single current only

Dependencies:   Watchdog mbed

Committer:
magdamcn
Date:
Tue Jan 24 13:32:57 2017 +0000
Revision:
0:0ba5f6ec8fa5
Child:
1:31e63b43238f
2017 January charger revision

Who changed what in which revision?

UserRevisionLine numberNew contents of line
magdamcn 0:0ba5f6ec8fa5 1 // Copyright (c) 2017 Smartcharge Ltd
magdamcn 0:0ba5f6ec8fa5 2
magdamcn 0:0ba5f6ec8fa5 3
magdamcn 0:0ba5f6ec8fa5 4 #include "mbed.h"
magdamcn 0:0ba5f6ec8fa5 5 #include "Watchdog.h"
magdamcn 0:0ba5f6ec8fa5 6
magdamcn 0:0ba5f6ec8fa5 7 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 8 // * Variables for capturing analog cp and pp values *
magdamcn 0:0ba5f6ec8fa5 9 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 10 AnalogIn cp_value(A1); //A1 – cp analog read.
magdamcn 0:0ba5f6ec8fa5 11 AnalogIn pp_value(A2); //A2 - pp analog read.
magdamcn 0:0ba5f6ec8fa5 12
magdamcn 0:0ba5f6ec8fa5 13 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 14 // * Variables and constants for new cp acquisition routine *
magdamcn 0:0ba5f6ec8fa5 15 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 16 #define NUMBER_OF_SAMPLES 5000 // Size of ADC sample series for cp signal (default = 5000).
magdamcn 0:0ba5f6ec8fa5 17 #define VOLTAGE_RENORMALISATION 4.5 // Renormalisation constant to correct cp measured voltages (default = 4.5).
magdamcn 0:0ba5f6ec8fa5 18 #define VOLTAGE_THRESHOLD 4.0 // Threshold value for pwm edge detection (default = 4.0).
magdamcn 0:0ba5f6ec8fa5 19 float cp_voltage; // Global variable to store the measured voltage of the cp signal.
magdamcn 0:0ba5f6ec8fa5 20 float cp_duty_cycle; // Global variable to store the measured duty cycle of the cp signal.
magdamcn 0:0ba5f6ec8fa5 21 float cp_frequency; // Global variable to store the the measured frequency of the cp signal.
magdamcn 0:0ba5f6ec8fa5 22 Timer cp_timer; // Timer used to determine the frequency of the cp signal.
magdamcn 0:0ba5f6ec8fa5 23 uint16_t cp_array[NUMBER_OF_SAMPLES]; // Array to store ADC sample series for cp signal.
magdamcn 0:0ba5f6ec8fa5 24
magdamcn 0:0ba5f6ec8fa5 25 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 26 // * Constant for voltage checking routine *
magdamcn 0:0ba5f6ec8fa5 27 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 28 #define ACCEPTABLE_VOLTAGE_RANGE 0.5 // Sets the acceptable range of measured cp voltages (default 0.5, i.e. +/-0.5 V around value of 12, 9, 6V)
magdamcn 0:0ba5f6ec8fa5 29
magdamcn 0:0ba5f6ec8fa5 30 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 31 // * Timers and variables for reset button *
magdamcn 0:0ba5f6ec8fa5 32 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 33 InterruptIn button(D8); // Interupt for button on pin D8.
magdamcn 0:0ba5f6ec8fa5 34 Timer button_timer; // Timer used for reset button press.
magdamcn 0:0ba5f6ec8fa5 35 Timeout button_timeout; // Timeout case for reset button press.
magdamcn 0:0ba5f6ec8fa5 36 bool reset_down = false; // Flag used to determine whether reset button is held down.
magdamcn 0:0ba5f6ec8fa5 37 bool reset_charger = false; // Flag used to determine whether charger is to be reset.
magdamcn 0:0ba5f6ec8fa5 38 #define RESET_SECONDS 2 // Define length of time in seconds reset button needs to be held down before reset registered (default 3s).
magdamcn 0:0ba5f6ec8fa5 39
magdamcn 0:0ba5f6ec8fa5 40 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 41 // * Variables and constants to set the charging current *
magdamcn 0:0ba5f6ec8fa5 42 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 43 #define UPPER_CURRENT 32 // Sets the upper current value desired.
magdamcn 0:0ba5f6ec8fa5 44 #define LOWER_CURRENT 16 // Sets the lower current value desired.
magdamcn 0:0ba5f6ec8fa5 45 float pwm_duty_high = 1.0-((UPPER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired upper current.
magdamcn 0:0ba5f6ec8fa5 46 float pwm_duty_low = 1.0-((LOWER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired lower current.
magdamcn 0:0ba5f6ec8fa5 47 bool use_upper_current = false;
magdamcn 0:0ba5f6ec8fa5 48
magdamcn 0:0ba5f6ec8fa5 49 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 50 // * Variables and constants to allow state changes *
magdamcn 0:0ba5f6ec8fa5 51 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 52 unsigned char control_pilot;
magdamcn 0:0ba5f6ec8fa5 53 #define PILOT_NOK 0 // Error state.
magdamcn 0:0ba5f6ec8fa5 54 #define PILOT_12V 1 // Standby state.
magdamcn 0:0ba5f6ec8fa5 55 #define PILOT_9V 2 // Vehicle detection state.
magdamcn 0:0ba5f6ec8fa5 56 #define PILOT_6V 3 // Charging state.
magdamcn 0:0ba5f6ec8fa5 57 #define PILOT_DIODE 4 // Charging state with ventilation (not currently implemented).
magdamcn 0:0ba5f6ec8fa5 58 #define PILOT_RESET 5 // Reset state.
magdamcn 0:0ba5f6ec8fa5 59 #define PWM_CHANGE 6 // New state added to allow change in PWM duty cycle and charging current.
magdamcn 0:0ba5f6ec8fa5 60
magdamcn 0:0ba5f6ec8fa5 61 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 62 // * Digital out definitions *
magdamcn 0:0ba5f6ec8fa5 63 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 64 PwmOut my_pwm(D5); // PWM out on pin D5.
magdamcn 0:0ba5f6ec8fa5 65 DigitalOut lock(D7); // Cable lock on pin D7.
magdamcn 0:0ba5f6ec8fa5 66 DigitalOut relay(D12); // Relay on pin D12.
magdamcn 0:0ba5f6ec8fa5 67 DigitalOut contactor(D13); // Contactor on pin D13.
magdamcn 0:0ba5f6ec8fa5 68 DigitalOut green(D9); // Green LED on pin D9.
magdamcn 0:0ba5f6ec8fa5 69 DigitalOut red(D10); // Red LED on pin D10.
magdamcn 0:0ba5f6ec8fa5 70 DigitalOut blue(D11); // Blue LED on pin D11.
magdamcn 0:0ba5f6ec8fa5 71
magdamcn 0:0ba5f6ec8fa5 72 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 73 // * Serial connections *
magdamcn 0:0ba5f6ec8fa5 74 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 75 Serial pc(USBTX, USBRX); // Serial output to PC.
magdamcn 0:0ba5f6ec8fa5 76 int TESTCOUNTER = 0; // Variable to count number of cycles of main loop. Used to determine when to switch the pwm in this test version.
magdamcn 0:0ba5f6ec8fa5 77
magdamcn 0:0ba5f6ec8fa5 78
magdamcn 0:0ba5f6ec8fa5 79 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 80 // * New Acquisition Routine for Capturing CP Signal Data *
magdamcn 0:0ba5f6ec8fa5 81 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 82 void cp_acquire()
magdamcn 0:0ba5f6ec8fa5 83 {
magdamcn 0:0ba5f6ec8fa5 84 int i; // Variable for loop counter.
magdamcn 0:0ba5f6ec8fa5 85 float sample_value_current = 0; // Stores the current cp value obtained by ADC (A1).
magdamcn 0:0ba5f6ec8fa5 86 float sample_value_previous = 0; // Stores the previous cp value obtained by ADC (A1).
magdamcn 0:0ba5f6ec8fa5 87 float peak_counter; // Used to store the number of samples representing a peak of the pwm square wave.
magdamcn 0:0ba5f6ec8fa5 88 float trough_counter; // Used to store the number of samples representing a trough of the pwm square wave.
magdamcn 0:0ba5f6ec8fa5 89 float voltage_average; // Used to calculate the average peak voltage value.
magdamcn 0:0ba5f6ec8fa5 90 float thres_cross_rise; // Used to store the number of times the pwm wave goes from low to high.
magdamcn 0:0ba5f6ec8fa5 91 float thres_cross_fall; // Used to store the number of times the pwm wave goes from high to low.
magdamcn 0:0ba5f6ec8fa5 92 float t; // Used to determine the time over which samples were acquired.
magdamcn 0:0ba5f6ec8fa5 93
magdamcn 0:0ba5f6ec8fa5 94 cp_timer.start(); // Starts a timer before we begin sampling the cp signal.
magdamcn 0:0ba5f6ec8fa5 95 for (i = 0; i < NUMBER_OF_SAMPLES; i++) // Starts a loop to take a certain number of samples as defined in NUMBER_OF_SAMPLES.
magdamcn 0:0ba5f6ec8fa5 96 {
magdamcn 0:0ba5f6ec8fa5 97 wait_us(30); // Waits 30 us. This sets the sample rate at approximately 33 KS/second.
magdamcn 0:0ba5f6ec8fa5 98 cp_array[i] = cp_value.read_u16(); // Reads the ADC (A1) and stores the measured cp voltage as a 16 bit integer in cp_array.
magdamcn 0:0ba5f6ec8fa5 99 }
magdamcn 0:0ba5f6ec8fa5 100 cp_timer.stop(); // Stop the timer once the acqusition has finished.
magdamcn 0:0ba5f6ec8fa5 101 t = cp_timer.read_us(); // Read the timer value in microseconds and store the result in t.
magdamcn 0:0ba5f6ec8fa5 102 t = t / 1000000.0; // Divide t by 1000000 to convert from microseconds to seconds.
magdamcn 0:0ba5f6ec8fa5 103 cp_timer.reset(); // Reset the timer.
magdamcn 0:0ba5f6ec8fa5 104
magdamcn 0:0ba5f6ec8fa5 105 peak_counter = 0; // Set peak_counter to zero.
magdamcn 0:0ba5f6ec8fa5 106 trough_counter = 0; // Set trough_counter to zero.
magdamcn 0:0ba5f6ec8fa5 107 voltage_average = 0; // Set voltage_average to zero.
magdamcn 0:0ba5f6ec8fa5 108 thres_cross_rise = 0; // Set thres_cross_rise to zero.
magdamcn 0:0ba5f6ec8fa5 109 thres_cross_fall = 0; // Set thres_cross_fall to zero.
magdamcn 0:0ba5f6ec8fa5 110
magdamcn 0:0ba5f6ec8fa5 111 // Having captured cp data, we now have to process each sample. This is done in a separate loop to maximize the ADC sampling rate.
magdamcn 0:0ba5f6ec8fa5 112 for (i = 0; i < NUMBER_OF_SAMPLES; i++)
magdamcn 0:0ba5f6ec8fa5 113 {
magdamcn 0:0ba5f6ec8fa5 114 // The cp data was stored in cp_array as a 16 bit integer. To convert this into a voltage we divide by 65535 (16 bits is 0 - 65535)
magdamcn 0:0ba5f6ec8fa5 115 // and multiply by 3.3 V. Because of the resistors and diode on the shield, we need to renormalise the values and scale them up
magdamcn 0:0ba5f6ec8fa5 116 // by a factor of 4.5 (VOLTAGE_RENORMALISATION).
magdamcn 0:0ba5f6ec8fa5 117 sample_value_current = (cp_array[i] * 3.3 * VOLTAGE_RENORMALISATION) / 65535.0;
magdamcn 0:0ba5f6ec8fa5 118
magdamcn 0:0ba5f6ec8fa5 119
magdamcn 0:0ba5f6ec8fa5 120 if (sample_value_current > VOLTAGE_THRESHOLD) // We examine the cp voltage. If it is above the threshold then we assume it is at the peak of the pwm square wave.
magdamcn 0:0ba5f6ec8fa5 121 {
magdamcn 0:0ba5f6ec8fa5 122 peak_counter+=1; // Add one to the peak_counter.
magdamcn 0:0ba5f6ec8fa5 123 voltage_average+=sample_value_current; // Add the cp_voltage to a running total (voltage_average) so we can work out the average voltage later.
magdamcn 0:0ba5f6ec8fa5 124 }
magdamcn 0:0ba5f6ec8fa5 125 else
magdamcn 0:0ba5f6ec8fa5 126 {
magdamcn 0:0ba5f6ec8fa5 127 trough_counter+=1; // If the cp voltage is less than the threshold then we assume it is at the trough of the pwm square wave and increment trough_counter.
magdamcn 0:0ba5f6ec8fa5 128 }
magdamcn 0:0ba5f6ec8fa5 129
magdamcn 0:0ba5f6ec8fa5 130
magdamcn 0:0ba5f6ec8fa5 131 if (i > 0) // If we've already processed the first sample then ...
magdamcn 0:0ba5f6ec8fa5 132 {
magdamcn 0:0ba5f6ec8fa5 133 if (sample_value_current > VOLTAGE_THRESHOLD && sample_value_previous < VOLTAGE_THRESHOLD) // ... we check if the cp voltage we're looking at is above the threshold and if the previous cp voltage
magdamcn 0:0ba5f6ec8fa5 134 // is below the threshold. If this is the case then we've detected the rising edge of the pwm square wave.
magdamcn 0:0ba5f6ec8fa5 135 {
magdamcn 0:0ba5f6ec8fa5 136 thres_cross_rise+=1; // We increment thres_cross_rise if this is the case.
magdamcn 0:0ba5f6ec8fa5 137 }
magdamcn 0:0ba5f6ec8fa5 138 if (sample_value_current < VOLTAGE_THRESHOLD && sample_value_previous > VOLTAGE_THRESHOLD) // Alternatively, if the cp voltage we're looking at is below the theshold and the previous cp voltage
magdamcn 0:0ba5f6ec8fa5 139 // is above the threshold then we've detected the falling edge of the pwm square wave.
magdamcn 0:0ba5f6ec8fa5 140 {
magdamcn 0:0ba5f6ec8fa5 141 thres_cross_fall+=1; // We increment thres_cross_fall is this is the case.
magdamcn 0:0ba5f6ec8fa5 142 }
magdamcn 0:0ba5f6ec8fa5 143 }
magdamcn 0:0ba5f6ec8fa5 144
magdamcn 0:0ba5f6ec8fa5 145 sample_value_previous = sample_value_current; // Before we proces the next sample, we copy the current value into the previous value.
magdamcn 0:0ba5f6ec8fa5 146 }
magdamcn 0:0ba5f6ec8fa5 147
magdamcn 0:0ba5f6ec8fa5 148
magdamcn 0:0ba5f6ec8fa5 149 if(peak_counter == 0) // If, having processed each sample, the peak_counter is still zero, then every cp voltage we acquired was less than the threshold ...
magdamcn 0:0ba5f6ec8fa5 150 {
magdamcn 0:0ba5f6ec8fa5 151 cp_voltage = -12.0; // ... which implies that the cp is not at 6, 9, or 12V. In the current implementation, that means the cp is actually at -12 V.
magdamcn 0:0ba5f6ec8fa5 152 }
magdamcn 0:0ba5f6ec8fa5 153 else // On the other hand, if the peak_counter is greater than 0, then some (pwm is on) or all (DC, pwm is off) of the values were greater than the threshold ...
magdamcn 0:0ba5f6ec8fa5 154 {
magdamcn 0:0ba5f6ec8fa5 155 cp_voltage = voltage_average / peak_counter; // ... so determine the cp voltage by taking the running total (voltage_average) and dividing it by peak_counter.
magdamcn 0:0ba5f6ec8fa5 156 }
magdamcn 0:0ba5f6ec8fa5 157
magdamcn 0:0ba5f6ec8fa5 158 cp_duty_cycle = peak_counter / NUMBER_OF_SAMPLES; // The duty cycle is the number of peak samples of the pwm square waves divided by the total number of samples ...
magdamcn 0:0ba5f6ec8fa5 159 cp_duty_cycle = cp_duty_cycle * 100.0; // ... but we need to convert it into a percentage.
magdamcn 0:0ba5f6ec8fa5 160 cp_frequency = ((thres_cross_rise + thres_cross_fall) / 2.0) / t; // The frequency of the cp signal is the total number of crossings divided by 2, divided by the time.
magdamcn 0:0ba5f6ec8fa5 161
magdamcn 0:0ba5f6ec8fa5 162 pc.printf("CP Measured Peak/DC Voltage (V): %f \r\n", cp_voltage);
magdamcn 0:0ba5f6ec8fa5 163 pc.printf("CP Measured Duty Cycle (%%): %f \r\n", cp_duty_cycle);
magdamcn 0:0ba5f6ec8fa5 164 pc.printf("CP Measured Frequency (Hz): %f \r\n", cp_frequency);
magdamcn 0:0ba5f6ec8fa5 165 }
magdamcn 0:0ba5f6ec8fa5 166
magdamcn 0:0ba5f6ec8fa5 167
magdamcn 0:0ba5f6ec8fa5 168
magdamcn 0:0ba5f6ec8fa5 169 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 170 // * Routines for handling reset button press *
magdamcn 0:0ba5f6ec8fa5 171 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 172 void button_timed_out()
magdamcn 0:0ba5f6ec8fa5 173 {
magdamcn 0:0ba5f6ec8fa5 174 reset_charger = true;
magdamcn 0:0ba5f6ec8fa5 175 pc.printf("Reset button pressed for more than 3 sec! Charger reset! \r\n");
magdamcn 0:0ba5f6ec8fa5 176 }
magdamcn 0:0ba5f6ec8fa5 177
magdamcn 0:0ba5f6ec8fa5 178 void reset_pressed()
magdamcn 0:0ba5f6ec8fa5 179 {
magdamcn 0:0ba5f6ec8fa5 180 pc.printf("Reset button pressed ... starting timer. \r\n");
magdamcn 0:0ba5f6ec8fa5 181 button_timer.stop();
magdamcn 0:0ba5f6ec8fa5 182 button_timer.reset();
magdamcn 0:0ba5f6ec8fa5 183 button_timer.start();
magdamcn 0:0ba5f6ec8fa5 184 reset_down = true;
magdamcn 0:0ba5f6ec8fa5 185 button_timeout.attach(&button_timed_out, RESET_SECONDS);
magdamcn 0:0ba5f6ec8fa5 186 }
magdamcn 0:0ba5f6ec8fa5 187
magdamcn 0:0ba5f6ec8fa5 188 void reset_released()
magdamcn 0:0ba5f6ec8fa5 189 {
magdamcn 0:0ba5f6ec8fa5 190 int elapsed_seconds;
magdamcn 0:0ba5f6ec8fa5 191 pc.printf("Reset button released. \r\n");
magdamcn 0:0ba5f6ec8fa5 192 elapsed_seconds = button_timer.read();
magdamcn 0:0ba5f6ec8fa5 193 button_timer.stop();
magdamcn 0:0ba5f6ec8fa5 194 button_timer.reset();
magdamcn 0:0ba5f6ec8fa5 195 if (elapsed_seconds > RESET_SECONDS)
magdamcn 0:0ba5f6ec8fa5 196 {
magdamcn 0:0ba5f6ec8fa5 197 reset_charger = true;
magdamcn 0:0ba5f6ec8fa5 198 pc.printf("Reset button was pressed for more than 3 sec! \r\n");
magdamcn 0:0ba5f6ec8fa5 199 }
magdamcn 0:0ba5f6ec8fa5 200 else
magdamcn 0:0ba5f6ec8fa5 201 {
magdamcn 0:0ba5f6ec8fa5 202 pc.printf("Reset button released before 3 seconds were up. \r\n");
magdamcn 0:0ba5f6ec8fa5 203 }
magdamcn 0:0ba5f6ec8fa5 204 pc.printf("Detach the timeout and setup for the next time.\r\n");
magdamcn 0:0ba5f6ec8fa5 205 pc.printf("%u \r\n", elapsed_seconds);
magdamcn 0:0ba5f6ec8fa5 206 button_timeout.detach();
magdamcn 0:0ba5f6ec8fa5 207 }
magdamcn 0:0ba5f6ec8fa5 208
magdamcn 0:0ba5f6ec8fa5 209
magdamcn 0:0ba5f6ec8fa5 210
magdamcn 0:0ba5f6ec8fa5 211 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 212 // * Routine for Checking CP Voltages *
magdamcn 0:0ba5f6ec8fa5 213 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 214 bool cp_check_voltage (float v) // Function accepts a voltage value (eg. 12V, 9V, 6V) ...
magdamcn 0:0ba5f6ec8fa5 215 {
magdamcn 0:0ba5f6ec8fa5 216 bool voltage_in_range = false; // ... and initially sets a flag to false.
magdamcn 0:0ba5f6ec8fa5 217
magdamcn 0:0ba5f6ec8fa5 218 // If the measured cp voltage is within a range of +/- ACCEPTABLE_VOLTAGE_RANGE around the
magdamcn 0:0ba5f6ec8fa5 219 // value (12V, 9V, 6V) then we change the flag state to true.
magdamcn 0:0ba5f6ec8fa5 220 if (cp_voltage < (v + ACCEPTABLE_VOLTAGE_RANGE) && cp_voltage > (v - ACCEPTABLE_VOLTAGE_RANGE)) voltage_in_range = true;
magdamcn 0:0ba5f6ec8fa5 221
magdamcn 0:0ba5f6ec8fa5 222 return voltage_in_range; // The function then returns the value of the flag state.
magdamcn 0:0ba5f6ec8fa5 223 }
magdamcn 0:0ba5f6ec8fa5 224
magdamcn 0:0ba5f6ec8fa5 225
magdamcn 0:0ba5f6ec8fa5 226
magdamcn 0:0ba5f6ec8fa5 227 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 228 // * Main *
magdamcn 0:0ba5f6ec8fa5 229 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 230 int main()
magdamcn 0:0ba5f6ec8fa5 231 {
magdamcn 0:0ba5f6ec8fa5 232 button.fall(&reset_pressed); // Attach interupt to button when pressed.
magdamcn 0:0ba5f6ec8fa5 233 button.rise(&reset_released); // Attach interupt to button when released.
magdamcn 0:0ba5f6ec8fa5 234
magdamcn 0:0ba5f6ec8fa5 235 float reading_pp; // Create variable to store pp reading.
magdamcn 0:0ba5f6ec8fa5 236 bool cable_32A = false; // Create boolean to flag whether a 32 or 16A cable is being used. Default is 16A cable (cable_32A = false).
magdamcn 0:0ba5f6ec8fa5 237 bool cable_connected = false; // Create boolean to flag whether a cable is attached.
magdamcn 0:0ba5f6ec8fa5 238 bool pwm_state = false; // Create boolean to flag current state of pwm (whether it is on or off).
magdamcn 0:0ba5f6ec8fa5 239 float pwm_duty_cycle; // Create float to store the current pwm duty cycle.
magdamcn 0:0ba5f6ec8fa5 240
magdamcn 0:0ba5f6ec8fa5 241 while(true) // Start of process loop.
magdamcn 0:0ba5f6ec8fa5 242 {
magdamcn 0:0ba5f6ec8fa5 243 // check the cable using pp value
magdamcn 0:0ba5f6ec8fa5 244 reading_pp = pp_value.read(); // Read pp value and ...
magdamcn 0:0ba5f6ec8fa5 245 reading_pp = reading_pp * 3300; // ... multiply it by 3300 to convert to mV.
magdamcn 0:0ba5f6ec8fa5 246
magdamcn 0:0ba5f6ec8fa5 247 if(reading_pp > 3200) // If the pp value is 3.3 V (greater than 3200 mV) then ...
magdamcn 0:0ba5f6ec8fa5 248 {
magdamcn 0:0ba5f6ec8fa5 249 cable_connected = false; // ... the cable *isn't* connected to charger ...
magdamcn 0:0ba5f6ec8fa5 250 pc.printf("Cable not connected. \r\n");
magdamcn 0:0ba5f6ec8fa5 251 }
magdamcn 0:0ba5f6ec8fa5 252 else
magdamcn 0:0ba5f6ec8fa5 253 {
magdamcn 0:0ba5f6ec8fa5 254 cable_connected = true; // ... otherwise the cable *is* connected to charger.
magdamcn 0:0ba5f6ec8fa5 255 pc.printf("Cable connected. \r\n");
magdamcn 0:0ba5f6ec8fa5 256 }
magdamcn 0:0ba5f6ec8fa5 257
magdamcn 0:0ba5f6ec8fa5 258 if(reading_pp > 200 && reading_pp < 300) // If the pp reading is between 200 and 300 mV then ...
magdamcn 0:0ba5f6ec8fa5 259 {
magdamcn 0:0ba5f6ec8fa5 260 cable_32A = false; // ... a 16A cable is being used.
magdamcn 0:0ba5f6ec8fa5 261 pc.printf("16A cable detected. \r\n");
magdamcn 0:0ba5f6ec8fa5 262 }
magdamcn 0:0ba5f6ec8fa5 263
magdamcn 0:0ba5f6ec8fa5 264 if(reading_pp > 0 && reading_pp <100) // If the pp reading if between 0 and 100 mV then ...
magdamcn 0:0ba5f6ec8fa5 265 {
magdamcn 0:0ba5f6ec8fa5 266 cable_32A = true; // ... a 32A cable is being used.
magdamcn 0:0ba5f6ec8fa5 267 pc.printf("32A cable detected. \r\n");
magdamcn 0:0ba5f6ec8fa5 268 }
magdamcn 0:0ba5f6ec8fa5 269
magdamcn 0:0ba5f6ec8fa5 270 cp_acquire(); // Call the new acquisition routine (replaces the moving average in previous versions).
magdamcn 0:0ba5f6ec8fa5 271
magdamcn 0:0ba5f6ec8fa5 272 if (cable_connected == false)
magdamcn 0:0ba5f6ec8fa5 273 {
magdamcn 0:0ba5f6ec8fa5 274 if (cp_check_voltage(12) == true) control_pilot = PILOT_12V;
magdamcn 0:0ba5f6ec8fa5 275
magdamcn 0:0ba5f6ec8fa5 276 if (cp_check_voltage(-12) == true)
magdamcn 0:0ba5f6ec8fa5 277 {
magdamcn 0:0ba5f6ec8fa5 278 control_pilot = PILOT_12V;
magdamcn 0:0ba5f6ec8fa5 279 reset_charger = false;
magdamcn 0:0ba5f6ec8fa5 280 }
magdamcn 0:0ba5f6ec8fa5 281 }
magdamcn 0:0ba5f6ec8fa5 282
magdamcn 0:0ba5f6ec8fa5 283 if (cable_connected == true)
magdamcn 0:0ba5f6ec8fa5 284 {
magdamcn 0:0ba5f6ec8fa5 285 if (cp_check_voltage(9) == true) control_pilot = PILOT_9V;
magdamcn 0:0ba5f6ec8fa5 286 if (cp_check_voltage(6) == true) control_pilot = PILOT_6V;
magdamcn 0:0ba5f6ec8fa5 287 if (reset_charger == true) control_pilot = PILOT_RESET;
magdamcn 0:0ba5f6ec8fa5 288 }
magdamcn 0:0ba5f6ec8fa5 289 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 290 // * Switching PWM Cycle & TEST Counter Timer *
magdamcn 0:0ba5f6ec8fa5 291 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 292 // if (use_upper_current == false) pwm_duty_cycle = pwm_duty_low;
magdamcn 0:0ba5f6ec8fa5 293 // if (use_upper_current == true) pwm_duty_cycle = pwm_duty_high;
magdamcn 0:0ba5f6ec8fa5 294 //
magdamcn 0:0ba5f6ec8fa5 295 // if (TESTCOUNTER > 1800) control_pilot = PWM_CHANGE; // Each cycle takes approximately 1 second, so 1800 seconds is a change of pwm every 30 mins or so.
magdamcn 0:0ba5f6ec8fa5 296 // * TESTERCOUNTER monitoring is switched of for the Smartcharge Home+ charger, PWN cycle based on a cable inserted
magdamcn 0:0ba5f6ec8fa5 297 //
magdamcn 0:0ba5f6ec8fa5 298 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 299
magdamcn 0:0ba5f6ec8fa5 300 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 301 // * PWM cycle basen on cable instered *
magdamcn 0:0ba5f6ec8fa5 302 // ************************************************************
magdamcn 0:0ba5f6ec8fa5 303 if (cable_32A == false) pwm_duty_cycle = pwm_duty_low;
magdamcn 0:0ba5f6ec8fa5 304 if (cable_32A == true) pwm_duty_cycle = pwm_duty_high;
magdamcn 0:0ba5f6ec8fa5 305
magdamcn 0:0ba5f6ec8fa5 306
magdamcn 0:0ba5f6ec8fa5 307
magdamcn 0:0ba5f6ec8fa5 308 switch(control_pilot)
magdamcn 0:0ba5f6ec8fa5 309 {
magdamcn 0:0ba5f6ec8fa5 310 case PILOT_12V:
magdamcn 0:0ba5f6ec8fa5 311 contactor = 0;
magdamcn 0:0ba5f6ec8fa5 312 lock = 0;
magdamcn 0:0ba5f6ec8fa5 313 red = 0;
magdamcn 0:0ba5f6ec8fa5 314 green = 0;
magdamcn 0:0ba5f6ec8fa5 315 blue = 1;
magdamcn 0:0ba5f6ec8fa5 316 my_pwm = 0;
magdamcn 0:0ba5f6ec8fa5 317 pwm_state = false;
magdamcn 0:0ba5f6ec8fa5 318 pc.printf("Charger in STATE A. \r\n");
magdamcn 0:0ba5f6ec8fa5 319 pc.printf("PILOT_12V - Pilot at 12 V. \r\n");
magdamcn 0:0ba5f6ec8fa5 320 TESTCOUNTER = 0;
magdamcn 0:0ba5f6ec8fa5 321 break;
magdamcn 0:0ba5f6ec8fa5 322
magdamcn 0:0ba5f6ec8fa5 323 case PILOT_9V:
magdamcn 0:0ba5f6ec8fa5 324 contactor = 0;
magdamcn 0:0ba5f6ec8fa5 325 //relay=0;
magdamcn 0:0ba5f6ec8fa5 326 lock = 1;
magdamcn 0:0ba5f6ec8fa5 327 red = 1;
magdamcn 0:0ba5f6ec8fa5 328 green = 1;
magdamcn 0:0ba5f6ec8fa5 329 blue = 0;
magdamcn 0:0ba5f6ec8fa5 330 if (pwm_state == false)
magdamcn 0:0ba5f6ec8fa5 331 {
magdamcn 0:0ba5f6ec8fa5 332 my_pwm.period_us(1000);
magdamcn 0:0ba5f6ec8fa5 333 my_pwm.pulsewidth_us(1000);
magdamcn 0:0ba5f6ec8fa5 334 my_pwm.write(pwm_duty_cycle);
magdamcn 0:0ba5f6ec8fa5 335 pwm_state = true;
magdamcn 0:0ba5f6ec8fa5 336 }
magdamcn 0:0ba5f6ec8fa5 337 pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100);
magdamcn 0:0ba5f6ec8fa5 338 pc.printf("Charger in STATE B. \r\n");
magdamcn 0:0ba5f6ec8fa5 339 pc.printf("PILOT_9V - Pilot at 9 V. \r\n");
magdamcn 0:0ba5f6ec8fa5 340 TESTCOUNTER = 0;
magdamcn 0:0ba5f6ec8fa5 341 break;
magdamcn 0:0ba5f6ec8fa5 342
magdamcn 0:0ba5f6ec8fa5 343 case PILOT_6V:
magdamcn 0:0ba5f6ec8fa5 344 contactor = 1;
magdamcn 0:0ba5f6ec8fa5 345 relay = 1;
magdamcn 0:0ba5f6ec8fa5 346 lock = 1;
magdamcn 0:0ba5f6ec8fa5 347 red = 0;
magdamcn 0:0ba5f6ec8fa5 348 green = 1;
magdamcn 0:0ba5f6ec8fa5 349 blue = 0;
magdamcn 0:0ba5f6ec8fa5 350 if (pwm_state == false)
magdamcn 0:0ba5f6ec8fa5 351 {
magdamcn 0:0ba5f6ec8fa5 352 my_pwm.period_us(1000);
magdamcn 0:0ba5f6ec8fa5 353 my_pwm.pulsewidth_us(1000);
magdamcn 0:0ba5f6ec8fa5 354 my_pwm.write(pwm_duty_cycle);
magdamcn 0:0ba5f6ec8fa5 355 pwm_state = true;
magdamcn 0:0ba5f6ec8fa5 356 }
magdamcn 0:0ba5f6ec8fa5 357 pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100);
magdamcn 0:0ba5f6ec8fa5 358 pc.printf("Charger in STATE C. \r\n");
magdamcn 0:0ba5f6ec8fa5 359 pc.printf("PILOT_6V - Pilot at 6 V. \r\n");
magdamcn 0:0ba5f6ec8fa5 360 // TESTCOUNTER+=1;
magdamcn 0:0ba5f6ec8fa5 361 // * TESTCOUNTER switched of
magdamcn 0:0ba5f6ec8fa5 362 pc.printf("TESTCOUNTER timer: %u seconds \r\n", TESTCOUNTER);
magdamcn 0:0ba5f6ec8fa5 363 break;
magdamcn 0:0ba5f6ec8fa5 364
magdamcn 0:0ba5f6ec8fa5 365 case PILOT_NOK:
magdamcn 0:0ba5f6ec8fa5 366 lock = 0;
magdamcn 0:0ba5f6ec8fa5 367 red = 1;
magdamcn 0:0ba5f6ec8fa5 368 green = 0;
magdamcn 0:0ba5f6ec8fa5 369 blue = 0;
magdamcn 0:0ba5f6ec8fa5 370 pc.printf("Error. \r\n");
magdamcn 0:0ba5f6ec8fa5 371 pc.printf("PILOT_NOK - Pilot ERROR. \r\n");
magdamcn 0:0ba5f6ec8fa5 372 TESTCOUNTER = 0;
magdamcn 0:0ba5f6ec8fa5 373 break;
magdamcn 0:0ba5f6ec8fa5 374
magdamcn 0:0ba5f6ec8fa5 375 case PILOT_RESET:
magdamcn 0:0ba5f6ec8fa5 376 contactor = 0;
magdamcn 0:0ba5f6ec8fa5 377 relay = 0;
magdamcn 0:0ba5f6ec8fa5 378 lock = 0;
magdamcn 0:0ba5f6ec8fa5 379 red = 0;
magdamcn 0:0ba5f6ec8fa5 380 green = 0;
magdamcn 0:0ba5f6ec8fa5 381 blue = 1;
magdamcn 0:0ba5f6ec8fa5 382 my_pwm.period_ms(1);
magdamcn 0:0ba5f6ec8fa5 383 my_pwm.pulsewidth_ms(1);
magdamcn 0:0ba5f6ec8fa5 384 my_pwm.write(1);
magdamcn 0:0ba5f6ec8fa5 385 pwm_state = false;
magdamcn 0:0ba5f6ec8fa5 386 pc.printf("RESET IMPLEMENTED. \r\n");
magdamcn 0:0ba5f6ec8fa5 387 pc.printf("PILOT_RESET - Pilot at -12V. \r\n");
magdamcn 0:0ba5f6ec8fa5 388 wait(0.5); // 500 ms
magdamcn 0:0ba5f6ec8fa5 389 red = 0; // LED is OFF
magdamcn 0:0ba5f6ec8fa5 390 wait(0.2); // 200 ms
magdamcn 0:0ba5f6ec8fa5 391 TESTCOUNTER = 0;
magdamcn 0:0ba5f6ec8fa5 392 use_upper_current = false;
magdamcn 0:0ba5f6ec8fa5 393 break;
magdamcn 0:0ba5f6ec8fa5 394
magdamcn 0:0ba5f6ec8fa5 395 case PWM_CHANGE:
magdamcn 0:0ba5f6ec8fa5 396 lock = 1;
magdamcn 0:0ba5f6ec8fa5 397 contactor = 0;
magdamcn 0:0ba5f6ec8fa5 398 red = 1;
magdamcn 0:0ba5f6ec8fa5 399 green = 1;
magdamcn 0:0ba5f6ec8fa5 400 blue = 1;
magdamcn 0:0ba5f6ec8fa5 401 wait(0.1);
magdamcn 0:0ba5f6ec8fa5 402 pc.printf("Charger changing PWM. \r\n");
magdamcn 0:0ba5f6ec8fa5 403 my_pwm.period_ms(1);
magdamcn 0:0ba5f6ec8fa5 404 my_pwm.pulsewidth_ms(1);
magdamcn 0:0ba5f6ec8fa5 405 my_pwm.write(1);
magdamcn 0:0ba5f6ec8fa5 406 wait(1);
magdamcn 0:0ba5f6ec8fa5 407 pc.printf("STOPPED PWM - Switching to -12 V. \r\n");
magdamcn 0:0ba5f6ec8fa5 408 my_pwm = 0;
magdamcn 0:0ba5f6ec8fa5 409 pc.printf("STOPPED PWM - Switching to +12 V. \r\n");
magdamcn 0:0ba5f6ec8fa5 410 wait(1);
magdamcn 0:0ba5f6ec8fa5 411 pwm_state = false;
magdamcn 0:0ba5f6ec8fa5 412 TESTCOUNTER = 0;
magdamcn 0:0ba5f6ec8fa5 413 if(use_upper_current == false)
magdamcn 0:0ba5f6ec8fa5 414 {
magdamcn 0:0ba5f6ec8fa5 415 use_upper_current = true;
magdamcn 0:0ba5f6ec8fa5 416 }
magdamcn 0:0ba5f6ec8fa5 417 else
magdamcn 0:0ba5f6ec8fa5 418 {
magdamcn 0:0ba5f6ec8fa5 419 use_upper_current = false;
magdamcn 0:0ba5f6ec8fa5 420 }
magdamcn 0:0ba5f6ec8fa5 421 break;
magdamcn 0:0ba5f6ec8fa5 422 }
magdamcn 0:0ba5f6ec8fa5 423 pc.printf("#################\r\n");
magdamcn 0:0ba5f6ec8fa5 424 //wait(1); // wait(); added to slow down the feed from nucleo for easier evaluation
magdamcn 0:0ba5f6ec8fa5 425 }
magdamcn 0:0ba5f6ec8fa5 426 }