Modified for BG96
Fork of mbed-dev by
targets/TARGET_STM/rtc_api.c
- Committer:
- Anna Bridge
- Date:
- 2018-06-22
- Revision:
- 186:707f6e361f3e
- Parent:
- 184:08ed48f1de7f
- Child:
- 187:0387e8f68319
File content as of revision 186:707f6e361f3e:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2018, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #if DEVICE_RTC #include "rtc_api_hal.h" #include "mbed_mktime.h" #include "mbed_error.h" static RTC_HandleTypeDef RtcHandle; void rtc_init(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; // Enable access to Backup domain __HAL_RCC_PWR_CLK_ENABLE(); HAL_PWR_EnableBkUpAccess(); #if DEVICE_LPTICKER if ( (rtc_isenabled()) && ((RTC->PRER & RTC_PRER_PREDIV_S) == PREDIV_S_VALUE) ) { #else /* DEVICE_LPTICKER */ if (rtc_isenabled()) { #endif /* DEVICE_LPTICKER */ return; } #if MBED_CONF_TARGET_LSE_AVAILABLE RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured! RCC_OscInitStruct.LSEState = RCC_LSE_ON; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { error("Cannot initialize RTC with LSE\n"); } __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE); __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE); PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { error("PeriphClkInitStruct RTC failed with LSE\n"); } #else /* MBED_CONF_TARGET_LSE_AVAILABLE */ // Reset Backup domain __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); // Enable LSI clock RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured! RCC_OscInitStruct.LSIState = RCC_LSI_ON; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { error("Cannot initialize RTC with LSI\n"); } __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI); __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI); PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { error("PeriphClkInitStruct RTC failed with LSI\n"); } #endif /* MBED_CONF_TARGET_LSE_AVAILABLE */ // Enable RTC __HAL_RCC_RTC_ENABLE(); RtcHandle.Instance = RTC; RtcHandle.State = HAL_RTC_STATE_RESET; #if TARGET_STM32F1 RtcHandle.Init.AsynchPrediv = RTC_AUTO_1_SECOND; #else /* TARGET_STM32F1 */ RtcHandle.Init.HourFormat = RTC_HOURFORMAT_24; RtcHandle.Init.AsynchPrediv = PREDIV_A_VALUE; RtcHandle.Init.SynchPrediv = PREDIV_S_VALUE; RtcHandle.Init.OutPut = RTC_OUTPUT_DISABLE; RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RtcHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; #endif /* TARGET_STM32F1 */ if (HAL_RTC_Init(&RtcHandle) != HAL_OK) { error("RTC initialization failed"); } rtc_synchronize(); // Wait for RSF if (!rtc_isenabled()) { rtc_write(0); } } void rtc_free(void) { // Disable access to Backup domain HAL_PWR_DisableBkUpAccess(); } /* ST RTC_DateTypeDef structure WeekDay 1=monday, 2=tuesday, ..., 7=sunday Month 0x1=january, 0x2=february, ..., 0x12=december Date day of the month 1-31 Year year 0-99 ST RTC_TimeTypeDef structure Hours 0-12 if the RTC_HourFormat_12 is selected during init 0-23 if the RTC_HourFormat_24 is selected during init Minutes 0-59 Seconds 0-59 TimeFormat RTC_HOURFORMAT12_AM/RTC_HOURFORMAT12_PM SubSeconds time unit range between [0-1] Second with [1 Sec / SecondFraction +1] granularity SecondFraction range or granularity of Sub Second register content corresponding to Synchronous pre-scaler factor value (PREDIV_S) DayLightSaving RTC_DAYLIGHTSAVING_SUB1H/RTC_DAYLIGHTSAVING_ADD1H/RTC_DAYLIGHTSAVING_NONE StoreOperation RTC_STOREOPERATION_RESET/RTC_STOREOPERATION_SET struct tm tm_sec seconds after the minute 0-61 tm_min minutes after the hour 0-59 tm_hour hours since midnight 0-23 tm_mday day of the month 1-31 tm_mon months since January 0-11 tm_year years since 1900 tm_wday days since Sunday 0-6 tm_yday days since January 1 0-365 tm_isdst Daylight Saving Time flag */ /* Information about STM32F0, STM32F2, STM32F3, STM32F4, STM32F7, STM32L0, STM32L1, STM32L4: BCD format is used to store the date in the RTC. The year is store on 2 * 4 bits. Because the first year is reserved to see if the RTC is init, the supposed range is 01-99. 1st point is to cover the standard range from 1970 to 2038 (limited by the 32 bits of time_t). 2nd point is to keep the year 1970 and the leap years synchronized. So by moving it 68 years forward from 1970, it become 1969-2067 which include 1970-2038. 68 is also a multiple of 4 so it let the leap year synchronized. Information about STM32F1: 32bit register is used (no BCD format) for the seconds. For date, there is no specific register, only a software structure. It is then not a problem to not use shifts. */ time_t rtc_read(void) { RTC_DateTypeDef dateStruct = {0}; RTC_TimeTypeDef timeStruct = {0}; struct tm timeinfo; RtcHandle.Instance = RTC; // Read actual date and time // Warning: the time must be read first! HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN); HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN); #if TARGET_STM32F1 /* date information is null before first write procedure */ /* set 01/01/1970 as default values */ if (dateStruct.Year == 0) { dateStruct.Year = 2 ; dateStruct.Month = 1 ; dateStruct.Date = 1 ; } #endif // Setup a tm structure based on the RTC /* tm_wday information is ignored by _rtc_maketime */ /* tm_isdst information is ignored by _rtc_maketime */ timeinfo.tm_mon = dateStruct.Month - 1; timeinfo.tm_mday = dateStruct.Date; timeinfo.tm_year = dateStruct.Year + 68; timeinfo.tm_hour = timeStruct.Hours; timeinfo.tm_min = timeStruct.Minutes; timeinfo.tm_sec = timeStruct.Seconds; // Convert to timestamp time_t t; if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) { return 0; } return t; } void rtc_write(time_t t) { RTC_DateTypeDef dateStruct = {0}; RTC_TimeTypeDef timeStruct = {0}; RtcHandle.Instance = RTC; // Convert the time into a tm struct tm timeinfo; if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) { return; } // Fill RTC structures if (timeinfo.tm_wday == 0) { dateStruct.WeekDay = 7; } else { dateStruct.WeekDay = timeinfo.tm_wday; } dateStruct.Month = timeinfo.tm_mon + 1; dateStruct.Date = timeinfo.tm_mday; dateStruct.Year = timeinfo.tm_year - 68; timeStruct.Hours = timeinfo.tm_hour; timeStruct.Minutes = timeinfo.tm_min; timeStruct.Seconds = timeinfo.tm_sec; #if !(TARGET_STM32F1) timeStruct.TimeFormat = RTC_HOURFORMAT_24; timeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; timeStruct.StoreOperation = RTC_STOREOPERATION_RESET; #endif /* TARGET_STM32F1 */ // Change the RTC current date/time if (HAL_RTC_SetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN) != HAL_OK) { error("HAL_RTC_SetDate error\n"); } if (HAL_RTC_SetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN) != HAL_OK) { error("HAL_RTC_SetTime error\n"); } } int rtc_isenabled(void) { #if !(TARGET_STM32F1) return ( ((RTC->ISR & RTC_ISR_INITS) == RTC_ISR_INITS) && ((RTC->ISR & RTC_ISR_RSF) == RTC_ISR_RSF) ); #else /* TARGET_STM32F1 */ return ((RTC->CRL & RTC_CRL_RSF) == RTC_CRL_RSF); #endif /* TARGET_STM32F1 */ } void rtc_synchronize(void) { RtcHandle.Instance = RTC; if (HAL_RTC_WaitForSynchro(&RtcHandle) != HAL_OK) { error("rtc_synchronize error\n"); } } #if DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM static void RTC_IRQHandler(void); static void (*irq_handler)(void); volatile uint8_t lp_Fired = 0; volatile uint32_t LP_continuous_time = 0; volatile uint32_t LP_last_RTC_time = 0; static void RTC_IRQHandler(void) { /* Update HAL state */ RtcHandle.Instance = RTC; if(__HAL_RTC_WAKEUPTIMER_GET_IT(&RtcHandle, RTC_IT_WUT)) { /* Get the status of the Interrupt */ if((uint32_t)(RTC->CR & RTC_IT_WUT) != (uint32_t)RESET) { /* Clear the WAKEUPTIMER interrupt pending bit */ __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&RtcHandle, RTC_FLAG_WUTF); lp_Fired = 0; if (irq_handler) { irq_handler(); } } } if (lp_Fired) { lp_Fired = 0; if (irq_handler) { irq_handler(); } } __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); } uint32_t rtc_read_lp(void) { RTC_TimeTypeDef timeStruct = {0}; RTC_DateTypeDef dateStruct = {0}; RtcHandle.Instance = RTC; HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN); /* Reading RTC current time locks the values in calendar shadow registers until Current date is read to ensure consistency between the time and date values */ HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN); if (timeStruct.SubSeconds > timeStruct.SecondFraction) { /* SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. */ timeStruct.Seconds -= 1; } uint32_t RTC_time_s = timeStruct.Seconds + timeStruct.Minutes * 60 + timeStruct.Hours * 60 * 60; // Max 0x0001-517F => * 8191 + 8191 = 0x2A2E-AE80 if (LP_last_RTC_time <= RTC_time_s) { LP_continuous_time += (RTC_time_s - LP_last_RTC_time); } else { LP_continuous_time += (24 * 60 * 60 + RTC_time_s - LP_last_RTC_time); } LP_last_RTC_time = RTC_time_s; return LP_continuous_time * PREDIV_S_VALUE + timeStruct.SecondFraction - timeStruct.SubSeconds; } void rtc_set_wake_up_timer(timestamp_t timestamp) { uint32_t WakeUpCounter; uint32_t current_lp_time; current_lp_time = rtc_read_lp(); if (timestamp < current_lp_time) { WakeUpCounter = 0xFFFFFFFF - current_lp_time + timestamp; } else { WakeUpCounter = timestamp - current_lp_time; } if (WakeUpCounter > 0xFFFF) { WakeUpCounter = 0xFFFF; } RtcHandle.Instance = RTC; if (HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle, WakeUpCounter, RTC_WAKEUPCLOCK_RTCCLK_DIV4) != HAL_OK) { error("rtc_set_wake_up_timer init error\n"); } NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler); irq_handler = (void (*)(void))lp_ticker_irq_handler; NVIC_EnableIRQ(RTC_WKUP_IRQn); } void rtc_fire_interrupt(void) { lp_Fired = 1; NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler); irq_handler = (void (*)(void))lp_ticker_irq_handler; NVIC_SetPendingIRQ(RTC_WKUP_IRQn); NVIC_EnableIRQ(RTC_WKUP_IRQn); } void rtc_deactivate_wake_up_timer(void) { RtcHandle.Instance = RTC; HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle); } #endif /* DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM */ #endif /* DEVICE_RTC */