Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MODSERIAL USBDevice mbed-rtos mbed
Fork of mbed_sv_firmware_mt by
main.cpp
- Committer:
- bob_tpc
- Date:
- 2015-01-23
- Revision:
- 10:55e35536d493
- Parent:
- 9:046247707ffb
- Child:
- 11:984631a6e373
File content as of revision 10:55e35536d493:
/**
* @file main.cpp
* @date January 2015
* @brief Freescale KL25Z firmware for USB-RFID adapter
*
* This firmware provided communication from a PC's USB host port to the following peripherals:
* RFID-FE over UART - SuperVision RFID reader module
* VL6180X over I2C - ST Microelectronics proximity and ambient light sensor
* GPIO - two LEDs and several control signals for the RFID module
* EEPROM - over I2C - Generic 24LC16B (untested since first revision prototype hardware does not have an EEPROM)
*/
#include "mbed.h"
#include "USBSerial.h"
#include "MODSERIAL.h"
// Constants
#define LEDON 0 // Low active for LEDs - turns LED on
#define LEDOFF 1 // Low active for LEDs - turns LED off
#define TRUE 1
#define FALSE 0
// Error return values
#define ERR_NONE 0 // Success
#define ERR_CDC_BAD_CMD 1 // First byte of PC to USB board needs to be 0xBB, 0xCC, 0xDD or 0xEE;
#define ERR_CDC_NO_TX_ENDMARK 2 // message for no endmark on message to PC
#define ERR_UART_NOT_WRITEABLE 3 // UART has no buffer space
#define ERR_UART_NO_TX_ENDMARK 4 // message for UART has no 0x7E end-mark
#define ERR_UART_NO_RX_ENDMARK 5 // message received from UART has no end-mark
#define ERR_I2C_NOT_WRITEABLE 6 // UART has no buffer space
#define ERR_I2C_NO_TX_ENDMARK 7 // message for UART has no 0x7E end-mark
#define ERR_I2C_NO_RX_ENDMARK 8 // message received from UART has no end-mark
#define ERR_NOT_IMPLEMENTED 255 // method has not yet been implemented
// I2C addresses and parameters
#define PROX (0x29 << 1) // default I2C address of VL6180X, shift into upper 7 bits
#define EEPROM (0xA0) // default I2C address of EEPROM, already shifted
#define I2CRATE 400000 // I2C speed
// UART-RFID baud rate
#define RFIDBAUD 115200 // RFID-FE board default rate = 115.2Kbps
// Peripherals
USBSerial cdc; // CDC Class USB<>Serial adapter. Needs custom INF, but uses existing Windows drivers.
MODSERIAL uart(PTA2, PTA1); // UART port connected to RFID-FE board
I2C i2c(PTB1, PTB0); // I2C port connected to VL6180X and EEPROM - note addresses above)
// GPIO signals
DigitalOut led_err(PTC1); // Red LED shows error condition (active low)
DigitalOut led_com(PTC2); // Yellow LED shows communication activity (active low)
DigitalOut rfid_int(PTD4); // RFID FE power control (active high)
DigitalOut rfid_isp(PTD5); // RFID FE In-System Programming (active high)
DigitalOut rfid_rst(PTD6); // RFID FE Reset (active high)
DigitalOut rfid_pwr(PTE30); // RFID power switch on USB board (active high for prototype 1, low for all others)
DigitalIn rfid_hot(PTE0); // RFID over-current detection on USB board power switch (active low)
InterruptIn prox_int(PTD7); // Proximity sensor interrupt (active low)
// buffers & variables
uint8_t gpio_values = 0x00; // register to read GPIO values
uint8_t cdc_buffer_rx[32]; // buffers for cdc (USB-Serial port on PC)
uint8_t cdc_buffer_tx[32];
uint8_t uart_buffer_rx[32]; // buffers for uart (RFID-FE board)
uint8_t uart_buffer_tx[32];
uint8_t gpio_buffer[32]; // buffer for GPIO messages
char i2c_buffer[32]; // buffer for I2C devices - Proximity sensor and EEPROM - up to 256 bytes data payload for EEPROM, up to 4 for proximity
int i, j; // index variables
int status = 0x00; // return value
uint8_t led_com_state = LEDOFF; // initial LED state
uint8_t prox_irq_state = 0; // interrupt state passed from service routine
/**
* @name prox_irq
* @brief Sets interrupt variable for use in the main loop.
* The interrupt is triggered by the VL6180X GPIO1 (IRQ output)
*
* @param [in] none
* @param [out] prox_irq_state = 1 indicates an interrupt occured.
*/
void prox_irq(void)
{
prox_irq_state = 1;
}
/**
* @name init_periph
* @brief Initializes the KL25Z peripheal interfaces
* KL25Z interfaces:
* UART - connects to SuperVision RFID-FE module
* I2C - connects to the ST VL6180X proximity/ambient light sensor device and a 24LC16B EEPROM (future)
* GPIO - includes two LEDs and signals to control RFID reader.
*
* @param [in] none
* @param [out] none
*
* @retval ERR_NONE No error
*/
int init_periph(void)
{
// Set up peripherals
// RFID
uart.baud(RFIDBAUD); // RFID-FE baud rate
rfid_int = 0; // RFID FE power control (active high)
rfid_isp = 0; // RFID FE In-System Programming (active high)
rfid_rst = 1; // RFID FE Reset (active high)
rfid_pwr = 1; // RFID power switch on USB board (active high for prototype 1, low for all others)
wait(0.25); // wait 250ms before...
rfid_rst = 0; // ... taking RFID out of reset
// Prox & EEPROM
i2c.frequency(I2CRATE); // I2C speed = 400Kbps
prox_int.mode(PullUp); // pull up proximity sensor interrupt at MCU
prox_int.fall(&prox_irq); // VL6180X interrupt is low active
prox_int.enable_irq(); // Enable proximity interrupt inputs
// LEDs // Cycle through the LEDs.
led_err.write(LEDON);
led_com.write(LEDON);
wait(0.5);
led_err.write(LEDOFF);
wait(0.5);
led_com.write(LEDOFF);
return ERR_NONE;
}
/**
* @name rfid_msg
* @brief Forwards command to RFID reader and returns the reader response
*
* RFID reader is connected to the KL25Z UART interface. The host PC will have a USB CDC class COM port device driver.
* The host PC sends the RFID command over the COM port. Messages destined for the RFID reader (0xBB leading byte) are
* forwarded as-is to the RFID reader. The reader then responds in kind. All RFID commands are described in the
* RFID-FE module manual.
* @param [in] uart_buffer_rx - messages from the RFID reader
* @param [out] uart_buffer_tx - messages to the RFID reader
*
* @retval ERR_NONE No error
* @retval ERR_CDC_BAD_CMD First byte of PC to USB board needs to be 0xBB, 0xCC, 0xDD or 0xEE;
* @retval ERR_CDC_NO_TX_ENDMARK message for CDC port has no 0x7E endmark
* @retval ERR_UART_NOT_WRITEABLE UART has no buffer space
* @retval ERR_UART_NO_TX_ENDMARK message for UART has no 0x7E end-mark
* @retval ERR_UART_NO_RX_ENDMARK message received from UART has no end-mark
* @example
* BB 00 03 00 01 02 7E 2E C9 = read
*/
int rfid_msg(void)
{
bool end_mark = FALSE;
int i;
uint8_t crcCount = sizeof(uart_buffer_tx); // use tx buffer size to start
uart.txBufferFlush(); // clear out UART buffers
uart.rxBufferFlush();
for (int i = 0; i < sizeof(uart_buffer_tx); i++)
{
if (!uart.writeable())
{
led_err.write(LEDON);
return ERR_UART_NOT_WRITEABLE; // if no space in uart, return error
}
uart.putc(uart_buffer_tx[i]); // send uart message
if (uart_buffer_tx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE)
{
led_err.write(LEDON);
return ERR_UART_NO_TX_ENDMARK; // no end mark detected
}
break;
}
}
end_mark = FALSE;
while(!uart.readable()); // wait for data from rfid
crcCount = sizeof(uart_buffer_rx); // use rx buffer size to start
for (i = 0; i < sizeof(uart_buffer_rx); i++)
{
uart_buffer_rx[i] = uart.getc(); // read a character
if (uart_buffer_rx[i] == 0x7E) // check for rfid end mark in inbound message
{
crcCount = 2; // two more bytes for crc
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE)
{
led_err.write(LEDON);
return ERR_UART_NO_RX_ENDMARK;
}
break;
}
}
return ERR_NONE;
}
/**
* @name prox_msg_wr
* @brief Forwards command to VL6180X sensor
*
* Proximity/ALS reader is connected to the KL25Z I2C interface.
* The host PC sends the sensor command over the COM port. Messages destined for the proximity/ALS sensor (0xCC leading byte) are
* forwarded to the proximity/ALS sensor after removing the leading byte and trailing bytes (0x7E endmark plus 2 bytes).
* The sensor then responds in kind. Firmware re-attaches the leading 0xCC and trailing bytes before sending the response over the
* CDC port to the host PC.
*
* I2C-prox messages: 0xCC (byte) leading value = 0xCC
* r/w# (byte) 0 = write, 1 = read
* number of data bytes(byte) 0 to 32 (size of declared buffers)
* index (2 bytes) 12-bit VL6801X register offset, high byte first
* data (n bytes) number of data bytes noted above
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* Multiple registers can be read or written with single prox_msg_rd() or prox_msg_wr(). Location address increments for each byte.
* VL6180X registers are defined in the sensor datasheet.
*
* @param [in] i2c_buffer - messages to and from the VL6180X and EEPROM
*
* @retval 0 No error
* @retval 1 I2C bus has NAK'd / failure
*
* @param [in/out] i2c_buffer - messages to and from the i2c bus - see above
*
*/
int prox_msg_wr() // write proximity I2C register
{
int i2c_err;
i2c_err = i2c.write(PROX, &i2c_buffer[3], i2c_buffer[2] + 2, 0);// I2C Address, pointer to buffer, number of bytes (for index + data), stop at end.
return i2c_err; // 0 = ACK received, 1 = NAK/failure
}
/**
* @name prox_msg_rd
* @brief retrieves response from VL6180X sensor
*
* Proximity/ALS reader is connected to the KL25Z I2C interface.
* The host PC sends the sensor command over the COM port. Messages destined for the proximity/ALS sensor (0xCC leading byte) are
* forwarded to the proximity/ALS sensor after removing the leading byte and trailing bytes (0x7E endmark plus 2 bytes).
* The sensor then responds in kind. Firmware re-attaches the leading 0xCC and trailing bytes before sending the response over the
* CDC port to the host PC.
*
* I2C-prox messages: 0xCC (byte) leading value = 0xCC
* r/w# (byte) 0 = write, 1 = read
* number of data bytes(byte) 0 to 32 (size of declared buffers)
* index (2 bytes) 12-bit VL6801X register offset, high byte first
* data (n bytes) number of data bytes noted above
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* Multiple registers can be read or written with single prox_msg_rd() or prox_msg_wr(). Location address increments for each byte.
* VL6180X registers are defined in the sensor datasheet.
*
* @param [in/out] i2c_buffer - messages to and from the i2c bus - see above
*
* @retval 0 No error
* @retval 1 I2C bus has NAK'd / failure
*
*
*/
int prox_msg_rd()
{
int i2c_err;
i2c_err = i2c.write(PROX, &i2c_buffer[3], 2, 1); // I2C Address, pointer to buffer (just the index), index, number of bytes (2 for index), no stop at end.
i2c_err |= i2c.read(PROX, &i2c_buffer[5], i2c_buffer[2], 0); // I2C Address, pointer to buffer (just the data), number of data bytes, stop at end.
return i2c_err; // 0 = ACK received, 1 = NAK/failure
}
/**
* @name gpio_rd
* @brief retrieves instantaneous value of GPIO pins
*
* GPIO signals are defined directly off of the KL25Z.
* The host PC sends the GPIO command over the COM port. With a 0xDD leading byte in the message, the state of the GPIO signals are read and returned.
* This allows a read-modify-write GPIO sequence.
*
* GPIO messages: 0xDD (byte) leading value = 0xDD
* r/w# (byte) 0 = write, 1 = read
* data (byte) see below
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* GPIO data bits: 0 LED - Error 0 = on, 1 = off
* 1 LED - Comm state 0 = on, 1 = off
* 2 RFID interrupt input 0 = off, 1 = on (inverted in h/w)
* 3 RFID in-system-prog 0 = off, 1 = on (inverted in h/w)
* 4 RFID reset 0 = off, 1 = on (inverted in h/w)
* 5 RFID power enable
* for first prototype, 0 = off, 1 = on
* for production, 0 = on, 1 = off
* 6 RFID over-current 0 = overcurrent detected, 1 = OK
* 7 Proximity interrupt 0 = interrupt, 1 = idle (This pin may not return anything meaningful here. The interrupt is edge triggered).
*
* @param [in/out] gpio_buffer - GPIO states
*
* @retval 0 No error
*
*/
int gpio_rd()
{
gpio_buffer[2] = ( led_err.read() & 0x01); // read all of the GPIO pins and store in a single byte
gpio_buffer[2] |= ((led_com_state << 1) & 0x02); // use of led_com_state allows the led to be ON during this call, but send back the pre-call state.
gpio_buffer[2] |= ((rfid_int.read() << 2) & 0x04);
gpio_buffer[2] |= ((rfid_isp.read() << 3) & 0x08);
gpio_buffer[2] |= ((rfid_rst.read() << 4) & 0x10);
gpio_buffer[2] |= ((rfid_pwr.read() << 5) & 0x20);
gpio_buffer[2] |= ((rfid_hot.read() << 6) & 0x40);
gpio_buffer[2] |= ((prox_int.read() << 7) & 0x80);
return ERR_NONE;
}
/**
* @name gpio_wr
* @brief sets value of GPIO pins
*
* GPIO signals are defined directly off of the KL25Z.
* The host PC sends the GPIO command over the COM port. With a 0xDD leading byte in the message, the state of the GPIO signals are read and returned.
* This allows a read-modify-write GPIO sequence.
*
* GPIO messages: 0xDD (byte) leading value = 0xDD
* r/w# (byte) 0 = write, 1 = read
* data (byte) see below
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* GPIO data bits: 0 LED - Error 0 = on, 1 = off
* 1 LED - Comm state 0 = on, 1 = off
* 2 RFID interrupt input 0 = off, 1 = on (inverted in h/w)
* 3 RFID in-system-prog 0 = off, 1 = on (inverted in h/w)
* 4 RFID reset 0 = off, 1 = on (inverted in h/w)
* 5 RFID power enable
* for first prototype, 0 = off, 1 = on
* for production, 0 = on, 1 = off
* 6 don't care
* 7 don't care
*
* @param [in/out] gpio_buffer - GPIO states
*
* @retval 0 No error
*
*/
int gpio_wr()
{
if ((gpio_buffer[2] & 0x02) == 0x00)
{
led_com_state = LEDON;
}
else
{
led_com_state = LEDOFF;
}
led_err.write(gpio_buffer[2] & 0x01);
led_com.write(led_com_state);
rfid_int.write(gpio_buffer[2] & 0x04);
rfid_isp.write(gpio_buffer[2] & 0x08);
rfid_rst.write(gpio_buffer[2] & 0x10);
rfid_pwr.write(gpio_buffer[2] & 0x20);
return ERR_NONE;
}
/**
* @name eeprom_msg_wr
* @brief writes data to the I2C EEPROM
* @note *** UNTESTED with first prototype ***
*
* The EEPROM is connected to the KL25Z I2C interface.
* The host PC sends the sensor command over the COM port. Messages destined for the EERPOM (0xEE leading byte) are
* forwarded to the EEPROM after removing the leading byte and trailing bytes (0x7E endmark plus 2 bytes).
* Firmware re-attaches the leading 0xFF and trailing bytes before sending the response over the
* CDC port to the host PC.
*
* I2C-EEPROM messages: 0xEE (byte) leading value = 0xEE
* r/w# (byte) 0 = write, 1 = read
* number of data bytes(byte) 0 to 32 (size of declared buffers)
* block (byte) lower 3 bits are logically OR'd with the I2C address
* address (byte) memory location within block
* data (n bytes) number of data bytes noted above
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* Multiple memory locations can be read or written with single eeprom_msg_rd() or eeprom_msg_wr(). Location address increments for each byte.
* Read/Write sequences are defined in the 24LC16B datasheet.
*
* This practically the the same as the proximity calls, except the index/location is only one byte and the block select is part of the I2C address byte.
*
* @param [in] i2c_buffer - messages to and from the VL6180X and EEPROM
*
* @retval 0 No error
* @retval 1 I2C bus has NAK'd / failure
*
* @param [in/out] i2c_buffer - messages to and from the i2c bus - see above
*
*/
int eeprom_msg_wr() // write proximity I2C register
{
int i2c_err;
i2c_err = i2c.write((EEPROM | i2c_buffer[3]), &i2c_buffer[4], i2c_buffer[2] + 1, 0);
// I2C Address & block select, pointer to buffer, number of bytes (for address + data), stop at end.
while (!i2c.write(EEPROM | i2c_buffer[3])); // wait until write is done (EEPROM will ACK = 0 for single byte i2c.write)
return i2c_err; // 0 = ACK received, 1 = NAK/failure
}
/**
* @name eeprom_msg_rd
* @brief read data from the I2C EEPROM
* @note *** UNTESTED with first prototype ***
*
* The EEPROM is connected to the KL25Z I2C interface.
* The host PC sends the sensor command over the COM port. Messages destined for the EERPOM (0xEE leading byte) are
* forwarded to the EEPROM after removing the leading byte and trailing bytes (0x7E endmark plus 2 bytes).
* Firmware re-attaches the leading 0xFF and trailing bytes before sending the response over the
* CDC port to the host PC.
*
* I2C-EEPROM messages: 0xEE (byte) leading value = 0xEE
* r/w# (byte) 0 = write, 1 = read
* number of data bytes(byte) 0 to 32 (size of declared buffers)
* block (byte) lower 3 bits are logically OR'd with the I2C address
* address (byte) memory location within block
* data (n bytes) number of data bytes noted above
* end_mark (byte) 0x7E
* dummy (2 bytes) values are don't-care - fillers for RFID CRC bytes
*
* Multiple memory locations can be read or written with single eeprom_msg_rd() or eeprom_msg_wr(). Location address increments for each byte.
* Read/Write sequences are defined in the 24LC16B datasheet.
*
* This practically the the same as the proximity calls, except the index/location is only one byte and the block select is part of the I2C address byte.
*
* @param [in/out] i2c_buffer - messages to and from the VL6180X and EEPROM
*
* @retval [none]0 No error
* @retval 1 I2C bus has NAK'd / failure
*
* @param [in/out] i2c_buffer - messages to and from the i2c bus - see above
*
*/
int eeprom_msg_rd()
{
int i2c_err;
i2c_err = i2c.write((EEPROM | i2c_buffer[3]), &i2c_buffer[4], 1, 1);
// I2C Address & block select, pointer to buffer (just the index), index, number of bytes (for address + data), no stop at end.
i2c_err |= i2c.read((EEPROM || i2c_buffer[3]), &i2c_buffer[5], i2c_buffer[2], 0);
// I2C Address & block select, pointer to buffer (just the data), number of data bytes, stop at end.
return i2c_err; // 0 = ACK received, 1 = NAK/failure
}
/**
* @name main
* @brief main firmware loop
*
* @returns [none]
*/
int main(void)
{
wait(5.0); // gives a chance to connect the COM port - this can be removed for production
init_periph(); // initialize everything
while(1)
{
led_com.write(led_com_state); // turn off communication LED unless it was specifically turned on by GPIO command
while(!cdc.readable()) // spin here until a message comes in from the host PC
{
if(prox_irq_state == 1) // process the interrupt if it occurs while waiting for PC message
{
prox_irq_state = 0;
cdc.putc(0xFF);
cdc.putc(0x7E);
cdc.putc(0x0F);
cdc.putc(0xF0);
}
}
led_com.write(LEDON); // Message received - turn on LED
bool end_mark = FALSE;
uint8_t crcCount = sizeof(cdc_buffer_rx); // use tx buffer size to start
for (i = 0; i < sizeof(cdc_buffer_rx); i++)
{
cdc_buffer_rx[i] = cdc.getc(); // read data from USB side
if (cdc_buffer_rx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE) return ERR_UART_NO_TX_ENDMARK; // no end mark detected
break;
}
}
switch(cdc_buffer_rx[0]) // check first byte for "destination"
{
case 0xBB: // RFID-FE
for (i = 0; i < sizeof(cdc_buffer_rx); i++)
{
uart_buffer_tx[i] = cdc_buffer_rx[i]; // copy USB message to UART for RFID
}
status = rfid_msg(); // send buffer to RFID and get response according to RFID board
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc_buffer_tx[i] = uart_buffer_rx[i]; // copy RFID response back to USB buffer
}
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc.putc(cdc_buffer_tx[i]); // send message back to PC
if (cdc_buffer_tx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE) return ERR_CDC_NO_TX_ENDMARK; // no end mark detected
break;
}
}
break;
case 0xCC: // Proximity Sensor
for (i = 0; i < sizeof(cdc_buffer_rx); i++)
{
i2c_buffer[i] = cdc_buffer_rx[i]; // copy USB message to buffer for I2C
}
if (i2c_buffer[1] == 1) // I2C read = 1
status = prox_msg_rd(); // read the requested data
else if (i2c_buffer[1] == 0) // I2C write = 0
status = prox_msg_wr(); // send buffer to proximity sensor and get response
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc_buffer_tx[i] = i2c_buffer[i]; // copy prox response back to USB buffer
}
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc.putc(cdc_buffer_tx[i]); // send message back to PC
if (cdc_buffer_tx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE) return ERR_CDC_NO_TX_ENDMARK; // no end mark detected
break;
}
}
break;
case 0xDD: // GPIO (LEDs and RFID-FE control)
for (i = 0; i < sizeof(cdc_buffer_rx); i++)
{
gpio_buffer[i] = cdc_buffer_rx[i]; // copy USB message to buffer for I2C
}
if (gpio_buffer[1] == 1) // GPIO read = 1
status = gpio_rd(); // read the requested data
else if (gpio_buffer[1] == 0) // GPIO write = 0
status = gpio_wr(); // send GPIO pin data
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc_buffer_tx[i] = gpio_buffer[i]; // copy GPIO response back to USB buffer
}
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc.putc(cdc_buffer_tx[i]); // send message back to PC
if (cdc_buffer_tx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE) return ERR_CDC_NO_TX_ENDMARK; // no end mark detected
break;
}
}
break;
case 0xEE: // Read/write EEPROM
for (i = 0; i < sizeof(cdc_buffer_rx); i++)
{
i2c_buffer[i] = cdc_buffer_rx[i]; // copy USB message to buffer for I2C
}
if (i2c_buffer[1] == 1) // I2C read = 1
status = gpio_rd(); // read the gpio pins
else if (i2c_buffer[1] == 0) // I2C write = 0
status = gpio_wr(); // write gpio pins
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc_buffer_tx[i] = i2c_buffer[i]; // copy prox response back to USB buffer
}
for (i = 0; i < sizeof(cdc_buffer_tx); i++)
{
cdc.putc(cdc_buffer_tx[i]); // send message back to PC
if (cdc_buffer_tx[i] == 0x7E) // check for rfid end mark in outbound message
{
crcCount = 2; // two more bytes for CRC
end_mark = TRUE; // end mark was reached
}
if (crcCount-- == 0) // end of message
{
if (end_mark == FALSE) return ERR_CDC_NO_TX_ENDMARK; // no end mark detected
break;
}
}
break;
default:
return ERR_CDC_BAD_CMD;
}
}
}
//EOF
