Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_KL82Z/drivers/fsl_flexio_i2s.c
- Committer:
- <>
- Date:
- 2017-01-04
- Revision:
- 154:37f96f9d4de2
File content as of revision 154:37f96f9d4de2:
/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_flexio_i2s.h" /******************************************************************************* * Definitations ******************************************************************************/ enum _sai_transfer_state { kFLEXIO_I2S_Busy = 0x0U, /*!< FLEXIO_I2S is busy */ kFLEXIO_I2S_Idle, /*!< Transfer is done. */ }; /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Receive a piece of data in non-blocking way. * * @param base FLEXIO I2S base pointer * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits. * @param buffer Pointer to the data to be read. * @param size Bytes to be read. */ static void FLEXIO_I2S_ReadNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size); /*! * @brief sends a piece of data in non-blocking way. * * @param base FLEXIO I2S base pointer * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits. * @param buffer Pointer to the data to be written. * @param size Bytes to be written. */ static void FLEXIO_I2S_WriteNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size); /******************************************************************************* * Variables ******************************************************************************/ /******************************************************************************* * Code ******************************************************************************/ static void FLEXIO_I2S_WriteNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size) { uint32_t i = 0; uint8_t j = 0; uint8_t bytesPerWord = bitWidth / 8U; uint32_t data = 0; uint32_t temp = 0; for (i = 0; i < size / bytesPerWord; i++) { for (j = 0; j < bytesPerWord; j++) { temp = (uint32_t)(*txData); data |= (temp << (8U * j)); txData++; } base->flexioBase->SHIFTBUFBIS[base->txShifterIndex] = (data << (32U - bitWidth)); data = 0; } } static void FLEXIO_I2S_ReadNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size) { uint32_t i = 0; uint8_t j = 0; uint8_t bytesPerWord = bitWidth / 8U; uint32_t data = 0; for (i = 0; i < size / bytesPerWord; i++) { data = (base->flexioBase->SHIFTBUFBIS[base->rxShifterIndex] >> (32U - bitWidth)); for (j = 0; j < bytesPerWord; j++) { *rxData = (data >> (8U * j)) & 0xFF; rxData++; } } } void FLEXIO_I2S_Init(FLEXIO_I2S_Type *base, const flexio_i2s_config_t *config) { assert(base && config); flexio_shifter_config_t shifterConfig = {0}; flexio_timer_config_t timerConfig = {0}; /* Ungate flexio clock. */ CLOCK_EnableClock(kCLOCK_Flexio0); FLEXIO_Reset(base->flexioBase); /* Set shifter for I2S Tx data */ shifterConfig.timerSelect = base->bclkTimerIndex; shifterConfig.pinSelect = base->txPinIndex; shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive; shifterConfig.pinConfig = kFLEXIO_PinConfigOutput; shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh; shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit; shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin; shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable; if (config->masterSlave == kFLEXIO_I2S_Master) { shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift; } else { shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable; } FLEXIO_SetShifterConfig(base->flexioBase, base->txShifterIndex, &shifterConfig); /* Set shifter for I2S Rx Data */ shifterConfig.timerSelect = base->bclkTimerIndex; shifterConfig.pinSelect = base->rxPinIndex; shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive; shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh; shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive; shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin; shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable; shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable; FLEXIO_SetShifterConfig(base->flexioBase, base->rxShifterIndex, &shifterConfig); /* Set Timer to I2S frame sync */ if (config->masterSlave == kFLEXIO_I2S_Master) { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->txPinIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceExternal; timerConfig.pinConfig = kFLEXIO_PinConfigOutput; timerConfig.pinSelect = base->fsPinIndex; timerConfig.pinPolarity = kFLEXIO_PinActiveLow; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableNever; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } else { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->bclkPinIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; timerConfig.pinSelect = base->fsPinIndex; timerConfig.pinPolarity = kFLEXIO_PinActiveLow; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnTriggerInputShiftTriggerInput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPinRisingEdge; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } FLEXIO_SetTimerConfig(base->flexioBase, base->fsTimerIndex, &timerConfig); /* Set Timer to I2S bit clock */ if (config->masterSlave == kFLEXIO_I2S_Master) { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->txShifterIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinSelect = base->bclkPinIndex; timerConfig.pinConfig = kFLEXIO_PinConfigOutput; timerConfig.pinPolarity = kFLEXIO_PinActiveHigh; timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableNever; timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh; timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } else { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_TIMn(base->fsTimerIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinSelect = base->bclkPinIndex; timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; timerConfig.pinPolarity = kFLEXIO_PinActiveHigh; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompareTriggerLow; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPinRisingEdgeTriggerHigh; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } FLEXIO_SetTimerConfig(base->flexioBase, base->bclkTimerIndex, &timerConfig); /* If enable flexio I2S */ if (config->enableI2S) { base->flexioBase->CTRL |= FLEXIO_CTRL_FLEXEN_MASK; } else { base->flexioBase->CTRL &= ~FLEXIO_CTRL_FLEXEN_MASK; } } void FLEXIO_I2S_GetDefaultConfig(flexio_i2s_config_t *config) { config->masterSlave = kFLEXIO_I2S_Master; config->enableI2S = true; } void FLEXIO_I2S_Deinit(FLEXIO_I2S_Type *base) { /* Disable FLEXIO I2S module. */ FLEXIO_I2S_Enable(base, false); /* Gate flexio clock. */ CLOCK_DisableClock(kCLOCK_Flexio0); } void FLEXIO_I2S_EnableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask) { if (mask & kFLEXIO_I2S_TxDataRegEmptyInterruptEnable) { FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->txShifterIndex); } if (mask & kFLEXIO_I2S_RxDataRegFullInterruptEnable) { FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->rxShifterIndex); } } uint32_t FLEXIO_I2S_GetStatusFlags(FLEXIO_I2S_Type *base) { uint32_t status = 0; status = ((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->txShifterIndex)) >> base->txShifterIndex); status |= (((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->rxShifterIndex)) >> (base->rxShifterIndex)) << 1U); return status; } void FLEXIO_I2S_DisableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask) { if (mask & kFLEXIO_I2S_TxDataRegEmptyInterruptEnable) { FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->txShifterIndex); } if (mask & kFLEXIO_I2S_RxDataRegFullInterruptEnable) { FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->rxShifterIndex); } } void FLEXIO_I2S_MasterSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format, uint32_t srcClock_Hz) { uint32_t timDiv = srcClock_Hz / (format->sampleRate_Hz * 32U * 2U); uint32_t bclkDiv = 0; /* Set Frame sync timer cmp */ base->flexioBase->TIMCMP[base->fsTimerIndex] = FLEXIO_TIMCMP_CMP(32U * timDiv - 1U); /* Set bit clock timer cmp */ bclkDiv = ((timDiv / 2U - 1U) | (63U << 8U)); base->flexioBase->TIMCMP[base->bclkTimerIndex] = FLEXIO_TIMCMP_CMP(bclkDiv); } void FLEXIO_I2S_SlaveSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format) { /* Set Frame sync timer cmp */ base->flexioBase->TIMCMP[base->fsTimerIndex] = FLEXIO_TIMCMP_CMP(32U * 4U - 3U); /* Set bit clock timer cmp */ base->flexioBase->TIMCMP[base->bclkTimerIndex] = FLEXIO_TIMCMP_CMP(32U * 2U - 1U); } void FLEXIO_I2S_WriteBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size) { uint32_t i = 0; uint8_t bytesPerWord = bitWidth / 8U; for (i = 0; i < size / bytesPerWord; i++) { /* Wait until it can write data */ while ((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) == 0) { } FLEXIO_I2S_WriteNonBlocking(base, bitWidth, txData, bytesPerWord); txData += bytesPerWord; } /* Wait until the last data is sent */ while ((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) == 0) { } } void FLEXIO_I2S_ReadBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size) { uint32_t i = 0; uint8_t bytesPerWord = bitWidth / 8U; for (i = 0; i < size / bytesPerWord; i++) { /* Wait until data is received */ while (!(FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->rxShifterIndex))) { } FLEXIO_I2S_ReadNonBlocking(base, bitWidth, rxData, bytesPerWord); rxData += bytesPerWord; } } void FLEXIO_I2S_TransferTxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData) { assert(handle); IRQn_Type flexio_irqs[] = FLEXIO_IRQS; /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); /* Store callback and user data. */ handle->callback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2S_TransferTxHandleIRQ); /* Set the TX/RX state. */ handle->state = kFLEXIO_I2S_Idle; /* Enable interrupt in NVIC. */ EnableIRQ(flexio_irqs[0]); } void FLEXIO_I2S_TransferRxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData) { assert(handle); IRQn_Type flexio_irqs[] = FLEXIO_IRQS; /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); /* Store callback and user data. */ handle->callback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2S_TransferRxHandleIRQ); /* Set the TX/RX state. */ handle->state = kFLEXIO_I2S_Idle; /* Enable interrupt in NVIC. */ EnableIRQ(flexio_irqs[0]); } void FLEXIO_I2S_TransferSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_format_t *format, uint32_t srcClock_Hz) { assert(handle && format); /* Set the bitWidth to handle */ handle->bitWidth = format->bitWidth; /* Set sample rate */ if (srcClock_Hz != 0) { /* It is master */ FLEXIO_I2S_MasterSetFormat(base, format, srcClock_Hz); } else { FLEXIO_I2S_SlaveSetFormat(base, format); } } status_t FLEXIO_I2S_TransferSendNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->queue[handle->queueUser].data) { return kStatus_FLEXIO_I2S_QueueFull; } if ((xfer->dataSize == 0) || (xfer->data == NULL)) { return kStatus_InvalidArgument; } /* Add into queue */ handle->queue[handle->queueUser].data = xfer->data; handle->queue[handle->queueUser].dataSize = xfer->dataSize; handle->transferSize[handle->queueUser] = xfer->dataSize; handle->queueUser = (handle->queueUser + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; /* Set the state to busy */ handle->state = kFLEXIO_I2S_Busy; FLEXIO_I2S_EnableInterrupts(base, kFLEXIO_I2S_TxDataRegEmptyInterruptEnable); /* Enable Tx transfer */ FLEXIO_I2S_Enable(base, true); return kStatus_Success; } status_t FLEXIO_I2S_TransferReceiveNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->queue[handle->queueUser].data) { return kStatus_FLEXIO_I2S_QueueFull; } if ((xfer->dataSize == 0) || (xfer->data == NULL)) { return kStatus_InvalidArgument; } /* Add into queue */ handle->queue[handle->queueUser].data = xfer->data; handle->queue[handle->queueUser].dataSize = xfer->dataSize; handle->transferSize[handle->queueUser] = xfer->dataSize; handle->queueUser = (handle->queueUser + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; /* Set state to busy */ handle->state = kFLEXIO_I2S_Busy; /* Enable interrupt */ FLEXIO_I2S_EnableInterrupts(base, kFLEXIO_I2S_RxDataRegFullInterruptEnable); /* Enable Rx transfer */ FLEXIO_I2S_Enable(base, true); return kStatus_Success; } void FLEXIO_I2S_TransferAbortSend(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle) { assert(handle); /* Stop Tx transfer and disable interrupt */ FLEXIO_I2S_DisableInterrupts(base, kFLEXIO_I2S_TxDataRegEmptyInterruptEnable); handle->state = kFLEXIO_I2S_Idle; /* Clear the queue */ memset(handle->queue, 0, sizeof(flexio_i2s_transfer_t) * FLEXIO_I2S_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } void FLEXIO_I2S_TransferAbortReceive(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle) { assert(handle); /* Stop rx transfer and disable interrupt */ FLEXIO_I2S_DisableInterrupts(base, kFLEXIO_I2S_RxDataRegFullInterruptEnable); handle->state = kFLEXIO_I2S_Idle; /* Clear the queue */ memset(handle->queue, 0, sizeof(flexio_i2s_transfer_t) * FLEXIO_I2S_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } status_t FLEXIO_I2S_TransferGetSendCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kFLEXIO_I2S_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->queue[handle->queueDriver].dataSize); } return status; } status_t FLEXIO_I2S_TransferGetReceiveCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kFLEXIO_I2S_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->queue[handle->queueDriver].dataSize); } return status; } void FLEXIO_I2S_TransferTxHandleIRQ(void *i2sBase, void *i2sHandle) { assert(i2sHandle); flexio_i2s_handle_t *handle = (flexio_i2s_handle_t *)i2sHandle; FLEXIO_I2S_Type *base = (FLEXIO_I2S_Type *)i2sBase; uint8_t *buffer = handle->queue[handle->queueDriver].data; uint8_t dataSize = handle->bitWidth / 8U; /* Handle error */ if (FLEXIO_GetShifterErrorFlags(base->flexioBase) & (1U << base->txShifterIndex)) { FLEXIO_ClearShifterErrorFlags(base->flexioBase, (1U << base->txShifterIndex)); } /* Handle transfer */ if (((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) != 0) && (handle->queue[handle->queueDriver].data != NULL)) { FLEXIO_I2S_WriteNonBlocking(base, handle->bitWidth, buffer, dataSize); /* Update internal counter */ handle->queue[handle->queueDriver].dataSize -= dataSize; handle->queue[handle->queueDriver].data += dataSize; } /* If finished a blcok, call the callback function */ if ((handle->queue[handle->queueDriver].dataSize == 0U) && (handle->queue[handle->queueDriver].data != NULL)) { memset(&handle->queue[handle->queueDriver], 0, sizeof(flexio_i2s_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_Success, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->queue[handle->queueDriver].data == NULL) { FLEXIO_I2S_TransferAbortSend(base, handle); } } void FLEXIO_I2S_TransferRxHandleIRQ(void *i2sBase, void *i2sHandle) { assert(i2sHandle); flexio_i2s_handle_t *handle = (flexio_i2s_handle_t *)i2sHandle; FLEXIO_I2S_Type *base = (FLEXIO_I2S_Type *)i2sBase; uint8_t *buffer = handle->queue[handle->queueDriver].data; uint8_t dataSize = handle->bitWidth / 8U; /* Handle transfer */ if (((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_RxDataRegFullFlag) != 0) && (handle->queue[handle->queueDriver].data != NULL)) { FLEXIO_I2S_ReadNonBlocking(base, handle->bitWidth, buffer, dataSize); /* Update internal state */ handle->queue[handle->queueDriver].dataSize -= dataSize; handle->queue[handle->queueDriver].data += dataSize; } /* If finished a blcok, call the callback function */ if ((handle->queue[handle->queueDriver].dataSize == 0U) && (handle->queue[handle->queueDriver].data != NULL)) { memset(&handle->queue[handle->queueDriver], 0, sizeof(flexio_i2s_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_Success, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->queue[handle->queueDriver].data == NULL) { FLEXIO_I2S_TransferAbortReceive(base, handle); } }