Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Madgwickfilter MPU6050
Diff: main.cpp
- Revision:
- 0:07431908151a
- Child:
- 3:9424c6493a75
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Tue Sep 05 04:34:29 2017 +0000
@@ -0,0 +1,202 @@
+
+/* MPU6050 Basic Example Code
+ by: Kris Winer
+ date: May 1, 2014
+ license: Beerware - Use this code however you'd like. If you
+ find it useful you can buy me a beer some time.
+
+ Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
+ parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
+ No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
+
+ SDA and SCL should have external pull-up resistors (to 3.3V).
+ 10k resistors worked for me. They should be on the breakout
+ board.
+
+ Hardware setup:
+ MPU6050 Breakout --------- Arduino
+ 3.3V --------------------- 3.3V
+ SDA ----------------------- A4
+ SCL ----------------------- A5
+ GND ---------------------- GND
+
+ Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
+ Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
+ We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
+ We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
+ */
+
+#include "mbed.h"
+#include "MPU6050.h"
+
+float sum = 0;
+uint32_t sumCount = 0;
+
+ MPU6050 mpu6050;
+
+ Timer t;
+
+int main()
+{
+ //Set up I2C
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+
+ t.start();
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
+ //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+
+ if (whoami == 0x68) // WHO_AM_I should always be 0x68
+ {
+ wait(1);
+
+ mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+ /*
+ pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
+ pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
+ pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
+ pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
+ pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
+ pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
+ */
+ wait(1);
+
+ if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
+ {
+ mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+ mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+
+ wait(2);
+ }
+ else
+ {
+ /*
+ pc.printf("Device did not the pass self-test!\n\r");
+
+ lcd.clear();
+ lcd.printString("MPU6050", 0, 0);
+ lcd.printString("no pass", 0, 1);
+ lcd.printString("self test", 0, 2); */
+ }
+ }
+ else
+ {
+ /*pc.printf("Could not connect to MPU6050: \n\r");
+ pc.printf("%#x \n", whoami);
+
+ lcd.clear();
+ lcd.printString("MPU6050", 0, 0);
+ lcd.printString("no connection", 0, 1);
+ lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);
+ */
+
+ while(1) ; // Loop forever if communication doesn't happen
+ }
+
+
+
+ while(1) {
+
+ // If data ready bit set, all data registers have new data
+ if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
+ mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
+ mpu6050.getAres();
+
+ // Now we'll calculate the accleration value into actual g's
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+
+ mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
+ mpu6050.getGres();
+
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+ tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
+ temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+ }
+
+ Now = t.read_us();
+ deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+ lastUpdate = Now;
+
+ sum += deltat;
+ sumCount++;
+
+ if(lastUpdate - firstUpdate > 10000000.0f) {
+ beta = 0.04; // decrease filter gain after stabilized
+ zeta = 0.015; // increasey bias drift gain after stabilized
+ }
+
+ // Pass gyro rate as rad/s
+ mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+ // Serial print and/or display at 0.5 s rate independent of data rates
+ delt_t = t.read_ms() - count;
+ if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+ /*
+ pc.printf("ax = %f", 1000*ax);
+ pc.printf(" ay = %f", 1000*ay);
+ pc.printf(" az = %f mg\n\r", 1000*az);
+
+ pc.printf("gx = %f", gx);
+ pc.printf(" gy = %f", gy);
+ pc.printf(" gz = %f deg/s\n\r", gz);
+
+ pc.printf(" temperature = %f C\n\r", temperature);
+
+ pc.printf("q0 = %f\n\r", q[0]);
+ pc.printf("q1 = %f\n\r", q[1]);
+ pc.printf("q2 = %f\n\r", q[2]);
+ pc.printf("q3 = %f\n\r", q[3]);
+
+ lcd.clear();
+ lcd.printString("MPU6050", 0, 0);
+ lcd.printString("x y z", 0, 1);
+ lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
+ lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
+ lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
+ */
+
+
+ // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+ // In this coordinate system, the positive z-axis is down toward Earth.
+ // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+ // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+ // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+ // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+ // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+ // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+ // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+ yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+ pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+ roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+ pitch *= 180.0f / PI;
+ yaw *= 180.0f / PI;
+ roll *= 180.0f / PI;
+
+// pc.printf("Yaw, Pitch, Roll: \n\r");
+// pc.printf("%f", yaw);
+// pc.printf(", ");
+// pc.printf("%f", pitch);
+// pc.printf(", ");
+// pc.printf("%f\n\r", roll);
+// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
+
+ //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+ //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+ //myled= !myled;
+ count = t.read_ms();
+ sum = 0;
+ sumCount = 0;
+}
+}
+
+ }
\ No newline at end of file