Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- magdamcn
- Date:
- 2017-01-24
- Revision:
- 0:0ba5f6ec8fa5
- Child:
- 1:31e63b43238f
File content as of revision 0:0ba5f6ec8fa5:
// Copyright (c) 2017 Smartcharge Ltd
#include "mbed.h"
#include "Watchdog.h"
// ************************************************************
// * Variables for capturing analog cp and pp values *
// ************************************************************
AnalogIn cp_value(A1); //A1 – cp analog read.
AnalogIn pp_value(A2); //A2 - pp analog read.
// ************************************************************
// * Variables and constants for new cp acquisition routine *
// ************************************************************
#define NUMBER_OF_SAMPLES 5000 // Size of ADC sample series for cp signal (default = 5000).
#define VOLTAGE_RENORMALISATION 4.5 // Renormalisation constant to correct cp measured voltages (default = 4.5).
#define VOLTAGE_THRESHOLD 4.0 // Threshold value for pwm edge detection (default = 4.0).
float cp_voltage; // Global variable to store the measured voltage of the cp signal.
float cp_duty_cycle; // Global variable to store the measured duty cycle of the cp signal.
float cp_frequency; // Global variable to store the the measured frequency of the cp signal.
Timer cp_timer; // Timer used to determine the frequency of the cp signal.
uint16_t cp_array[NUMBER_OF_SAMPLES]; // Array to store ADC sample series for cp signal.
// ************************************************************
// * Constant for voltage checking routine *
// ************************************************************
#define ACCEPTABLE_VOLTAGE_RANGE 0.5 // Sets the acceptable range of measured cp voltages (default 0.5, i.e. +/-0.5 V around value of 12, 9, 6V)
// ************************************************************
// * Timers and variables for reset button *
// ************************************************************
InterruptIn button(D8); // Interupt for button on pin D8.
Timer button_timer; // Timer used for reset button press.
Timeout button_timeout; // Timeout case for reset button press.
bool reset_down = false; // Flag used to determine whether reset button is held down.
bool reset_charger = false; // Flag used to determine whether charger is to be reset.
#define RESET_SECONDS 2 // Define length of time in seconds reset button needs to be held down before reset registered (default 3s).
// ************************************************************
// * Variables and constants to set the charging current *
// ************************************************************
#define UPPER_CURRENT 32 // Sets the upper current value desired.
#define LOWER_CURRENT 16 // Sets the lower current value desired.
float pwm_duty_high = 1.0-((UPPER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired upper current.
float pwm_duty_low = 1.0-((LOWER_CURRENT / 30.0) * 0.5); // Calculates the pwm duty cycle for the desired lower current.
bool use_upper_current = false;
// ************************************************************
// * Variables and constants to allow state changes *
// ************************************************************
unsigned char control_pilot;
#define PILOT_NOK 0 // Error state.
#define PILOT_12V 1 // Standby state.
#define PILOT_9V 2 // Vehicle detection state.
#define PILOT_6V 3 // Charging state.
#define PILOT_DIODE 4 // Charging state with ventilation (not currently implemented).
#define PILOT_RESET 5 // Reset state.
#define PWM_CHANGE 6 // New state added to allow change in PWM duty cycle and charging current.
// ************************************************************
// * Digital out definitions *
// ************************************************************
PwmOut my_pwm(D5); // PWM out on pin D5.
DigitalOut lock(D7); // Cable lock on pin D7.
DigitalOut relay(D12); // Relay on pin D12.
DigitalOut contactor(D13); // Contactor on pin D13.
DigitalOut green(D9); // Green LED on pin D9.
DigitalOut red(D10); // Red LED on pin D10.
DigitalOut blue(D11); // Blue LED on pin D11.
// ************************************************************
// * Serial connections *
// ************************************************************
Serial pc(USBTX, USBRX); // Serial output to PC.
int TESTCOUNTER = 0; // Variable to count number of cycles of main loop. Used to determine when to switch the pwm in this test version.
// ************************************************************
// * New Acquisition Routine for Capturing CP Signal Data *
// ************************************************************
void cp_acquire()
{
int i; // Variable for loop counter.
float sample_value_current = 0; // Stores the current cp value obtained by ADC (A1).
float sample_value_previous = 0; // Stores the previous cp value obtained by ADC (A1).
float peak_counter; // Used to store the number of samples representing a peak of the pwm square wave.
float trough_counter; // Used to store the number of samples representing a trough of the pwm square wave.
float voltage_average; // Used to calculate the average peak voltage value.
float thres_cross_rise; // Used to store the number of times the pwm wave goes from low to high.
float thres_cross_fall; // Used to store the number of times the pwm wave goes from high to low.
float t; // Used to determine the time over which samples were acquired.
cp_timer.start(); // Starts a timer before we begin sampling the cp signal.
for (i = 0; i < NUMBER_OF_SAMPLES; i++) // Starts a loop to take a certain number of samples as defined in NUMBER_OF_SAMPLES.
{
wait_us(30); // Waits 30 us. This sets the sample rate at approximately 33 KS/second.
cp_array[i] = cp_value.read_u16(); // Reads the ADC (A1) and stores the measured cp voltage as a 16 bit integer in cp_array.
}
cp_timer.stop(); // Stop the timer once the acqusition has finished.
t = cp_timer.read_us(); // Read the timer value in microseconds and store the result in t.
t = t / 1000000.0; // Divide t by 1000000 to convert from microseconds to seconds.
cp_timer.reset(); // Reset the timer.
peak_counter = 0; // Set peak_counter to zero.
trough_counter = 0; // Set trough_counter to zero.
voltage_average = 0; // Set voltage_average to zero.
thres_cross_rise = 0; // Set thres_cross_rise to zero.
thres_cross_fall = 0; // Set thres_cross_fall to zero.
// Having captured cp data, we now have to process each sample. This is done in a separate loop to maximize the ADC sampling rate.
for (i = 0; i < NUMBER_OF_SAMPLES; i++)
{
// The cp data was stored in cp_array as a 16 bit integer. To convert this into a voltage we divide by 65535 (16 bits is 0 - 65535)
// and multiply by 3.3 V. Because of the resistors and diode on the shield, we need to renormalise the values and scale them up
// by a factor of 4.5 (VOLTAGE_RENORMALISATION).
sample_value_current = (cp_array[i] * 3.3 * VOLTAGE_RENORMALISATION) / 65535.0;
if (sample_value_current > VOLTAGE_THRESHOLD) // We examine the cp voltage. If it is above the threshold then we assume it is at the peak of the pwm square wave.
{
peak_counter+=1; // Add one to the peak_counter.
voltage_average+=sample_value_current; // Add the cp_voltage to a running total (voltage_average) so we can work out the average voltage later.
}
else
{
trough_counter+=1; // If the cp voltage is less than the threshold then we assume it is at the trough of the pwm square wave and increment trough_counter.
}
if (i > 0) // If we've already processed the first sample then ...
{
if (sample_value_current > VOLTAGE_THRESHOLD && sample_value_previous < VOLTAGE_THRESHOLD) // ... we check if the cp voltage we're looking at is above the threshold and if the previous cp voltage
// is below the threshold. If this is the case then we've detected the rising edge of the pwm square wave.
{
thres_cross_rise+=1; // We increment thres_cross_rise if this is the case.
}
if (sample_value_current < VOLTAGE_THRESHOLD && sample_value_previous > VOLTAGE_THRESHOLD) // Alternatively, if the cp voltage we're looking at is below the theshold and the previous cp voltage
// is above the threshold then we've detected the falling edge of the pwm square wave.
{
thres_cross_fall+=1; // We increment thres_cross_fall is this is the case.
}
}
sample_value_previous = sample_value_current; // Before we proces the next sample, we copy the current value into the previous value.
}
if(peak_counter == 0) // If, having processed each sample, the peak_counter is still zero, then every cp voltage we acquired was less than the threshold ...
{
cp_voltage = -12.0; // ... which implies that the cp is not at 6, 9, or 12V. In the current implementation, that means the cp is actually at -12 V.
}
else // On the other hand, if the peak_counter is greater than 0, then some (pwm is on) or all (DC, pwm is off) of the values were greater than the threshold ...
{
cp_voltage = voltage_average / peak_counter; // ... so determine the cp voltage by taking the running total (voltage_average) and dividing it by peak_counter.
}
cp_duty_cycle = peak_counter / NUMBER_OF_SAMPLES; // The duty cycle is the number of peak samples of the pwm square waves divided by the total number of samples ...
cp_duty_cycle = cp_duty_cycle * 100.0; // ... but we need to convert it into a percentage.
cp_frequency = ((thres_cross_rise + thres_cross_fall) / 2.0) / t; // The frequency of the cp signal is the total number of crossings divided by 2, divided by the time.
pc.printf("CP Measured Peak/DC Voltage (V): %f \r\n", cp_voltage);
pc.printf("CP Measured Duty Cycle (%%): %f \r\n", cp_duty_cycle);
pc.printf("CP Measured Frequency (Hz): %f \r\n", cp_frequency);
}
// ************************************************************
// * Routines for handling reset button press *
// ************************************************************
void button_timed_out()
{
reset_charger = true;
pc.printf("Reset button pressed for more than 3 sec! Charger reset! \r\n");
}
void reset_pressed()
{
pc.printf("Reset button pressed ... starting timer. \r\n");
button_timer.stop();
button_timer.reset();
button_timer.start();
reset_down = true;
button_timeout.attach(&button_timed_out, RESET_SECONDS);
}
void reset_released()
{
int elapsed_seconds;
pc.printf("Reset button released. \r\n");
elapsed_seconds = button_timer.read();
button_timer.stop();
button_timer.reset();
if (elapsed_seconds > RESET_SECONDS)
{
reset_charger = true;
pc.printf("Reset button was pressed for more than 3 sec! \r\n");
}
else
{
pc.printf("Reset button released before 3 seconds were up. \r\n");
}
pc.printf("Detach the timeout and setup for the next time.\r\n");
pc.printf("%u \r\n", elapsed_seconds);
button_timeout.detach();
}
// ************************************************************
// * Routine for Checking CP Voltages *
// ************************************************************
bool cp_check_voltage (float v) // Function accepts a voltage value (eg. 12V, 9V, 6V) ...
{
bool voltage_in_range = false; // ... and initially sets a flag to false.
// If the measured cp voltage is within a range of +/- ACCEPTABLE_VOLTAGE_RANGE around the
// value (12V, 9V, 6V) then we change the flag state to true.
if (cp_voltage < (v + ACCEPTABLE_VOLTAGE_RANGE) && cp_voltage > (v - ACCEPTABLE_VOLTAGE_RANGE)) voltage_in_range = true;
return voltage_in_range; // The function then returns the value of the flag state.
}
// ************************************************************
// * Main *
// ************************************************************
int main()
{
button.fall(&reset_pressed); // Attach interupt to button when pressed.
button.rise(&reset_released); // Attach interupt to button when released.
float reading_pp; // Create variable to store pp reading.
bool cable_32A = false; // Create boolean to flag whether a 32 or 16A cable is being used. Default is 16A cable (cable_32A = false).
bool cable_connected = false; // Create boolean to flag whether a cable is attached.
bool pwm_state = false; // Create boolean to flag current state of pwm (whether it is on or off).
float pwm_duty_cycle; // Create float to store the current pwm duty cycle.
while(true) // Start of process loop.
{
// check the cable using pp value
reading_pp = pp_value.read(); // Read pp value and ...
reading_pp = reading_pp * 3300; // ... multiply it by 3300 to convert to mV.
if(reading_pp > 3200) // If the pp value is 3.3 V (greater than 3200 mV) then ...
{
cable_connected = false; // ... the cable *isn't* connected to charger ...
pc.printf("Cable not connected. \r\n");
}
else
{
cable_connected = true; // ... otherwise the cable *is* connected to charger.
pc.printf("Cable connected. \r\n");
}
if(reading_pp > 200 && reading_pp < 300) // If the pp reading is between 200 and 300 mV then ...
{
cable_32A = false; // ... a 16A cable is being used.
pc.printf("16A cable detected. \r\n");
}
if(reading_pp > 0 && reading_pp <100) // If the pp reading if between 0 and 100 mV then ...
{
cable_32A = true; // ... a 32A cable is being used.
pc.printf("32A cable detected. \r\n");
}
cp_acquire(); // Call the new acquisition routine (replaces the moving average in previous versions).
if (cable_connected == false)
{
if (cp_check_voltage(12) == true) control_pilot = PILOT_12V;
if (cp_check_voltage(-12) == true)
{
control_pilot = PILOT_12V;
reset_charger = false;
}
}
if (cable_connected == true)
{
if (cp_check_voltage(9) == true) control_pilot = PILOT_9V;
if (cp_check_voltage(6) == true) control_pilot = PILOT_6V;
if (reset_charger == true) control_pilot = PILOT_RESET;
}
// ************************************************************
// * Switching PWM Cycle & TEST Counter Timer *
// ************************************************************
// if (use_upper_current == false) pwm_duty_cycle = pwm_duty_low;
// if (use_upper_current == true) pwm_duty_cycle = pwm_duty_high;
//
// if (TESTCOUNTER > 1800) control_pilot = PWM_CHANGE; // Each cycle takes approximately 1 second, so 1800 seconds is a change of pwm every 30 mins or so.
// * TESTERCOUNTER monitoring is switched of for the Smartcharge Home+ charger, PWN cycle based on a cable inserted
//
// ************************************************************
// ************************************************************
// * PWM cycle basen on cable instered *
// ************************************************************
if (cable_32A == false) pwm_duty_cycle = pwm_duty_low;
if (cable_32A == true) pwm_duty_cycle = pwm_duty_high;
switch(control_pilot)
{
case PILOT_12V:
contactor = 0;
lock = 0;
red = 0;
green = 0;
blue = 1;
my_pwm = 0;
pwm_state = false;
pc.printf("Charger in STATE A. \r\n");
pc.printf("PILOT_12V - Pilot at 12 V. \r\n");
TESTCOUNTER = 0;
break;
case PILOT_9V:
contactor = 0;
//relay=0;
lock = 1;
red = 1;
green = 1;
blue = 0;
if (pwm_state == false)
{
my_pwm.period_us(1000);
my_pwm.pulsewidth_us(1000);
my_pwm.write(pwm_duty_cycle);
pwm_state = true;
}
pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100);
pc.printf("Charger in STATE B. \r\n");
pc.printf("PILOT_9V - Pilot at 9 V. \r\n");
TESTCOUNTER = 0;
break;
case PILOT_6V:
contactor = 1;
relay = 1;
lock = 1;
red = 0;
green = 1;
blue = 0;
if (pwm_state == false)
{
my_pwm.period_us(1000);
my_pwm.pulsewidth_us(1000);
my_pwm.write(pwm_duty_cycle);
pwm_state = true;
}
pc.printf("PWM duty cycle is at: %.1f %% \r\n", 100-pwm_duty_cycle*100);
pc.printf("Charger in STATE C. \r\n");
pc.printf("PILOT_6V - Pilot at 6 V. \r\n");
// TESTCOUNTER+=1;
// * TESTCOUNTER switched of
pc.printf("TESTCOUNTER timer: %u seconds \r\n", TESTCOUNTER);
break;
case PILOT_NOK:
lock = 0;
red = 1;
green = 0;
blue = 0;
pc.printf("Error. \r\n");
pc.printf("PILOT_NOK - Pilot ERROR. \r\n");
TESTCOUNTER = 0;
break;
case PILOT_RESET:
contactor = 0;
relay = 0;
lock = 0;
red = 0;
green = 0;
blue = 1;
my_pwm.period_ms(1);
my_pwm.pulsewidth_ms(1);
my_pwm.write(1);
pwm_state = false;
pc.printf("RESET IMPLEMENTED. \r\n");
pc.printf("PILOT_RESET - Pilot at -12V. \r\n");
wait(0.5); // 500 ms
red = 0; // LED is OFF
wait(0.2); // 200 ms
TESTCOUNTER = 0;
use_upper_current = false;
break;
case PWM_CHANGE:
lock = 1;
contactor = 0;
red = 1;
green = 1;
blue = 1;
wait(0.1);
pc.printf("Charger changing PWM. \r\n");
my_pwm.period_ms(1);
my_pwm.pulsewidth_ms(1);
my_pwm.write(1);
wait(1);
pc.printf("STOPPED PWM - Switching to -12 V. \r\n");
my_pwm = 0;
pc.printf("STOPPED PWM - Switching to +12 V. \r\n");
wait(1);
pwm_state = false;
TESTCOUNTER = 0;
if(use_upper_current == false)
{
use_upper_current = true;
}
else
{
use_upper_current = false;
}
break;
}
pc.printf("#################\r\n");
//wait(1); // wait(); added to slow down the feed from nucleo for easier evaluation
}
}