Final Tree

Dependencies:   mbed BMI160 max32630fthr_pitch USBDevice Math

Sensors/Orientation.cpp

Committer:
bjbance
Date:
2019-01-28
Revision:
7:b33be863fbb5

File content as of revision 7:b33be863fbb5:

#include "mbed.h"
#include "bmi160.h"
#include "max32630fthr.h"
#include "USBSerial.h"
#include "stdlib.h"
#include "math.h"
#include "Orientation.h"

I2C i2cBus(I2C2_SDA, I2C2_SCL);
BMI160_I2C imu(i2cBus, BMI160_I2C::I2C_ADRS_SDO_LO);

BMI160::SensorData accData;
BMI160::SensorData gyroData;
BMI160::SensorTime sensorTime;
BMI160::AccConfig accConfig;
BMI160::GyroConfig gyroConfig;
float imuTemperature;


Serial pc2(P2_1, P2_0);

void Orientation::init(){
    pitch = 0;
    k = 0.65;
    time1 = sensorTime.seconds;
    time2 = sensorTime.seconds;
    
    
    i2cBus.frequency(400000);
    writeReg(imu, BMI160::GYR_RANGE, BMI160::DPS_500);
    writeReg(imu, BMI160::GYR_CONF, BMI160::GYRO_ODR_13);
    writeReg(imu, BMI160::FOC_CONF, BMI160::FOC_VALUE );
    wait(0.5);
    writeReg(imu, BMI160::OFFSET_6, BMI160::FOC_ENABLE_GYR_ACC);

    writeReg(imu, BMI160::CMD, BMI160::FOC_START);
   
   
    pc2.printf("\033[H");  //home
    pc2.printf("\033[0J");  //erase from cursor to end of screen

    uint32_t failures = 0;

    if(imu.setSensorPowerMode(BMI160::GYRO, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
    {
        pc2.printf("Failed to set gyroscope power mode\r\n");
        failures++;
    }
    wait_ms(100);

    if(imu.setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
    {
        pc2.printf("Failed to set accelerometer power mode\r\n");
        failures++;
    }
    wait_ms(100);



    //example of using getSensorConfig
    if(imu.getSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
    {
        pc2.printf("ACC Range = %d\r\n", accConfig.range);
        pc2.printf("ACC UnderSampling = %d\r\n", accConfig.us);
        pc2.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
        pc2.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
    }
    else
    {
        pc2.printf("Failed to get accelerometer configuration\r\n");
        failures++;
    }

    //example of setting user defined configuration
    accConfig.range = BMI160::SENS_2G;  //rage is 2g
    accConfig.us = BMI160::ACC_US_OFF;  //undersampling is off 
    accConfig.bwp = BMI160::ACC_BWP_0;  //average 4 cycles
    accConfig.odr = BMI160::ACC_ODR_9;  //output data rate
    if(imu.setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
    {
        pc2.printf("ACC Range = %d\r\n", accConfig.range);
        pc2.printf("ACC UnderSampling = %d\r\n", accConfig.us);
        pc2.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
        pc2.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
    }
    else
    {
        pc2.printf("Failed to set accelerometer configuration\r\n");
        failures++;
    }

    if(imu.getSensorConfig(gyroConfig) == BMI160::RTN_NO_ERROR)
    {
        pc2.printf("GYRO Range = %d\r\n", gyroConfig.range);
        pc2.printf("GYRO BandWidthParam = %d\r\n", gyroConfig.bwp);
        pc2.printf("GYRO OutputDataRate = %d\r\n\r\n", gyroConfig.odr);
        
        
    }
    else
    {
        pc2.printf("Failed to get gyroscope configuration\r\n");
        failures++;
    }

    wait(1.0);   
   
}


float Orientation::getPitch()
{
    return pitch;
}

void Orientation::updatePitch()
{
    imu.getGyroAccXYZandSensorTime(accData, gyroData, sensorTime, accConfig.range, gyroConfig.range);
    imu.getTemperature(&imuTemperature);
            
    time2 = sensorTime.seconds;
    pitch = compFilter(k, pitch, gyroData.xAxis.scaled, accData.yAxis.scaled, accData.zAxis.scaled, time2 - time1);
    //daplink.printf("Forward: %s%4.3f\r\n", "\033[K", apitch);
    time1 = time2;
//    return pitch;
    printRegister(imu, BMI160::GYR_CONF);
}

//*****************************************************************************
void dumpImuRegisters(BMI160 &imu)
{
    printRegister(imu, BMI160::CHIP_ID);
    printBlock(imu, BMI160::ERR_REG,BMI160::FIFO_DATA);
    printBlock(imu, BMI160::ACC_CONF, BMI160::FIFO_CONFIG_1);
    printBlock(imu, BMI160::MAG_IF_0, BMI160::SELF_TEST);
    printBlock(imu, BMI160::NV_CONF, BMI160::STEP_CONF_1);
    printRegister(imu, BMI160::CMD);
//    pc.printf("\r\n");
}


//*****************************************************************************
void printRegister(BMI160 &imu, BMI160::Registers reg)
{
    uint8_t data;
    if(imu.readRegister(reg, &data) == BMI160::RTN_NO_ERROR)
    {
//        pc.printf("IMU Register 0x%02x = 0x%02x\r\n", reg, data);
//         daplink.printf("IMU Register 0x%02x = 0x%02x\r\n", reg, data);
    }
    else
    {
//        pc.printf("Failed to read register\r\n");
    }
}

//*****************************************************************************
void writeReg(BMI160 &imu, BMI160::Registers reg, uint8_t data)
{
    imu.writeRegister(reg, data);
    
    
}


//*****************************************************************************
void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg)
{
    uint8_t numBytes = ((stopReg - startReg) + 1);
    uint8_t buff[32];
    uint8_t offset = static_cast<uint8_t>(startReg);

    if(imu.readBlock(startReg, stopReg, buff) == BMI160::RTN_NO_ERROR)
    {
        for(uint8_t idx = offset; idx < (numBytes + offset); idx++)
        {
  //          pc.printf("IMU Register 0x%02x = 0x%02x\r\n", idx, buff[idx - offset]);
        }
    }
    else
    {
//        pc.printf("Failed to read block\r\n");
    }
}



float compFilter(float K, float pitch, float gyroX, float accY, float accZ,float DT)
{
    return ((K * (pitch + (gyroX * DT))) + ((1.0F - K) * ((180.0F / 3.1459F) * atan(accY/accZ))));
}