Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
main.cpp
- Committer:
- Dbee16
- Date:
- 2015-03-23
- Revision:
- 18:6e8eae661cf3
- Parent:
- 17:54da4359134f
- Child:
- 20:823f05f5ffd5
File content as of revision 18:6e8eae661cf3:
#include "mbed.h" #include <string> using namespace std; Serial blue(PTC4,PTC3); //motor select pins DigitalOut motor_lf(PTE2); DigitalOut motor_lb(PTE3); DigitalOut motor_rf(PTE4); DigitalOut motor_rb(PTE5); DigitalIn input(PTC1); //input from sensor array //DigitalOut Line_right(LED_GREEN);//no line detected //DigitalOut blue(LED_BLUE); BusOut sensor(PTD7,PTE1,PTE0);//multiplex sensors AnalogOut level(PTE30);//set comparator level needs to be tuned for each sensor (could create program) //Frequency of Pulse Width Modulated signal in Hz #define PWM_FREQ 1000 //PWM pin (Enable 1 and 2) PwmOut motor_l (PTC2); PwmOut motor_r (PTE29); //LED to test DigitalOut led(LED_RED); //integer value of sensors (has to be global) int val_r=0; int val_l=0; int old_val_r=0; int old_val_l=0; //Flags for decisions int l_turn_spot = 0; int r_turn_spot = 0; int l_180_spot = 0; int r_180_spot = 0; int forwards = 0; int backwards = 0; int spin = 0; //Junction Counter (hard coding deccsions on junctions) int junction_cnt = 0; void set_direction( int direction, float duty_l, float duty_r) { switch( direction ) { case 0x11: { //forward motor_r.write( duty_r); //Look up ternary statements -- {condition ? value_if_true : value_if_false} This makes 0<result<1 motor_l.write( duty_l); motor_rf=1; motor_rb=0; motor_lf=1; motor_lb=0; // blue.printf("Going forward, right:%f ; left:%f\n", duty_r, duty_l); break; } case 0x00: { //backward motor_r.write( duty_r); motor_l.write( duty_l); motor_rf=0; motor_rb=1; motor_lf=0; motor_lb=1; // blue.printf("Going backward, right:%f ; left:%f\n", duty_r, duty_l); break; } case 0x01: { //spin left -- Right forward, left backward motor_r.write( duty_r); motor_l.write( duty_l); motor_rf=1; motor_rb=0; motor_lf=0; motor_lb=1; // blue.printf("Spinning Left, right:%f ; left:%f\n", duty_r, duty_l); break; } case 0x10: { //spin right motor_r.write( duty_r); motor_l.write( duty_l); motor_rf=0; motor_rb=1; motor_lf=1; motor_lb=0; // blue.printf("Spinning Right, right:%f ; left:%f\n", duty_r, duty_l); break; } } } void motor_result() //val_r and val_l are global { //This needed to be completely changed. We need sequential actions, a case statement is too basic (unforetuneately) led= 0; switch(val_r) { case 6: //Normal Mode // blue.printf("0110\n"); if (!forwards){ //if you're not already going forwards set_direction(0x11, 0.3,0.3); forwards = 1; } break; case 7: // 0111 Either misaligned or getting ready for a turn r_turn_spot = 1; //No need to change direction, if misaligned, it will soon go to a double line alignment protocol //if the next state is 0000; then we were right and there is a right turn. break; case 0: //lost or turn // blue.printf("0000\n"); if ((r_turn_spot & l_turn_spot) & !spin) { //if we're expecting a junction and we're not spinning set_direction(0x10, 0.3,0.3); //spin right because there's only one junction spin = 1; //no stop conditions yet } else if (r_turn_spot & !spin) { //if we're expecting a right turn set_direction(0x10, 0.3,0.3); //spin right spin = 1; //no stop conditions yet } else if(val_l == 6) { //0110 0000 could mean a right 180 turn //keep going forward, no need to change dir r_180_spot = 1; //raise 180 flag in prep for next time } else if(r_180_spot) { //code for 180??? blue.printf("I want to 180 Right, but i don't know how yet"); set_direction(0x00, 0,0); } else { //probably lost set_direction(0x00, 0,0); } break; //***************************IF THERE IS A SINGLE BIT ONLY; WE ARE MISALIGNED********************************* case 1: // blue.printf("0001\n"); set_direction(0x11, 0.3,0.1); break; case 2: // blue.printf("0010\n"); set_direction(0x11, 0.3,0.2); break; case 4: // blue.printf("0100\n"); set_direction(0x11, 0.2,0.3); break; case 8: //blue.printf("1000\n"); set_direction(0x11, 0.1,0.3); break; //******************************END OF SINGLE BIT ALIGNMENT******************************************** //*************IF TWO BITS ARE ON, AND NOT IN THE MIDDLE, WE'RE PROBABLY VERY MISALIGNED******************* case 12: // blue.printf("1100\n"); set_direction(0x11, 0.2,0.3); break; case 3: // blue.printf("0011\n"); set_direction(0x11, 0.3,0.2); break; //********************************END OF DOUBLE BIT ALIGNMENT******************************************** default: //blue.printf("%i\n", val); set_direction(0x00, 0,0); } //***************************************LEFT SHOULD BE PRETTY MUCH MIRRORED*********************************************************** switch(val_l) { case 6: //Normal Mode // blue.printf("0110\n"); set_direction(0x11, 0.3,0.3); break; case 7: // 0111 Either misaligned or getting ready for a turn l_turn_spot = 1; //No need to change direction, if misaligned, it will soon go to a double line alignment protocol //if the next state is 0000; then we were right and there is a left turn. break; case 0: //lost or turn // blue.printf("0000\n"); if (r_turn_spot & l_turn_spot) { //if we're expecting a junction set_direction(0x10, 0.3,0.3); //spin right because there's only one junction //no stop conditions yet } else if (l_turn_spot) { //if we're expecting a left turn set_direction(0x01, 0.3,0.3); //spin left //no stop conditions yet } else if(val_r == 6) { //0000 0110 could mean a left 180 turn //keep going forward, no need to change dir l_180_spot = 1; //raise 180 flag in prep for next time } else if(l_180_spot) { //code for 180??? blue.printf("I want to 180 left, but i don't know how yet"); set_direction(0x00, 0,0); } else { //probably lost set_direction(0x00, 0,0); } break; //***************************IF THERE IS A SINGLE BIT ONLY; WE ARE MISALIGNED********************************* case 1: // blue.printf("0001\n"); set_direction(0x11, 0.1,0.3); break; case 2: // blue.printf("0010\n"); set_direction(0x11, 0.2,0.3); break; case 4: // blue.printf("0100\n"); set_direction(0x11, 0.3,0.2); break; case 8: //blue.printf("1000\n"); set_direction(0x11, 0.3,0.1); break; //******************************END OF SINGLE BIT ALIGNMENT******************************************** //*************IF TWO BITS ARE ON, AND NOT IN THE MIDDLE, WE'RE PROBABLY VERY MISALIGNED******************* case 12: // blue.printf("1100\n"); set_direction(0x11, 0.3,0.2); break; case 3: // blue.printf("0011\n"); set_direction(0x11, 0.2,0.3); break; //********************************END OF DOUBLE BIT ALIGNMENT******************************************** default: //blue.printf("%i\n", val); set_direction(0x00, 0,0); } } void sensor_read() { int x = 0; int sens_r[4] = {0}; int sens_l[4] = {0}; for (x = 0; x < 8; x++) { switch(x) { //0 is the robot's rightest sensor and 7 is the robot's leftmost sensor //Addresses are inputs to multiplexer, can ignore them mainly case 0: sensor = 0x3; break; case 1: sensor = 0x0; break; case 2: sensor = 0x1; break; case 3: sensor = 0x2; break; case 4: sensor = 0x5; break; case 5: sensor = 0x7; break; case 6: sensor = 0x6; break; case 7: sensor = 0x4; break; } if(x<4)sens_r[x] = input; else sens_l[x%4] = input;//array of sensor output values for left and right //blue = !blue; } for(x = 7; x >= 0; x--) { if(x>3) { val_l = val_l << 1; val_l = val_l + sens_l[x%4]; } else { val_r = val_r << 1; val_r = val_r + sens_r[x]; } } //blue.printf("%i\n",val); } int main() { level = 0.58; //Analogout Level for black line into comparator //Set PWM frequency to 1000Hz motor_l.period( 1.0f / (float) PWM_FREQ); motor_r.period( 1.0f / (float) PWM_FREQ); //Initialise direction to nothing. motor_rf=0; motor_rb=0; motor_lf=0; motor_lb=0; //Now Global***** //int val =0; //int old_val=0;********* while(1) { //PRINTS A STRING 0110 0110 FOR LEFT AND RIGHT RESPECTIVELY old_val_r = val_r; old_val_l = val_l; sensor_read(); if((!(old_val_l == val_l)) | (!(old_val_r == val_r))) { string binary_r = ""; string binary_l = ""; int mask = 1; for(int i = 0; i < 4; i++) { if(!(mask&val_r)) binary_r = "1"+binary_r; //(mask&val) >= 1 else binary_r = "0"+binary_r; if(!(mask&val_l)) binary_l = "1"+binary_l; //(mask&val) >= 1 else binary_l = "0"+binary_l; mask = mask << 1; } blue.printf("%s\t%s\n", binary_l, binary_r); wait(0.2); motor_result(); } // if(!(old_val == val)) { // motor_result(val); // } } // while(1) { //Working /* led = !led; wait(4); blue.printf("Forward, full\n"); set_direction(0x11, 1.0,1.0);//forward full speed wait(4); blue.printf("Forward, left half\n"); led = !led; set_direction(0x11, 0.5 ,0); //forward left half wait(4); blue.printf("Forward, right half\n"); led = !led; set_direction(0x11, 0 ,0.5); //forward right half wait(4); led = !led; blue.printf("stop\n"); set_direction(0x00, 0 ,0); //stop wait(4); led = !led; blue.printf("Back, full\n"); set_direction(0x00, 1.0 ,1.0); //backward full speed wait(4); led = !led; blue.printf("Back, left\n"); set_direction(0x00, 0.5 ,0); wait(4); blue.printf("Back, right\n"); led = !led; set_direction(0x00, 0 ,0.5); */ //Sensor Code + Motor Test //int values = 0; // values = sensor_read(); // change_direction(values); //} }