SmartCharge
/
2017charger_16ampONLY
single current only
main.cpp@0:0ba5f6ec8fa5, 2017-01-24 (annotated)
- Committer:
- magdamcn
- Date:
- Tue Jan 24 13:32:57 2017 +0000
- Revision:
- 0:0ba5f6ec8fa5
- Child:
- 1:31e63b43238f
2017 January charger revision
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
magdamcn | 0:0ba5f6ec8fa5 | 1 | // Copyright (c) 2017 Smartcharge Ltd |
magdamcn | 0:0ba5f6ec8fa5 | 2 | |
magdamcn | 0:0ba5f6ec8fa5 | 3 | |
magdamcn | 0:0ba5f6ec8fa5 | 4 | #include "mbed.h" |
magdamcn | 0:0ba5f6ec8fa5 | 5 | #include "Watchdog.h" |
magdamcn | 0:0ba5f6ec8fa5 | 6 | |
magdamcn | 0:0ba5f6ec8fa5 | 7 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 8 | // * Variables for capturing analog cp and pp values * |
magdamcn | 0:0ba5f6ec8fa5 | 9 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 10 | AnalogIn cp_value(A1); //A1 – cp analog read. |
magdamcn | 0:0ba5f6ec8fa5 | 11 | AnalogIn pp_value(A2); //A2 - pp analog read. |
magdamcn | 0:0ba5f6ec8fa5 | 12 | |
magdamcn | 0:0ba5f6ec8fa5 | 13 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 14 | // * Variables and constants for new cp acquisition routine * |
magdamcn | 0:0ba5f6ec8fa5 | 15 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 16 | #define NUMBER_OF_SAMPLES 5000 // Size of ADC sample series for cp signal (default = 5000). |
magdamcn | 0:0ba5f6ec8fa5 | 17 | #define VOLTAGE_RENORMALISATION 4.5 // Renormalisation constant to correct cp measured voltages (default = 4.5). |
magdamcn | 0:0ba5f6ec8fa5 | 18 | #define VOLTAGE_THRESHOLD 4.0 // Threshold value for pwm edge detection (default = 4.0). |
magdamcn | 0:0ba5f6ec8fa5 | 19 | float cp_voltage; // Global variable to store the measured voltage of the cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 20 | float cp_duty_cycle; // Global variable to store the measured duty cycle of the cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 21 | float cp_frequency; // Global variable to store the the measured frequency of the cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 22 | Timer cp_timer; // Timer used to determine the frequency of the cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 23 | uint16_t cp_array[NUMBER_OF_SAMPLES]; // Array to store ADC sample series for cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 24 | |
magdamcn | 0:0ba5f6ec8fa5 | 25 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 26 | // * Constant for voltage checking routine * |
magdamcn | 0:0ba5f6ec8fa5 | 27 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 28 | #define ACCEPTABLE_VOLTAGE_RANGE 0.5 // Sets the acceptable range of measured cp voltages (default 0.5, i.e. +/-0.5 V around value of 12, 9, 6V) |
magdamcn | 0:0ba5f6ec8fa5 | 29 | |
magdamcn | 0:0ba5f6ec8fa5 | 30 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 31 | // * Timers and variables for reset button * |
magdamcn | 0:0ba5f6ec8fa5 | 32 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 33 | InterruptIn button(D8); // Interupt for button on pin D8. |
magdamcn | 0:0ba5f6ec8fa5 | 34 | Timer button_timer; // Timer used for reset button press. |
magdamcn | 0:0ba5f6ec8fa5 | 35 | Timeout button_timeout; // Timeout case for reset button press. |
magdamcn | 0:0ba5f6ec8fa5 | 36 | bool reset_down = false; // Flag used to determine whether reset button is held down. |
magdamcn | 0:0ba5f6ec8fa5 | 37 | bool reset_charger = false; // Flag used to determine whether charger is to be reset. |
magdamcn | 0:0ba5f6ec8fa5 | 38 | #define RESET_SECONDS 2 // Define length of time in seconds reset button needs to be held down before reset registered (default 3s). |
magdamcn | 0:0ba5f6ec8fa5 | 39 | |
magdamcn | 0:0ba5f6ec8fa5 | 40 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 41 | // * Variables and constants to set the charging current * |
magdamcn | 0:0ba5f6ec8fa5 | 42 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 43 | #define UPPER_CURRENT 32 // Sets the upper current value desired. |
magdamcn | 0:0ba5f6ec8fa5 | 44 | #define LOWER_CURRENT 16 // Sets the lower current value desired. |
magdamcn | 0:0ba5f6ec8fa5 | 45 | float pwm_duty_high = 1.0-((UPPER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired upper current. |
magdamcn | 0:0ba5f6ec8fa5 | 46 | float pwm_duty_low = 1.0-((LOWER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired lower current. |
magdamcn | 0:0ba5f6ec8fa5 | 47 | bool use_upper_current = false; |
magdamcn | 0:0ba5f6ec8fa5 | 48 | |
magdamcn | 0:0ba5f6ec8fa5 | 49 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 50 | // * Variables and constants to allow state changes * |
magdamcn | 0:0ba5f6ec8fa5 | 51 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 52 | unsigned char control_pilot; |
magdamcn | 0:0ba5f6ec8fa5 | 53 | #define PILOT_NOK 0 // Error state. |
magdamcn | 0:0ba5f6ec8fa5 | 54 | #define PILOT_12V 1 // Standby state. |
magdamcn | 0:0ba5f6ec8fa5 | 55 | #define PILOT_9V 2 // Vehicle detection state. |
magdamcn | 0:0ba5f6ec8fa5 | 56 | #define PILOT_6V 3 // Charging state. |
magdamcn | 0:0ba5f6ec8fa5 | 57 | #define PILOT_DIODE 4 // Charging state with ventilation (not currently implemented). |
magdamcn | 0:0ba5f6ec8fa5 | 58 | #define PILOT_RESET 5 // Reset state. |
magdamcn | 0:0ba5f6ec8fa5 | 59 | #define PWM_CHANGE 6 // New state added to allow change in PWM duty cycle and charging current. |
magdamcn | 0:0ba5f6ec8fa5 | 60 | |
magdamcn | 0:0ba5f6ec8fa5 | 61 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 62 | // * Digital out definitions * |
magdamcn | 0:0ba5f6ec8fa5 | 63 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 64 | PwmOut my_pwm(D5); // PWM out on pin D5. |
magdamcn | 0:0ba5f6ec8fa5 | 65 | DigitalOut lock(D7); // Cable lock on pin D7. |
magdamcn | 0:0ba5f6ec8fa5 | 66 | DigitalOut relay(D12); // Relay on pin D12. |
magdamcn | 0:0ba5f6ec8fa5 | 67 | DigitalOut contactor(D13); // Contactor on pin D13. |
magdamcn | 0:0ba5f6ec8fa5 | 68 | DigitalOut green(D9); // Green LED on pin D9. |
magdamcn | 0:0ba5f6ec8fa5 | 69 | DigitalOut red(D10); // Red LED on pin D10. |
magdamcn | 0:0ba5f6ec8fa5 | 70 | DigitalOut blue(D11); // Blue LED on pin D11. |
magdamcn | 0:0ba5f6ec8fa5 | 71 | |
magdamcn | 0:0ba5f6ec8fa5 | 72 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 73 | // * Serial connections * |
magdamcn | 0:0ba5f6ec8fa5 | 74 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 75 | Serial pc(USBTX, USBRX); // Serial output to PC. |
magdamcn | 0:0ba5f6ec8fa5 | 76 | int TESTCOUNTER = 0; // Variable to count number of cycles of main loop. Used to determine when to switch the pwm in this test version. |
magdamcn | 0:0ba5f6ec8fa5 | 77 | |
magdamcn | 0:0ba5f6ec8fa5 | 78 | |
magdamcn | 0:0ba5f6ec8fa5 | 79 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 80 | // * New Acquisition Routine for Capturing CP Signal Data * |
magdamcn | 0:0ba5f6ec8fa5 | 81 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 82 | void cp_acquire() |
magdamcn | 0:0ba5f6ec8fa5 | 83 | { |
magdamcn | 0:0ba5f6ec8fa5 | 84 | int i; // Variable for loop counter. |
magdamcn | 0:0ba5f6ec8fa5 | 85 | float sample_value_current = 0; // Stores the current cp value obtained by ADC (A1). |
magdamcn | 0:0ba5f6ec8fa5 | 86 | float sample_value_previous = 0; // Stores the previous cp value obtained by ADC (A1). |
magdamcn | 0:0ba5f6ec8fa5 | 87 | float peak_counter; // Used to store the number of samples representing a peak of the pwm square wave. |
magdamcn | 0:0ba5f6ec8fa5 | 88 | float trough_counter; // Used to store the number of samples representing a trough of the pwm square wave. |
magdamcn | 0:0ba5f6ec8fa5 | 89 | float voltage_average; // Used to calculate the average peak voltage value. |
magdamcn | 0:0ba5f6ec8fa5 | 90 | float thres_cross_rise; // Used to store the number of times the pwm wave goes from low to high. |
magdamcn | 0:0ba5f6ec8fa5 | 91 | float thres_cross_fall; // Used to store the number of times the pwm wave goes from high to low. |
magdamcn | 0:0ba5f6ec8fa5 | 92 | float t; // Used to determine the time over which samples were acquired. |
magdamcn | 0:0ba5f6ec8fa5 | 93 | |
magdamcn | 0:0ba5f6ec8fa5 | 94 | cp_timer.start(); // Starts a timer before we begin sampling the cp signal. |
magdamcn | 0:0ba5f6ec8fa5 | 95 | for (i = 0; i < NUMBER_OF_SAMPLES; i++) // Starts a loop to take a certain number of samples as defined in NUMBER_OF_SAMPLES. |
magdamcn | 0:0ba5f6ec8fa5 | 96 | { |
magdamcn | 0:0ba5f6ec8fa5 | 97 | wait_us(30); // Waits 30 us. This sets the sample rate at approximately 33 KS/second. |
magdamcn | 0:0ba5f6ec8fa5 | 98 | cp_array[i] = cp_value.read_u16(); // Reads the ADC (A1) and stores the measured cp voltage as a 16 bit integer in cp_array. |
magdamcn | 0:0ba5f6ec8fa5 | 99 | } |
magdamcn | 0:0ba5f6ec8fa5 | 100 | cp_timer.stop(); // Stop the timer once the acqusition has finished. |
magdamcn | 0:0ba5f6ec8fa5 | 101 | t = cp_timer.read_us(); // Read the timer value in microseconds and store the result in t. |
magdamcn | 0:0ba5f6ec8fa5 | 102 | t = t / 1000000.0; // Divide t by 1000000 to convert from microseconds to seconds. |
magdamcn | 0:0ba5f6ec8fa5 | 103 | cp_timer.reset(); // Reset the timer. |
magdamcn | 0:0ba5f6ec8fa5 | 104 | |
magdamcn | 0:0ba5f6ec8fa5 | 105 | peak_counter = 0; // Set peak_counter to zero. |
magdamcn | 0:0ba5f6ec8fa5 | 106 | trough_counter = 0; // Set trough_counter to zero. |
magdamcn | 0:0ba5f6ec8fa5 | 107 | voltage_average = 0; // Set voltage_average to zero. |
magdamcn | 0:0ba5f6ec8fa5 | 108 | thres_cross_rise = 0; // Set thres_cross_rise to zero. |
magdamcn | 0:0ba5f6ec8fa5 | 109 | thres_cross_fall = 0; // Set thres_cross_fall to zero. |
magdamcn | 0:0ba5f6ec8fa5 | 110 | |
magdamcn | 0:0ba5f6ec8fa5 | 111 | // Having captured cp data, we now have to process each sample. This is done in a separate loop to maximize the ADC sampling rate. |
magdamcn | 0:0ba5f6ec8fa5 | 112 | for (i = 0; i < NUMBER_OF_SAMPLES; i++) |
magdamcn | 0:0ba5f6ec8fa5 | 113 | { |
magdamcn | 0:0ba5f6ec8fa5 | 114 | // The cp data was stored in cp_array as a 16 bit integer. To convert this into a voltage we divide by 65535 (16 bits is 0 - 65535) |
magdamcn | 0:0ba5f6ec8fa5 | 115 | // and multiply by 3.3 V. Because of the resistors and diode on the shield, we need to renormalise the values and scale them up |
magdamcn | 0:0ba5f6ec8fa5 | 116 | // by a factor of 4.5 (VOLTAGE_RENORMALISATION). |
magdamcn | 0:0ba5f6ec8fa5 | 117 | sample_value_current = (cp_array[i] * 3.3 * VOLTAGE_RENORMALISATION) / 65535.0; |
magdamcn | 0:0ba5f6ec8fa5 | 118 | |
magdamcn | 0:0ba5f6ec8fa5 | 119 | |
magdamcn | 0:0ba5f6ec8fa5 | 120 | if (sample_value_current > VOLTAGE_THRESHOLD) // We examine the cp voltage. If it is above the threshold then we assume it is at the peak of the pwm square wave. |
magdamcn | 0:0ba5f6ec8fa5 | 121 | { |
magdamcn | 0:0ba5f6ec8fa5 | 122 | peak_counter+=1; // Add one to the peak_counter. |
magdamcn | 0:0ba5f6ec8fa5 | 123 | voltage_average+=sample_value_current; // Add the cp_voltage to a running total (voltage_average) so we can work out the average voltage later. |
magdamcn | 0:0ba5f6ec8fa5 | 124 | } |
magdamcn | 0:0ba5f6ec8fa5 | 125 | else |
magdamcn | 0:0ba5f6ec8fa5 | 126 | { |
magdamcn | 0:0ba5f6ec8fa5 | 127 | trough_counter+=1; // If the cp voltage is less than the threshold then we assume it is at the trough of the pwm square wave and increment trough_counter. |
magdamcn | 0:0ba5f6ec8fa5 | 128 | } |
magdamcn | 0:0ba5f6ec8fa5 | 129 | |
magdamcn | 0:0ba5f6ec8fa5 | 130 | |
magdamcn | 0:0ba5f6ec8fa5 | 131 | if (i > 0) // If we've already processed the first sample then ... |
magdamcn | 0:0ba5f6ec8fa5 | 132 | { |
magdamcn | 0:0ba5f6ec8fa5 | 133 | if (sample_value_current > VOLTAGE_THRESHOLD && sample_value_previous < VOLTAGE_THRESHOLD) // ... we check if the cp voltage we're looking at is above the threshold and if the previous cp voltage |
magdamcn | 0:0ba5f6ec8fa5 | 134 | // is below the threshold. If this is the case then we've detected the rising edge of the pwm square wave. |
magdamcn | 0:0ba5f6ec8fa5 | 135 | { |
magdamcn | 0:0ba5f6ec8fa5 | 136 | thres_cross_rise+=1; // We increment thres_cross_rise if this is the case. |
magdamcn | 0:0ba5f6ec8fa5 | 137 | } |
magdamcn | 0:0ba5f6ec8fa5 | 138 | if (sample_value_current < VOLTAGE_THRESHOLD && sample_value_previous > VOLTAGE_THRESHOLD) // Alternatively, if the cp voltage we're looking at is below the theshold and the previous cp voltage |
magdamcn | 0:0ba5f6ec8fa5 | 139 | // is above the threshold then we've detected the falling edge of the pwm square wave. |
magdamcn | 0:0ba5f6ec8fa5 | 140 | { |
magdamcn | 0:0ba5f6ec8fa5 | 141 | thres_cross_fall+=1; // We increment thres_cross_fall is this is the case. |
magdamcn | 0:0ba5f6ec8fa5 | 142 | } |
magdamcn | 0:0ba5f6ec8fa5 | 143 | } |
magdamcn | 0:0ba5f6ec8fa5 | 144 | |
magdamcn | 0:0ba5f6ec8fa5 | 145 | sample_value_previous = sample_value_current; // Before we proces the next sample, we copy the current value into the previous value. |
magdamcn | 0:0ba5f6ec8fa5 | 146 | } |
magdamcn | 0:0ba5f6ec8fa5 | 147 | |
magdamcn | 0:0ba5f6ec8fa5 | 148 | |
magdamcn | 0:0ba5f6ec8fa5 | 149 | if(peak_counter == 0) // If, having processed each sample, the peak_counter is still zero, then every cp voltage we acquired was less than the threshold ... |
magdamcn | 0:0ba5f6ec8fa5 | 150 | { |
magdamcn | 0:0ba5f6ec8fa5 | 151 | cp_voltage = -12.0; // ... which implies that the cp is not at 6, 9, or 12V. In the current implementation, that means the cp is actually at -12 V. |
magdamcn | 0:0ba5f6ec8fa5 | 152 | } |
magdamcn | 0:0ba5f6ec8fa5 | 153 | else // On the other hand, if the peak_counter is greater than 0, then some (pwm is on) or all (DC, pwm is off) of the values were greater than the threshold ... |
magdamcn | 0:0ba5f6ec8fa5 | 154 | { |
magdamcn | 0:0ba5f6ec8fa5 | 155 | cp_voltage = voltage_average / peak_counter; // ... so determine the cp voltage by taking the running total (voltage_average) and dividing it by peak_counter. |
magdamcn | 0:0ba5f6ec8fa5 | 156 | } |
magdamcn | 0:0ba5f6ec8fa5 | 157 | |
magdamcn | 0:0ba5f6ec8fa5 | 158 | cp_duty_cycle = peak_counter / NUMBER_OF_SAMPLES; // The duty cycle is the number of peak samples of the pwm square waves divided by the total number of samples ... |
magdamcn | 0:0ba5f6ec8fa5 | 159 | cp_duty_cycle = cp_duty_cycle * 100.0; // ... but we need to convert it into a percentage. |
magdamcn | 0:0ba5f6ec8fa5 | 160 | cp_frequency = ((thres_cross_rise + thres_cross_fall) / 2.0) / t; // The frequency of the cp signal is the total number of crossings divided by 2, divided by the time. |
magdamcn | 0:0ba5f6ec8fa5 | 161 | |
magdamcn | 0:0ba5f6ec8fa5 | 162 | pc.printf("CP Measured Peak/DC Voltage (V): %f \r\n", cp_voltage); |
magdamcn | 0:0ba5f6ec8fa5 | 163 | pc.printf("CP Measured Duty Cycle (%%): %f \r\n", cp_duty_cycle); |
magdamcn | 0:0ba5f6ec8fa5 | 164 | pc.printf("CP Measured Frequency (Hz): %f \r\n", cp_frequency); |
magdamcn | 0:0ba5f6ec8fa5 | 165 | } |
magdamcn | 0:0ba5f6ec8fa5 | 166 | |
magdamcn | 0:0ba5f6ec8fa5 | 167 | |
magdamcn | 0:0ba5f6ec8fa5 | 168 | |
magdamcn | 0:0ba5f6ec8fa5 | 169 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 170 | // * Routines for handling reset button press * |
magdamcn | 0:0ba5f6ec8fa5 | 171 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 172 | void button_timed_out() |
magdamcn | 0:0ba5f6ec8fa5 | 173 | { |
magdamcn | 0:0ba5f6ec8fa5 | 174 | reset_charger = true; |
magdamcn | 0:0ba5f6ec8fa5 | 175 | pc.printf("Reset button pressed for more than 3 sec! Charger reset! \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 176 | } |
magdamcn | 0:0ba5f6ec8fa5 | 177 | |
magdamcn | 0:0ba5f6ec8fa5 | 178 | void reset_pressed() |
magdamcn | 0:0ba5f6ec8fa5 | 179 | { |
magdamcn | 0:0ba5f6ec8fa5 | 180 | pc.printf("Reset button pressed ... starting timer. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 181 | button_timer.stop(); |
magdamcn | 0:0ba5f6ec8fa5 | 182 | button_timer.reset(); |
magdamcn | 0:0ba5f6ec8fa5 | 183 | button_timer.start(); |
magdamcn | 0:0ba5f6ec8fa5 | 184 | reset_down = true; |
magdamcn | 0:0ba5f6ec8fa5 | 185 | button_timeout.attach(&button_timed_out, RESET_SECONDS); |
magdamcn | 0:0ba5f6ec8fa5 | 186 | } |
magdamcn | 0:0ba5f6ec8fa5 | 187 | |
magdamcn | 0:0ba5f6ec8fa5 | 188 | void reset_released() |
magdamcn | 0:0ba5f6ec8fa5 | 189 | { |
magdamcn | 0:0ba5f6ec8fa5 | 190 | int elapsed_seconds; |
magdamcn | 0:0ba5f6ec8fa5 | 191 | pc.printf("Reset button released. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 192 | elapsed_seconds = button_timer.read(); |
magdamcn | 0:0ba5f6ec8fa5 | 193 | button_timer.stop(); |
magdamcn | 0:0ba5f6ec8fa5 | 194 | button_timer.reset(); |
magdamcn | 0:0ba5f6ec8fa5 | 195 | if (elapsed_seconds > RESET_SECONDS) |
magdamcn | 0:0ba5f6ec8fa5 | 196 | { |
magdamcn | 0:0ba5f6ec8fa5 | 197 | reset_charger = true; |
magdamcn | 0:0ba5f6ec8fa5 | 198 | pc.printf("Reset button was pressed for more than 3 sec! \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 199 | } |
magdamcn | 0:0ba5f6ec8fa5 | 200 | else |
magdamcn | 0:0ba5f6ec8fa5 | 201 | { |
magdamcn | 0:0ba5f6ec8fa5 | 202 | pc.printf("Reset button released before 3 seconds were up. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 203 | } |
magdamcn | 0:0ba5f6ec8fa5 | 204 | pc.printf("Detach the timeout and setup for the next time.\r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 205 | pc.printf("%u \r\n", elapsed_seconds); |
magdamcn | 0:0ba5f6ec8fa5 | 206 | button_timeout.detach(); |
magdamcn | 0:0ba5f6ec8fa5 | 207 | } |
magdamcn | 0:0ba5f6ec8fa5 | 208 | |
magdamcn | 0:0ba5f6ec8fa5 | 209 | |
magdamcn | 0:0ba5f6ec8fa5 | 210 | |
magdamcn | 0:0ba5f6ec8fa5 | 211 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 212 | // * Routine for Checking CP Voltages * |
magdamcn | 0:0ba5f6ec8fa5 | 213 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 214 | bool cp_check_voltage (float v) // Function accepts a voltage value (eg. 12V, 9V, 6V) ... |
magdamcn | 0:0ba5f6ec8fa5 | 215 | { |
magdamcn | 0:0ba5f6ec8fa5 | 216 | bool voltage_in_range = false; // ... and initially sets a flag to false. |
magdamcn | 0:0ba5f6ec8fa5 | 217 | |
magdamcn | 0:0ba5f6ec8fa5 | 218 | // If the measured cp voltage is within a range of +/- ACCEPTABLE_VOLTAGE_RANGE around the |
magdamcn | 0:0ba5f6ec8fa5 | 219 | // value (12V, 9V, 6V) then we change the flag state to true. |
magdamcn | 0:0ba5f6ec8fa5 | 220 | if (cp_voltage < (v + ACCEPTABLE_VOLTAGE_RANGE) && cp_voltage > (v - ACCEPTABLE_VOLTAGE_RANGE)) voltage_in_range = true; |
magdamcn | 0:0ba5f6ec8fa5 | 221 | |
magdamcn | 0:0ba5f6ec8fa5 | 222 | return voltage_in_range; // The function then returns the value of the flag state. |
magdamcn | 0:0ba5f6ec8fa5 | 223 | } |
magdamcn | 0:0ba5f6ec8fa5 | 224 | |
magdamcn | 0:0ba5f6ec8fa5 | 225 | |
magdamcn | 0:0ba5f6ec8fa5 | 226 | |
magdamcn | 0:0ba5f6ec8fa5 | 227 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 228 | // * Main * |
magdamcn | 0:0ba5f6ec8fa5 | 229 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 230 | int main() |
magdamcn | 0:0ba5f6ec8fa5 | 231 | { |
magdamcn | 0:0ba5f6ec8fa5 | 232 | button.fall(&reset_pressed); // Attach interupt to button when pressed. |
magdamcn | 0:0ba5f6ec8fa5 | 233 | button.rise(&reset_released); // Attach interupt to button when released. |
magdamcn | 0:0ba5f6ec8fa5 | 234 | |
magdamcn | 0:0ba5f6ec8fa5 | 235 | float reading_pp; // Create variable to store pp reading. |
magdamcn | 0:0ba5f6ec8fa5 | 236 | bool cable_32A = false; // Create boolean to flag whether a 32 or 16A cable is being used. Default is 16A cable (cable_32A = false). |
magdamcn | 0:0ba5f6ec8fa5 | 237 | bool cable_connected = false; // Create boolean to flag whether a cable is attached. |
magdamcn | 0:0ba5f6ec8fa5 | 238 | bool pwm_state = false; // Create boolean to flag current state of pwm (whether it is on or off). |
magdamcn | 0:0ba5f6ec8fa5 | 239 | float pwm_duty_cycle; // Create float to store the current pwm duty cycle. |
magdamcn | 0:0ba5f6ec8fa5 | 240 | |
magdamcn | 0:0ba5f6ec8fa5 | 241 | while(true) // Start of process loop. |
magdamcn | 0:0ba5f6ec8fa5 | 242 | { |
magdamcn | 0:0ba5f6ec8fa5 | 243 | // check the cable using pp value |
magdamcn | 0:0ba5f6ec8fa5 | 244 | reading_pp = pp_value.read(); // Read pp value and ... |
magdamcn | 0:0ba5f6ec8fa5 | 245 | reading_pp = reading_pp * 3300; // ... multiply it by 3300 to convert to mV. |
magdamcn | 0:0ba5f6ec8fa5 | 246 | |
magdamcn | 0:0ba5f6ec8fa5 | 247 | if(reading_pp > 3200) // If the pp value is 3.3 V (greater than 3200 mV) then ... |
magdamcn | 0:0ba5f6ec8fa5 | 248 | { |
magdamcn | 0:0ba5f6ec8fa5 | 249 | cable_connected = false; // ... the cable *isn't* connected to charger ... |
magdamcn | 0:0ba5f6ec8fa5 | 250 | pc.printf("Cable not connected. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 251 | } |
magdamcn | 0:0ba5f6ec8fa5 | 252 | else |
magdamcn | 0:0ba5f6ec8fa5 | 253 | { |
magdamcn | 0:0ba5f6ec8fa5 | 254 | cable_connected = true; // ... otherwise the cable *is* connected to charger. |
magdamcn | 0:0ba5f6ec8fa5 | 255 | pc.printf("Cable connected. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 256 | } |
magdamcn | 0:0ba5f6ec8fa5 | 257 | |
magdamcn | 0:0ba5f6ec8fa5 | 258 | if(reading_pp > 200 && reading_pp < 300) // If the pp reading is between 200 and 300 mV then ... |
magdamcn | 0:0ba5f6ec8fa5 | 259 | { |
magdamcn | 0:0ba5f6ec8fa5 | 260 | cable_32A = false; // ... a 16A cable is being used. |
magdamcn | 0:0ba5f6ec8fa5 | 261 | pc.printf("16A cable detected. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 262 | } |
magdamcn | 0:0ba5f6ec8fa5 | 263 | |
magdamcn | 0:0ba5f6ec8fa5 | 264 | if(reading_pp > 0 && reading_pp <100) // If the pp reading if between 0 and 100 mV then ... |
magdamcn | 0:0ba5f6ec8fa5 | 265 | { |
magdamcn | 0:0ba5f6ec8fa5 | 266 | cable_32A = true; // ... a 32A cable is being used. |
magdamcn | 0:0ba5f6ec8fa5 | 267 | pc.printf("32A cable detected. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 268 | } |
magdamcn | 0:0ba5f6ec8fa5 | 269 | |
magdamcn | 0:0ba5f6ec8fa5 | 270 | cp_acquire(); // Call the new acquisition routine (replaces the moving average in previous versions). |
magdamcn | 0:0ba5f6ec8fa5 | 271 | |
magdamcn | 0:0ba5f6ec8fa5 | 272 | if (cable_connected == false) |
magdamcn | 0:0ba5f6ec8fa5 | 273 | { |
magdamcn | 0:0ba5f6ec8fa5 | 274 | if (cp_check_voltage(12) == true) control_pilot = PILOT_12V; |
magdamcn | 0:0ba5f6ec8fa5 | 275 | |
magdamcn | 0:0ba5f6ec8fa5 | 276 | if (cp_check_voltage(-12) == true) |
magdamcn | 0:0ba5f6ec8fa5 | 277 | { |
magdamcn | 0:0ba5f6ec8fa5 | 278 | control_pilot = PILOT_12V; |
magdamcn | 0:0ba5f6ec8fa5 | 279 | reset_charger = false; |
magdamcn | 0:0ba5f6ec8fa5 | 280 | } |
magdamcn | 0:0ba5f6ec8fa5 | 281 | } |
magdamcn | 0:0ba5f6ec8fa5 | 282 | |
magdamcn | 0:0ba5f6ec8fa5 | 283 | if (cable_connected == true) |
magdamcn | 0:0ba5f6ec8fa5 | 284 | { |
magdamcn | 0:0ba5f6ec8fa5 | 285 | if (cp_check_voltage(9) == true) control_pilot = PILOT_9V; |
magdamcn | 0:0ba5f6ec8fa5 | 286 | if (cp_check_voltage(6) == true) control_pilot = PILOT_6V; |
magdamcn | 0:0ba5f6ec8fa5 | 287 | if (reset_charger == true) control_pilot = PILOT_RESET; |
magdamcn | 0:0ba5f6ec8fa5 | 288 | } |
magdamcn | 0:0ba5f6ec8fa5 | 289 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 290 | // * Switching PWM Cycle & TEST Counter Timer * |
magdamcn | 0:0ba5f6ec8fa5 | 291 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 292 | // if (use_upper_current == false) pwm_duty_cycle = pwm_duty_low; |
magdamcn | 0:0ba5f6ec8fa5 | 293 | // if (use_upper_current == true) pwm_duty_cycle = pwm_duty_high; |
magdamcn | 0:0ba5f6ec8fa5 | 294 | // |
magdamcn | 0:0ba5f6ec8fa5 | 295 | // if (TESTCOUNTER > 1800) control_pilot = PWM_CHANGE; // Each cycle takes approximately 1 second, so 1800 seconds is a change of pwm every 30 mins or so. |
magdamcn | 0:0ba5f6ec8fa5 | 296 | // * TESTERCOUNTER monitoring is switched of for the Smartcharge Home+ charger, PWN cycle based on a cable inserted |
magdamcn | 0:0ba5f6ec8fa5 | 297 | // |
magdamcn | 0:0ba5f6ec8fa5 | 298 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 299 | |
magdamcn | 0:0ba5f6ec8fa5 | 300 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 301 | // * PWM cycle basen on cable instered * |
magdamcn | 0:0ba5f6ec8fa5 | 302 | // ************************************************************ |
magdamcn | 0:0ba5f6ec8fa5 | 303 | if (cable_32A == false) pwm_duty_cycle = pwm_duty_low; |
magdamcn | 0:0ba5f6ec8fa5 | 304 | if (cable_32A == true) pwm_duty_cycle = pwm_duty_high; |
magdamcn | 0:0ba5f6ec8fa5 | 305 | |
magdamcn | 0:0ba5f6ec8fa5 | 306 | |
magdamcn | 0:0ba5f6ec8fa5 | 307 | |
magdamcn | 0:0ba5f6ec8fa5 | 308 | switch(control_pilot) |
magdamcn | 0:0ba5f6ec8fa5 | 309 | { |
magdamcn | 0:0ba5f6ec8fa5 | 310 | case PILOT_12V: |
magdamcn | 0:0ba5f6ec8fa5 | 311 | contactor = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 312 | lock = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 313 | red = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 314 | green = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 315 | blue = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 316 | my_pwm = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 317 | pwm_state = false; |
magdamcn | 0:0ba5f6ec8fa5 | 318 | pc.printf("Charger in STATE A. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 319 | pc.printf("PILOT_12V - Pilot at 12 V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 320 | TESTCOUNTER = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 321 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 322 | |
magdamcn | 0:0ba5f6ec8fa5 | 323 | case PILOT_9V: |
magdamcn | 0:0ba5f6ec8fa5 | 324 | contactor = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 325 | //relay=0; |
magdamcn | 0:0ba5f6ec8fa5 | 326 | lock = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 327 | red = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 328 | green = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 329 | blue = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 330 | if (pwm_state == false) |
magdamcn | 0:0ba5f6ec8fa5 | 331 | { |
magdamcn | 0:0ba5f6ec8fa5 | 332 | my_pwm.period_us(1000); |
magdamcn | 0:0ba5f6ec8fa5 | 333 | my_pwm.pulsewidth_us(1000); |
magdamcn | 0:0ba5f6ec8fa5 | 334 | my_pwm.write(pwm_duty_cycle); |
magdamcn | 0:0ba5f6ec8fa5 | 335 | pwm_state = true; |
magdamcn | 0:0ba5f6ec8fa5 | 336 | } |
magdamcn | 0:0ba5f6ec8fa5 | 337 | pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100); |
magdamcn | 0:0ba5f6ec8fa5 | 338 | pc.printf("Charger in STATE B. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 339 | pc.printf("PILOT_9V - Pilot at 9 V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 340 | TESTCOUNTER = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 341 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 342 | |
magdamcn | 0:0ba5f6ec8fa5 | 343 | case PILOT_6V: |
magdamcn | 0:0ba5f6ec8fa5 | 344 | contactor = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 345 | relay = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 346 | lock = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 347 | red = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 348 | green = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 349 | blue = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 350 | if (pwm_state == false) |
magdamcn | 0:0ba5f6ec8fa5 | 351 | { |
magdamcn | 0:0ba5f6ec8fa5 | 352 | my_pwm.period_us(1000); |
magdamcn | 0:0ba5f6ec8fa5 | 353 | my_pwm.pulsewidth_us(1000); |
magdamcn | 0:0ba5f6ec8fa5 | 354 | my_pwm.write(pwm_duty_cycle); |
magdamcn | 0:0ba5f6ec8fa5 | 355 | pwm_state = true; |
magdamcn | 0:0ba5f6ec8fa5 | 356 | } |
magdamcn | 0:0ba5f6ec8fa5 | 357 | pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100); |
magdamcn | 0:0ba5f6ec8fa5 | 358 | pc.printf("Charger in STATE C. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 359 | pc.printf("PILOT_6V - Pilot at 6 V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 360 | // TESTCOUNTER+=1; |
magdamcn | 0:0ba5f6ec8fa5 | 361 | // * TESTCOUNTER switched of |
magdamcn | 0:0ba5f6ec8fa5 | 362 | pc.printf("TESTCOUNTER timer: %u seconds \r\n", TESTCOUNTER); |
magdamcn | 0:0ba5f6ec8fa5 | 363 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 364 | |
magdamcn | 0:0ba5f6ec8fa5 | 365 | case PILOT_NOK: |
magdamcn | 0:0ba5f6ec8fa5 | 366 | lock = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 367 | red = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 368 | green = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 369 | blue = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 370 | pc.printf("Error. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 371 | pc.printf("PILOT_NOK - Pilot ERROR. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 372 | TESTCOUNTER = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 373 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 374 | |
magdamcn | 0:0ba5f6ec8fa5 | 375 | case PILOT_RESET: |
magdamcn | 0:0ba5f6ec8fa5 | 376 | contactor = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 377 | relay = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 378 | lock = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 379 | red = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 380 | green = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 381 | blue = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 382 | my_pwm.period_ms(1); |
magdamcn | 0:0ba5f6ec8fa5 | 383 | my_pwm.pulsewidth_ms(1); |
magdamcn | 0:0ba5f6ec8fa5 | 384 | my_pwm.write(1); |
magdamcn | 0:0ba5f6ec8fa5 | 385 | pwm_state = false; |
magdamcn | 0:0ba5f6ec8fa5 | 386 | pc.printf("RESET IMPLEMENTED. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 387 | pc.printf("PILOT_RESET - Pilot at -12V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 388 | wait(0.5); // 500 ms |
magdamcn | 0:0ba5f6ec8fa5 | 389 | red = 0; // LED is OFF |
magdamcn | 0:0ba5f6ec8fa5 | 390 | wait(0.2); // 200 ms |
magdamcn | 0:0ba5f6ec8fa5 | 391 | TESTCOUNTER = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 392 | use_upper_current = false; |
magdamcn | 0:0ba5f6ec8fa5 | 393 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 394 | |
magdamcn | 0:0ba5f6ec8fa5 | 395 | case PWM_CHANGE: |
magdamcn | 0:0ba5f6ec8fa5 | 396 | lock = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 397 | contactor = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 398 | red = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 399 | green = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 400 | blue = 1; |
magdamcn | 0:0ba5f6ec8fa5 | 401 | wait(0.1); |
magdamcn | 0:0ba5f6ec8fa5 | 402 | pc.printf("Charger changing PWM. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 403 | my_pwm.period_ms(1); |
magdamcn | 0:0ba5f6ec8fa5 | 404 | my_pwm.pulsewidth_ms(1); |
magdamcn | 0:0ba5f6ec8fa5 | 405 | my_pwm.write(1); |
magdamcn | 0:0ba5f6ec8fa5 | 406 | wait(1); |
magdamcn | 0:0ba5f6ec8fa5 | 407 | pc.printf("STOPPED PWM - Switching to -12 V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 408 | my_pwm = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 409 | pc.printf("STOPPED PWM - Switching to +12 V. \r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 410 | wait(1); |
magdamcn | 0:0ba5f6ec8fa5 | 411 | pwm_state = false; |
magdamcn | 0:0ba5f6ec8fa5 | 412 | TESTCOUNTER = 0; |
magdamcn | 0:0ba5f6ec8fa5 | 413 | if(use_upper_current == false) |
magdamcn | 0:0ba5f6ec8fa5 | 414 | { |
magdamcn | 0:0ba5f6ec8fa5 | 415 | use_upper_current = true; |
magdamcn | 0:0ba5f6ec8fa5 | 416 | } |
magdamcn | 0:0ba5f6ec8fa5 | 417 | else |
magdamcn | 0:0ba5f6ec8fa5 | 418 | { |
magdamcn | 0:0ba5f6ec8fa5 | 419 | use_upper_current = false; |
magdamcn | 0:0ba5f6ec8fa5 | 420 | } |
magdamcn | 0:0ba5f6ec8fa5 | 421 | break; |
magdamcn | 0:0ba5f6ec8fa5 | 422 | } |
magdamcn | 0:0ba5f6ec8fa5 | 423 | pc.printf("#################\r\n"); |
magdamcn | 0:0ba5f6ec8fa5 | 424 | //wait(1); // wait(); added to slow down the feed from nucleo for easier evaluation |
magdamcn | 0:0ba5f6ec8fa5 | 425 | } |
magdamcn | 0:0ba5f6ec8fa5 | 426 | } |