels, given in [m]
const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m]
const float Controller::COUNTS_PER_TURN = 1200.0f; // resolution of encoder counter
const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // frequency of lowpass filter for actual speed values, given in [rad/s]
const float Controller::KN = 40.0f; // speed constant of motor, given in [rpm/V]
const float Controller::KP = 0.2f; // speed controller gain, given in [V/rpm]
const float Controller::MAX_VOLTAGE = 12.0f; // supply voltage for power stage in [V]
const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum allowed value for duty cycle (2%)
const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum allowed value for duty cycle (98%)
/**
* Creates and initializes a Controller object.
* @param pwmLeft a pwm output object to set the duty cycle for the left motor.
* @param pwmRight a pwm output object to set the duty cycle for the right motor.
* @param counterLeft an encoder counter object to read the position of the left motor.
* @param counterRight an encoder counter object to read the position of the right motor.
*/
Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) {
// initialize periphery drivers
pwmLeft.period(0.00005f);
pwmLeft.write(0.5f);
pwmRight.period(0.00005f);
pwmRight.write(0.5f);
// initialize local variables
translationalMotion.setProfileVelocity(0.5f);
translationalMotion.setProfileAcceleration(0.5f);
translationalMotion.setProfileDeceleration(3.0f);
rotationalMotion.setProfileVelocity(1.5f);
rotationalMotion.setProfileAcceleration(5.0f);
rotationalMotion.setProfileDeceleration(15.0f);
translationalVelocity = 0.0f;
rotationalVelocity = 0.0f;
actualTranslationalVelocity = 0.0f;
actualRotationalVelocity = 0.0f;
previousValueCounterLeft = counterLeft.read();
previousValueCounterRight = counterRight.read();
speedLeftFilter.setPeriod(PERIOD);
speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
speedRightFilter.setPeriod(PERIOD);
speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
desiredSpeedLeft = 0.0f;
desiredSpeedRight = 0.0f;
actualSpeedLeft = 0.0f;
actualSpeedRight = 0.0f;
x = 0.0f;
y = 0.0f;
alpha = 0.0f;
// start periodic task
ticker.attach(callback(this, &Controller::run), PERIOD);
}
/**
* Deletes the Controller object and releases all allocated resources.
*/
Controller::~Controller() {
ticker.detach();
}
/**
* Sets the desired translational velocity of the robot.
* @param velocity the desired translational velocity, given in [m/s].
*/
void Controller::setTranslationalVelocity(float velocity) {
this->translationalVelocity = velocity;
}
/**
* Sets the desired rotational velocity of the robot.
* @param velocity the desired rotational velocity, given in [rad/s].
*/
void Controller::setRotationalVelocity(float velocity) {
this->rotationalVelocity = velocity;
}
/**
* Gets the actual translational velocity of the robot.
* @return the actual translational velocity, given in [m/s].
*/
float Controller::getActualTranslationalVelocity() {
return actualTranslationalVelocity;
}
/**
* Gets the actual rotational velocity of the robot.
* @return the actual rotational velocity, given in [rad/s].
*/
float Controller::getActualRotationalVelocity() {
return actualRotationalVelocity;
}
/**
* Sets the actual x coordinate of the robots position.
* @param x the x coordinate of the position, given in [m].
*/
void Controller::setX(float x) {
this->x = x;
}
/**
* Gets the actual x coordinate of the robots position.
* @return the x coordinate of the position, given in [m].
*/
float Controller::getX() {
return x;
}
/**
* Sets the actual y coordinate of the robots position.
* @param y the y coordinate of the position, given in [m].
*/
void Controller::setY(float y) {
this->y = y;
}
/**
* Gets the actual y coordinate of the robots position.
* @return the y coordinate of the position, given in [m].
*/
float Controller::getY() {
return y;
}
/**
* Sets the actual orientation of the robot.
* @param alpha the orientation, given in [rad].
*/
void Controller::setAlpha(float alpha) {
this->alpha = alpha;
}
/**
* Gets the actual orientation of the robot.
* @return the orientation, given in [rad].
*/
float Controller::getAlpha() {
return alpha;
}
/**
* This method is called periodically by the ticker object and contains the
* algorithm of the speed controller.
*/
void Controller::run() {
// calculate the planned velocities using the motion planner
translationalMotion.incrementToVelocity(translationalVelocity, PERIOD);
rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD);
// calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model
desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
// calculate actual speed of motors in [rpm]
short valueCounterLeft = counterLeft.read();
short valueCounterRight = counterRight.read();
short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
previousValueCounterLeft = valueCounterLeft;
previousValueCounterRight = valueCounterRight;
actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
// calculate motor phase voltages
float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN;
// calculate, limit and set duty cycles
float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
pwmLeft.write(dutyCycleLeft);
float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
pwmRight.write(dutyCycleRight);
// calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model
actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f;
actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE;
// calculate the actual robot pose
float deltaTranslation = actualTranslationalVelocity*PERIOD;
float deltaOrientation = actualRotationalVelocity*PERIOD;
x += cos(alpha+deltaOrientation)*deltaTranslation;
y += sin(alpha+deltaOrientation)*deltaTranslation;
float alpha = this->alpha+deltaOrientation;
while (alpha > PI) alpha -= 2.0f*PI;
while (alpha < -PI) alpha += 2.0f*PI;
this->alpha = alpha;
}