Modified for BG96
Fork of mbed-dev by
targets/TARGET_STM/rtc_api.c
- Committer:
- AnnaBridge
- Date:
- 2018-02-16
- Revision:
- 181:57724642e740
- Parent:
- 180:96ed750bd169
- Child:
- 182:a56a73fd2a6f
File content as of revision 181:57724642e740:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2017, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #if DEVICE_RTC #include "rtc_api_hal.h" #include "mbed_mktime.h" static RTC_HandleTypeDef RtcHandle; #if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM #define GET_TICK_PERIOD(VALUE) (2048 * 1000000 / VALUE) /* 1s / SynchPrediv value * 2^11 (value to get the maximum precision value with no u32 overflow) */ static void (*irq_handler)(void); static void RTC_IRQHandler(void); static uint32_t lp_TickPeriod_us = GET_TICK_PERIOD(4095); /* default SynchPrediv value = 4095 */ #endif /* DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */ void rtc_init(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; // Enable access to Backup domain __HAL_RCC_PWR_CLK_ENABLE(); HAL_PWR_EnableBkUpAccess(); if (rtc_isenabled()) { return; } #if MBED_CONF_TARGET_LSE_AVAILABLE RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured! RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_OFF; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { error("Cannot initialize RTC with LSE\n"); } __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE); __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE); PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { error("PeriphClkInitStruct RTC failed with LSE\n"); } #else /* MBED_CONF_TARGET_LSE_AVAILABLE */ // Reset Backup domain __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); // Enable LSI clock RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured! RCC_OscInitStruct.LSEState = RCC_LSE_OFF; RCC_OscInitStruct.LSIState = RCC_LSI_ON; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { error("Cannot initialize RTC with LSI\n"); } __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI); __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI); PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { error("PeriphClkInitStruct RTC failed with LSI\n"); } #endif /* MBED_CONF_TARGET_LSE_AVAILABLE */ // Enable RTC __HAL_RCC_RTC_ENABLE(); RtcHandle.Instance = RTC; RtcHandle.State = HAL_RTC_STATE_RESET; #if TARGET_STM32F1 RtcHandle.Init.AsynchPrediv = RTC_AUTO_1_SECOND; #else /* TARGET_STM32F1 */ RtcHandle.Init.HourFormat = RTC_HOURFORMAT_24; /* PREDIV_A : 7-bit asynchronous prescaler */ #if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM /* PREDIV_A is set to a small value to improve the SubSeconds resolution */ /* with a 32768Hz clock, PREDIV_A=7 gives a precision of 244us */ RtcHandle.Init.AsynchPrediv = 7; #else /* PREDIV_A is set to the maximum value to improve the consumption */ RtcHandle.Init.AsynchPrediv = 0x007F; #endif /* PREDIV_S : 15-bit synchronous prescaler */ /* PREDIV_S is set in order to get a 1 Hz clock */ RtcHandle.Init.SynchPrediv = RTC_CLOCK / (RtcHandle.Init.AsynchPrediv + 1) - 1; RtcHandle.Init.OutPut = RTC_OUTPUT_DISABLE; RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RtcHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; #endif /* TARGET_STM32F1 */ #if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM lp_TickPeriod_us = GET_TICK_PERIOD(RtcHandle.Init.SynchPrediv); #endif if (HAL_RTC_Init(&RtcHandle) != HAL_OK) { error("RTC initialization failed"); } rtc_synchronize(); // Wait for RSF if (!rtc_isenabled()) { rtc_write(0); } } void rtc_free(void) { #if !MBED_CONF_TARGET_LSE_AVAILABLE // Enable Power clock __HAL_RCC_PWR_CLK_ENABLE(); // Enable access to Backup domain HAL_PWR_EnableBkUpAccess(); // Reset Backup domain __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); // Disable access to Backup domain HAL_PWR_DisableBkUpAccess(); #endif // Disable LSI and LSE clocks RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; RCC_OscInitStruct.LSIState = RCC_LSI_OFF; RCC_OscInitStruct.LSEState = RCC_LSE_OFF; HAL_RCC_OscConfig(&RCC_OscInitStruct); } /* ST RTC_DateTypeDef structure WeekDay 1=monday, 2=tuesday, ..., 7=sunday Month 0x1=january, 0x2=february, ..., 0x12=december Date day of the month 1-31 Year year 0-99 ST RTC_TimeTypeDef structure Hours 0-12 if the RTC_HourFormat_12 is selected during init 0-23 if the RTC_HourFormat_24 is selected during init Minutes 0-59 Seconds 0-59 TimeFormat RTC_HOURFORMAT12_AM/RTC_HOURFORMAT12_PM SubSeconds time unit range between [0-1] Second with [1 Sec / SecondFraction +1] granularity SecondFraction range or granularity of Sub Second register content corresponding to Synchronous pre-scaler factor value (PREDIV_S) DayLightSaving RTC_DAYLIGHTSAVING_SUB1H/RTC_DAYLIGHTSAVING_ADD1H/RTC_DAYLIGHTSAVING_NONE StoreOperation RTC_STOREOPERATION_RESET/RTC_STOREOPERATION_SET struct tm tm_sec seconds after the minute 0-61 tm_min minutes after the hour 0-59 tm_hour hours since midnight 0-23 tm_mday day of the month 1-31 tm_mon months since January 0-11 tm_year years since 1900 tm_wday days since Sunday 0-6 tm_yday days since January 1 0-365 tm_isdst Daylight Saving Time flag */ /* Information about STM32F0, STM32F2, STM32F3, STM32F4, STM32F7, STM32L0, STM32L1, STM32L4: BCD format is used to store the date in the RTC. The year is store on 2 * 4 bits. Because the first year is reserved to see if the RTC is init, the supposed range is 01-99. 1st point is to cover the standard range from 1970 to 2038 (limited by the 32 bits of time_t). 2nd point is to keep the year 1970 and the leap years synchronized. So by moving it 68 years forward from 1970, it become 1969-2067 which include 1970-2038. 68 is also a multiple of 4 so it let the leap year synchronized. Information about STM32F1: 32bit register is used (no BCD format) for the seconds and a software structure to store dates. It is then not a problem to not use shifts. */ time_t rtc_read(void) { RTC_DateTypeDef dateStruct = {0}; RTC_TimeTypeDef timeStruct = {0}; struct tm timeinfo; RtcHandle.Instance = RTC; // Read actual date and time // Warning: the time must be read first! HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN); HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN); // Setup a tm structure based on the RTC /* tm_wday information is ignored by mktime */ timeinfo.tm_mon = dateStruct.Month - 1; timeinfo.tm_mday = dateStruct.Date; timeinfo.tm_year = dateStruct.Year + 68; timeinfo.tm_hour = timeStruct.Hours; timeinfo.tm_min = timeStruct.Minutes; timeinfo.tm_sec = timeStruct.Seconds; // Daylight Saving Time information is not available timeinfo.tm_isdst = -1; // Convert to timestamp time_t t = _rtc_mktime(&timeinfo); return t; } void rtc_write(time_t t) { RTC_DateTypeDef dateStruct = {0}; RTC_TimeTypeDef timeStruct = {0}; RtcHandle.Instance = RTC; // Convert the time into a tm struct tm timeinfo; if (_rtc_localtime(t, &timeinfo) == false) { return; } // Fill RTC structures if (timeinfo.tm_wday == 0) { dateStruct.WeekDay = 7; } else { dateStruct.WeekDay = timeinfo.tm_wday; } dateStruct.Month = timeinfo.tm_mon + 1; dateStruct.Date = timeinfo.tm_mday; dateStruct.Year = timeinfo.tm_year - 68; timeStruct.Hours = timeinfo.tm_hour; timeStruct.Minutes = timeinfo.tm_min; timeStruct.Seconds = timeinfo.tm_sec; #if !(TARGET_STM32F1) timeStruct.TimeFormat = RTC_HOURFORMAT_24; timeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; timeStruct.StoreOperation = RTC_STOREOPERATION_RESET; #endif /* TARGET_STM32F1 */ // Change the RTC current date/time if (HAL_RTC_SetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN) != HAL_OK) { error("HAL_RTC_SetDate error\n"); } if (HAL_RTC_SetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN) != HAL_OK) { error("HAL_RTC_SetTime error\n"); } } int rtc_isenabled(void) { #if !(TARGET_STM32F1) return ( ((RTC->ISR & RTC_ISR_INITS) == RTC_ISR_INITS) && ((RTC->ISR & RTC_ISR_RSF) == RTC_ISR_RSF) ); #else /* TARGET_STM32F1 */ return ((RTC->CRL & RTC_CRL_RSF) == RTC_CRL_RSF); #endif /* TARGET_STM32F1 */ } void rtc_synchronize(void) { RtcHandle.Instance = RTC; if (HAL_RTC_WaitForSynchro(&RtcHandle) != HAL_OK) { error("rtc_synchronize error\n"); } } #if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM static void RTC_IRQHandler(void) { /* Update HAL state */ RtcHandle.Instance = RTC; HAL_RTCEx_WakeUpTimerIRQHandler(&RtcHandle); /* In case of registered handler, call it. */ if (irq_handler) { irq_handler(); } } uint32_t rtc_read_us(void) { RTC_TimeTypeDef timeStruct = {0}; RTC_DateTypeDef dateStruct = {0}; RtcHandle.Instance = RTC; HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN); /* Reading RTC current time locks the values in calendar shadow registers until Current date is read to ensure consistency between the time and date values */ HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN); if (timeStruct.SubSeconds > timeStruct.SecondFraction) { /* SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. */ timeStruct.Seconds -= 1; } uint32_t RTCTime = timeStruct.Seconds + timeStruct.Minutes * 60 + timeStruct.Hours * 60 * 60; uint32_t Time_us = ((timeStruct.SecondFraction - timeStruct.SubSeconds) * lp_TickPeriod_us) >> 11; return (RTCTime * 1000000) + Time_us ; } void rtc_set_wake_up_timer(uint32_t delta) { /* Ex for Wakeup period resolution with RTCCLK=32768 Hz : * RTCCLK_DIV2: ~122us < wakeup period < ~4s * RTCCLK_DIV4: ~244us < wakeup period < ~8s * RTCCLK_DIV8: ~488us < wakeup period < ~16s * RTCCLK_DIV16: ~976us < wakeup period < ~32s * CK_SPRE_16BITS: 1s < wakeup period < (0xFFFF+ 1) x 1 s = 65536 s (18 hours) * CK_SPRE_17BITS: 18h+1s < wakeup period < (0x1FFFF+ 1) x 1 s = 131072 s (36 hours) */ uint32_t WakeUpClock[6] = {RTC_WAKEUPCLOCK_RTCCLK_DIV2, RTC_WAKEUPCLOCK_RTCCLK_DIV4, RTC_WAKEUPCLOCK_RTCCLK_DIV8, RTC_WAKEUPCLOCK_RTCCLK_DIV16, RTC_WAKEUPCLOCK_CK_SPRE_16BITS, RTC_WAKEUPCLOCK_CK_SPRE_17BITS}; uint8_t ClockDiv[4] = {2, 4, 8, 16}; uint32_t WakeUpCounter; uint8_t DivIndex = 0; do { WakeUpCounter = delta / (ClockDiv[DivIndex] * 1000000 / RTC_CLOCK); DivIndex++; } while ( (WakeUpCounter > 0xFFFF) && (DivIndex < 4) ); if (WakeUpCounter > 0xFFFF) { WakeUpCounter = delta / 1000000; DivIndex++; } irq_handler = (void (*)(void))lp_ticker_irq_handler; NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler); NVIC_EnableIRQ(RTC_WKUP_IRQn); RtcHandle.Instance = RTC; if (HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle, 0xFFFF & WakeUpCounter, WakeUpClock[DivIndex - 1]) != HAL_OK) { error("rtc_set_wake_up_timer init error (%d)\n", DivIndex); } } void rtc_deactivate_wake_up_timer(void) { RtcHandle.Instance = RTC; HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle); } #endif /* DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */ #endif /* DEVICE_RTC */