Modified for BG96

Fork of mbed-dev by mbed official

Committer:
WaleedElmughrabi
Date:
Thu Sep 20 16:11:23 2018 +0000
Revision:
188:60408c49b6d4
Parent:
187:0387e8f68319
Fork modified for BG96 error

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 149:156823d33999 1 /* mbed Microcontroller Library
<> 149:156823d33999 2 *******************************************************************************
<> 149:156823d33999 3 * Copyright (c) 2015, STMicroelectronics
<> 149:156823d33999 4 * All rights reserved.
<> 149:156823d33999 5 *
<> 149:156823d33999 6 * Redistribution and use in source and binary forms, with or without
<> 149:156823d33999 7 * modification, are permitted provided that the following conditions are met:
<> 149:156823d33999 8 *
<> 149:156823d33999 9 * 1. Redistributions of source code must retain the above copyright notice,
<> 149:156823d33999 10 * this list of conditions and the following disclaimer.
<> 149:156823d33999 11 * 2. Redistributions in binary form must reproduce the above copyright notice,
<> 149:156823d33999 12 * this list of conditions and the following disclaimer in the documentation
<> 149:156823d33999 13 * and/or other materials provided with the distribution.
<> 149:156823d33999 14 * 3. Neither the name of STMicroelectronics nor the names of its contributors
<> 149:156823d33999 15 * may be used to endorse or promote products derived from this software
<> 149:156823d33999 16 * without specific prior written permission.
<> 149:156823d33999 17 *
<> 149:156823d33999 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 149:156823d33999 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 149:156823d33999 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 149:156823d33999 21 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
<> 149:156823d33999 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
<> 149:156823d33999 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
<> 149:156823d33999 24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
<> 149:156823d33999 25 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
<> 149:156823d33999 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
<> 149:156823d33999 27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 149:156823d33999 28 *******************************************************************************
<> 149:156823d33999 29 */
<> 149:156823d33999 30 #include "mbed_assert.h"
<> 149:156823d33999 31 #include "mbed_error.h"
AnnaBridge 179:b0033dcd6934 32 #include "mbed_debug.h"
<> 149:156823d33999 33 #include "spi_api.h"
<> 149:156823d33999 34
<> 149:156823d33999 35 #if DEVICE_SPI
<> 149:156823d33999 36 #include <stdbool.h>
<> 149:156823d33999 37 #include <math.h>
<> 149:156823d33999 38 #include <string.h>
<> 149:156823d33999 39 #include "cmsis.h"
<> 149:156823d33999 40 #include "pinmap.h"
<> 149:156823d33999 41 #include "PeripheralPins.h"
AnnaBridge 168:9672193075cf 42 #include "spi_device.h"
<> 149:156823d33999 43
<> 149:156823d33999 44 #if DEVICE_SPI_ASYNCH
AnnaBridge 187:0387e8f68319 45 #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi))
<> 149:156823d33999 46 #else
AnnaBridge 187:0387e8f68319 47 #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi))
<> 149:156823d33999 48 #endif
<> 149:156823d33999 49
<> 149:156823d33999 50 #if DEVICE_SPI_ASYNCH
AnnaBridge 187:0387e8f68319 51 #define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
<> 149:156823d33999 52 #else
AnnaBridge 187:0387e8f68319 53 #define SPI_S(obj) (( struct spi_s *)(obj))
<> 149:156823d33999 54 #endif
<> 149:156823d33999 55
<> 149:156823d33999 56 #ifndef DEBUG_STDIO
<> 149:156823d33999 57 # define DEBUG_STDIO 0
<> 149:156823d33999 58 #endif
<> 149:156823d33999 59
<> 149:156823d33999 60 #if DEBUG_STDIO
<> 149:156823d33999 61 # include <stdio.h>
<> 149:156823d33999 62 # define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
<> 149:156823d33999 63 #else
<> 149:156823d33999 64 # define DEBUG_PRINTF(...) {}
<> 149:156823d33999 65 #endif
<> 149:156823d33999 66
AnnaBridge 173:e131a1973e81 67 /* Consider 10ms as the default timeout for sending/receving 1 byte */
AnnaBridge 173:e131a1973e81 68 #define TIMEOUT_1_BYTE 10
AnnaBridge 173:e131a1973e81 69
Anna Bridge 186:707f6e361f3e 70 #if defined(SPI_FLAG_FRLVL) // STM32F0 STM32F3 STM32F7 STM32L4
Anna Bridge 186:707f6e361f3e 71 extern HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi);
Anna Bridge 186:707f6e361f3e 72 #endif
Anna Bridge 186:707f6e361f3e 73
<> 149:156823d33999 74 void init_spi(spi_t *obj)
<> 149:156823d33999 75 {
<> 149:156823d33999 76 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 77 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 78
<> 149:156823d33999 79 __HAL_SPI_DISABLE(handle);
<> 149:156823d33999 80
<> 149:156823d33999 81 DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
<> 149:156823d33999 82 if (HAL_SPI_Init(handle) != HAL_OK) {
<> 149:156823d33999 83 error("Cannot initialize SPI");
<> 149:156823d33999 84 }
<> 149:156823d33999 85
AnnaBridge 173:e131a1973e81 86 /* In case of standard 4 wires SPI,PI can be kept enabled all time
AnnaBridge 173:e131a1973e81 87 * and SCK will only be generated during the write operations. But in case
AnnaBridge 173:e131a1973e81 88 * of 3 wires, it should be only enabled during rd/wr unitary operations,
AnnaBridge 173:e131a1973e81 89 * which is handled inside STM32 HAL layer.
AnnaBridge 173:e131a1973e81 90 */
AnnaBridge 173:e131a1973e81 91 if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
AnnaBridge 173:e131a1973e81 92 __HAL_SPI_ENABLE(handle);
AnnaBridge 173:e131a1973e81 93 }
<> 149:156823d33999 94 }
<> 149:156823d33999 95
<> 149:156823d33999 96 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
<> 149:156823d33999 97 {
<> 149:156823d33999 98 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 99 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 100
<> 149:156823d33999 101 // Determine the SPI to use
<> 149:156823d33999 102 SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 103 SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
<> 149:156823d33999 104 SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 105 SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
<> 149:156823d33999 106
<> 149:156823d33999 107 SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
<> 149:156823d33999 108 SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
<> 149:156823d33999 109
<> 149:156823d33999 110 spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
<> 149:156823d33999 111 MBED_ASSERT(spiobj->spi != (SPIName)NC);
<> 149:156823d33999 112
<> 149:156823d33999 113 #if defined SPI1_BASE
<> 149:156823d33999 114 // Enable SPI clock
<> 149:156823d33999 115 if (spiobj->spi == SPI_1) {
<> 149:156823d33999 116 __HAL_RCC_SPI1_CLK_ENABLE();
<> 149:156823d33999 117 spiobj->spiIRQ = SPI1_IRQn;
<> 149:156823d33999 118 }
<> 149:156823d33999 119 #endif
<> 149:156823d33999 120
<> 149:156823d33999 121 #if defined SPI2_BASE
<> 149:156823d33999 122 if (spiobj->spi == SPI_2) {
<> 149:156823d33999 123 __HAL_RCC_SPI2_CLK_ENABLE();
<> 149:156823d33999 124 spiobj->spiIRQ = SPI2_IRQn;
<> 149:156823d33999 125 }
<> 149:156823d33999 126 #endif
<> 149:156823d33999 127
<> 149:156823d33999 128 #if defined SPI3_BASE
<> 149:156823d33999 129 if (spiobj->spi == SPI_3) {
<> 149:156823d33999 130 __HAL_RCC_SPI3_CLK_ENABLE();
<> 149:156823d33999 131 spiobj->spiIRQ = SPI3_IRQn;
<> 149:156823d33999 132 }
<> 149:156823d33999 133 #endif
<> 149:156823d33999 134
<> 149:156823d33999 135 #if defined SPI4_BASE
<> 149:156823d33999 136 if (spiobj->spi == SPI_4) {
<> 149:156823d33999 137 __HAL_RCC_SPI4_CLK_ENABLE();
<> 149:156823d33999 138 spiobj->spiIRQ = SPI4_IRQn;
<> 149:156823d33999 139 }
<> 149:156823d33999 140 #endif
<> 149:156823d33999 141
<> 149:156823d33999 142 #if defined SPI5_BASE
<> 149:156823d33999 143 if (spiobj->spi == SPI_5) {
<> 149:156823d33999 144 __HAL_RCC_SPI5_CLK_ENABLE();
<> 149:156823d33999 145 spiobj->spiIRQ = SPI5_IRQn;
<> 149:156823d33999 146 }
<> 149:156823d33999 147 #endif
<> 149:156823d33999 148
<> 149:156823d33999 149 #if defined SPI6_BASE
<> 149:156823d33999 150 if (spiobj->spi == SPI_6) {
<> 149:156823d33999 151 __HAL_RCC_SPI6_CLK_ENABLE();
<> 149:156823d33999 152 spiobj->spiIRQ = SPI6_IRQn;
<> 149:156823d33999 153 }
<> 149:156823d33999 154 #endif
<> 149:156823d33999 155
<> 149:156823d33999 156 // Configure the SPI pins
<> 149:156823d33999 157 pinmap_pinout(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 158 pinmap_pinout(miso, PinMap_SPI_MISO);
<> 149:156823d33999 159 pinmap_pinout(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 160 spiobj->pin_miso = miso;
<> 149:156823d33999 161 spiobj->pin_mosi = mosi;
<> 149:156823d33999 162 spiobj->pin_sclk = sclk;
<> 149:156823d33999 163 spiobj->pin_ssel = ssel;
<> 149:156823d33999 164 if (ssel != NC) {
<> 149:156823d33999 165 pinmap_pinout(ssel, PinMap_SPI_SSEL);
Anna Bridge 186:707f6e361f3e 166 handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
<> 149:156823d33999 167 } else {
<> 149:156823d33999 168 handle->Init.NSS = SPI_NSS_SOFT;
<> 149:156823d33999 169 }
<> 149:156823d33999 170
<> 149:156823d33999 171 /* Fill default value */
<> 149:156823d33999 172 handle->Instance = SPI_INST(obj);
<> 149:156823d33999 173 handle->Init.Mode = SPI_MODE_MASTER;
<> 149:156823d33999 174 handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
AnnaBridge 173:e131a1973e81 175
AnnaBridge 173:e131a1973e81 176 if (miso != NC) {
AnnaBridge 173:e131a1973e81 177 handle->Init.Direction = SPI_DIRECTION_2LINES;
AnnaBridge 173:e131a1973e81 178 } else {
AnnaBridge 187:0387e8f68319 179 handle->Init.Direction = SPI_DIRECTION_1LINE;
AnnaBridge 173:e131a1973e81 180 }
AnnaBridge 173:e131a1973e81 181
<> 149:156823d33999 182 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
<> 149:156823d33999 183 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
AnnaBridge 165:e614a9f1c9e2 184 handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
<> 149:156823d33999 185 handle->Init.CRCPolynomial = 7;
<> 149:156823d33999 186 handle->Init.DataSize = SPI_DATASIZE_8BIT;
<> 149:156823d33999 187 handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
AnnaBridge 165:e614a9f1c9e2 188 handle->Init.TIMode = SPI_TIMODE_DISABLE;
<> 149:156823d33999 189
<> 149:156823d33999 190 init_spi(obj);
<> 149:156823d33999 191 }
<> 149:156823d33999 192
<> 149:156823d33999 193 void spi_free(spi_t *obj)
<> 149:156823d33999 194 {
<> 149:156823d33999 195 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 196 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 197
<> 149:156823d33999 198 DEBUG_PRINTF("spi_free\r\n");
<> 149:156823d33999 199
<> 149:156823d33999 200 __HAL_SPI_DISABLE(handle);
<> 149:156823d33999 201 HAL_SPI_DeInit(handle);
<> 149:156823d33999 202
<> 149:156823d33999 203 #if defined SPI1_BASE
<> 149:156823d33999 204 // Reset SPI and disable clock
<> 149:156823d33999 205 if (spiobj->spi == SPI_1) {
<> 149:156823d33999 206 __HAL_RCC_SPI1_FORCE_RESET();
<> 149:156823d33999 207 __HAL_RCC_SPI1_RELEASE_RESET();
<> 149:156823d33999 208 __HAL_RCC_SPI1_CLK_DISABLE();
<> 149:156823d33999 209 }
<> 149:156823d33999 210 #endif
<> 149:156823d33999 211 #if defined SPI2_BASE
<> 149:156823d33999 212 if (spiobj->spi == SPI_2) {
<> 149:156823d33999 213 __HAL_RCC_SPI2_FORCE_RESET();
<> 149:156823d33999 214 __HAL_RCC_SPI2_RELEASE_RESET();
<> 149:156823d33999 215 __HAL_RCC_SPI2_CLK_DISABLE();
<> 149:156823d33999 216 }
<> 149:156823d33999 217 #endif
<> 149:156823d33999 218
<> 149:156823d33999 219 #if defined SPI3_BASE
<> 149:156823d33999 220 if (spiobj->spi == SPI_3) {
<> 149:156823d33999 221 __HAL_RCC_SPI3_FORCE_RESET();
<> 149:156823d33999 222 __HAL_RCC_SPI3_RELEASE_RESET();
<> 149:156823d33999 223 __HAL_RCC_SPI3_CLK_DISABLE();
<> 149:156823d33999 224 }
<> 149:156823d33999 225 #endif
<> 149:156823d33999 226
<> 149:156823d33999 227 #if defined SPI4_BASE
<> 149:156823d33999 228 if (spiobj->spi == SPI_4) {
<> 149:156823d33999 229 __HAL_RCC_SPI4_FORCE_RESET();
<> 149:156823d33999 230 __HAL_RCC_SPI4_RELEASE_RESET();
<> 149:156823d33999 231 __HAL_RCC_SPI4_CLK_DISABLE();
<> 149:156823d33999 232 }
<> 149:156823d33999 233 #endif
<> 149:156823d33999 234
<> 149:156823d33999 235 #if defined SPI5_BASE
<> 149:156823d33999 236 if (spiobj->spi == SPI_5) {
<> 149:156823d33999 237 __HAL_RCC_SPI5_FORCE_RESET();
<> 149:156823d33999 238 __HAL_RCC_SPI5_RELEASE_RESET();
<> 149:156823d33999 239 __HAL_RCC_SPI5_CLK_DISABLE();
<> 149:156823d33999 240 }
<> 149:156823d33999 241 #endif
<> 149:156823d33999 242
<> 149:156823d33999 243 #if defined SPI6_BASE
<> 149:156823d33999 244 if (spiobj->spi == SPI_6) {
<> 149:156823d33999 245 __HAL_RCC_SPI6_FORCE_RESET();
<> 149:156823d33999 246 __HAL_RCC_SPI6_RELEASE_RESET();
<> 149:156823d33999 247 __HAL_RCC_SPI6_CLK_DISABLE();
<> 149:156823d33999 248 }
<> 149:156823d33999 249 #endif
<> 149:156823d33999 250
<> 149:156823d33999 251 // Configure GPIOs
<> 149:156823d33999 252 pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
<> 149:156823d33999 253 pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
<> 149:156823d33999 254 pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
<> 149:156823d33999 255 if (handle->Init.NSS != SPI_NSS_SOFT) {
<> 149:156823d33999 256 pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
<> 149:156823d33999 257 }
<> 149:156823d33999 258 }
<> 149:156823d33999 259
<> 149:156823d33999 260 void spi_format(spi_t *obj, int bits, int mode, int slave)
<> 149:156823d33999 261 {
<> 149:156823d33999 262 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 263 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 264
<> 149:156823d33999 265 DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
<> 149:156823d33999 266
<> 149:156823d33999 267 // Save new values
<> 149:156823d33999 268 handle->Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
<> 149:156823d33999 269
<> 149:156823d33999 270 switch (mode) {
<> 149:156823d33999 271 case 0:
<> 149:156823d33999 272 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
<> 149:156823d33999 273 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
<> 149:156823d33999 274 break;
<> 149:156823d33999 275 case 1:
<> 149:156823d33999 276 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
<> 149:156823d33999 277 handle->Init.CLKPhase = SPI_PHASE_2EDGE;
<> 149:156823d33999 278 break;
<> 149:156823d33999 279 case 2:
<> 149:156823d33999 280 handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
<> 149:156823d33999 281 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
<> 149:156823d33999 282 break;
<> 149:156823d33999 283 default:
<> 149:156823d33999 284 handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
<> 149:156823d33999 285 handle->Init.CLKPhase = SPI_PHASE_2EDGE;
<> 149:156823d33999 286 break;
<> 149:156823d33999 287 }
<> 149:156823d33999 288
<> 149:156823d33999 289 if (handle->Init.NSS != SPI_NSS_SOFT) {
<> 149:156823d33999 290 handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
<> 149:156823d33999 291 }
<> 149:156823d33999 292
<> 149:156823d33999 293 handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
<> 149:156823d33999 294
AnnaBridge 179:b0033dcd6934 295 if (slave && (handle->Init.Direction == SPI_DIRECTION_1LINE)) {
AnnaBridge 179:b0033dcd6934 296 /* SPI slave implemtation in MBED does not support the 3 wires SPI.
AnnaBridge 179:b0033dcd6934 297 * (e.g. when MISO is not connected). So we're forcing slave in
AnnaBridge 179:b0033dcd6934 298 * 2LINES mode. As MISO is not connected, slave will only read
AnnaBridge 179:b0033dcd6934 299 * from master, and cannot write to it. Inform user.
AnnaBridge 179:b0033dcd6934 300 */
AnnaBridge 179:b0033dcd6934 301 debug("3 wires SPI slave not supported - slave will only read\r\n");
AnnaBridge 179:b0033dcd6934 302 handle->Init.Direction = SPI_DIRECTION_2LINES;
AnnaBridge 179:b0033dcd6934 303 }
AnnaBridge 179:b0033dcd6934 304
<> 149:156823d33999 305 init_spi(obj);
<> 149:156823d33999 306 }
<> 149:156823d33999 307
<> 149:156823d33999 308 /*
<> 149:156823d33999 309 * Only the IP clock input is family dependant so it computed
<> 149:156823d33999 310 * separately in spi_get_clock_freq
<> 149:156823d33999 311 */
<> 149:156823d33999 312 extern int spi_get_clock_freq(spi_t *obj);
<> 149:156823d33999 313
AnnaBridge 187:0387e8f68319 314 static const uint16_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2,
AnnaBridge 187:0387e8f68319 315 SPI_BAUDRATEPRESCALER_4,
AnnaBridge 187:0387e8f68319 316 SPI_BAUDRATEPRESCALER_8,
AnnaBridge 187:0387e8f68319 317 SPI_BAUDRATEPRESCALER_16,
AnnaBridge 187:0387e8f68319 318 SPI_BAUDRATEPRESCALER_32,
AnnaBridge 187:0387e8f68319 319 SPI_BAUDRATEPRESCALER_64,
AnnaBridge 187:0387e8f68319 320 SPI_BAUDRATEPRESCALER_128,
AnnaBridge 187:0387e8f68319 321 SPI_BAUDRATEPRESCALER_256
AnnaBridge 187:0387e8f68319 322 };
<> 149:156823d33999 323
AnnaBridge 187:0387e8f68319 324 void spi_frequency(spi_t *obj, int hz)
AnnaBridge 187:0387e8f68319 325 {
<> 149:156823d33999 326 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 327 int spi_hz = 0;
<> 149:156823d33999 328 uint8_t prescaler_rank = 0;
AnnaBridge 187:0387e8f68319 329 uint8_t last_index = (sizeof(baudrate_prescaler_table) / sizeof(baudrate_prescaler_table[0])) - 1;
<> 149:156823d33999 330 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 331
<> 159:612c381a210f 332 /* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */
<> 159:612c381a210f 333 spi_hz = spi_get_clock_freq(obj) / 2;
<> 149:156823d33999 334
<> 149:156823d33999 335 /* Define pre-scaler in order to get highest available frequency below requested frequency */
<> 159:612c381a210f 336 while ((spi_hz > hz) && (prescaler_rank < last_index)) {
<> 149:156823d33999 337 spi_hz = spi_hz / 2;
<> 149:156823d33999 338 prescaler_rank++;
<> 149:156823d33999 339 }
<> 149:156823d33999 340
<> 159:612c381a210f 341 /* Use the best fit pre-scaler */
<> 159:612c381a210f 342 handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank];
<> 159:612c381a210f 343
<> 159:612c381a210f 344 /* In case maximum pre-scaler still gives too high freq, raise an error */
<> 159:612c381a210f 345 if (spi_hz > hz) {
<> 160:d5399cc887bb 346 DEBUG_PRINTF("WARNING: lowest SPI freq (%d) higher than requested (%d)\r\n", spi_hz, hz);
<> 149:156823d33999 347 }
<> 149:156823d33999 348
<> 159:612c381a210f 349 DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz);
<> 159:612c381a210f 350
<> 149:156823d33999 351 init_spi(obj);
<> 149:156823d33999 352 }
<> 149:156823d33999 353
<> 149:156823d33999 354 static inline int ssp_readable(spi_t *obj)
<> 149:156823d33999 355 {
<> 149:156823d33999 356 int status;
<> 149:156823d33999 357 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 358 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 359
<> 149:156823d33999 360 // Check if data is received
<> 149:156823d33999 361 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
<> 149:156823d33999 362 return status;
<> 149:156823d33999 363 }
<> 149:156823d33999 364
<> 149:156823d33999 365 static inline int ssp_writeable(spi_t *obj)
<> 149:156823d33999 366 {
<> 149:156823d33999 367 int status;
<> 149:156823d33999 368 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 369 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 370
<> 149:156823d33999 371 // Check if data is transmitted
<> 149:156823d33999 372 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
<> 149:156823d33999 373 return status;
<> 149:156823d33999 374 }
<> 149:156823d33999 375
<> 149:156823d33999 376 static inline int ssp_busy(spi_t *obj)
<> 149:156823d33999 377 {
<> 149:156823d33999 378 int status;
<> 149:156823d33999 379 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 380 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 381 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
<> 149:156823d33999 382 return status;
<> 149:156823d33999 383 }
<> 149:156823d33999 384
<> 149:156823d33999 385 int spi_master_write(spi_t *obj, int value)
<> 149:156823d33999 386 {
<> 149:156823d33999 387 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 388 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 389
AnnaBridge 173:e131a1973e81 390 if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
AnnaBridge 187:0387e8f68319 391 return HAL_SPI_Transmit(handle, (uint8_t *)&value, 1, TIMEOUT_1_BYTE);
AnnaBridge 173:e131a1973e81 392 }
AnnaBridge 173:e131a1973e81 393
AnnaBridge 168:9672193075cf 394 #if defined(LL_SPI_RX_FIFO_TH_HALF)
AnnaBridge 168:9672193075cf 395 /* Configure the default data size */
AnnaBridge 168:9672193075cf 396 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
AnnaBridge 168:9672193075cf 397 LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF);
AnnaBridge 168:9672193075cf 398 } else {
AnnaBridge 168:9672193075cf 399 LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER);
AnnaBridge 168:9672193075cf 400 }
AnnaBridge 168:9672193075cf 401 #endif
<> 149:156823d33999 402
AnnaBridge 168:9672193075cf 403 /* Here we're using LL which means direct registers access
AnnaBridge 168:9672193075cf 404 * There is no error management, so we may end up looping
AnnaBridge 168:9672193075cf 405 * infinitely here in case of faulty device for insatnce,
AnnaBridge 168:9672193075cf 406 * but this will increase performances significantly
AnnaBridge 168:9672193075cf 407 */
<> 149:156823d33999 408
AnnaBridge 168:9672193075cf 409 /* Wait TXE flag to transmit data */
AnnaBridge 168:9672193075cf 410 while (!LL_SPI_IsActiveFlag_TXE(SPI_INST(obj)));
AnnaBridge 168:9672193075cf 411
AnnaBridge 168:9672193075cf 412 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
AnnaBridge 168:9672193075cf 413 LL_SPI_TransmitData16(SPI_INST(obj), value);
<> 149:156823d33999 414 } else {
AnnaBridge 168:9672193075cf 415 LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t) value);
AnnaBridge 168:9672193075cf 416 }
AnnaBridge 168:9672193075cf 417
AnnaBridge 168:9672193075cf 418 /* Then wait RXE flag before reading */
AnnaBridge 168:9672193075cf 419 while (!LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj)));
AnnaBridge 168:9672193075cf 420
AnnaBridge 168:9672193075cf 421 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
AnnaBridge 168:9672193075cf 422 return LL_SPI_ReceiveData16(SPI_INST(obj));
AnnaBridge 168:9672193075cf 423 } else {
AnnaBridge 168:9672193075cf 424 return LL_SPI_ReceiveData8(SPI_INST(obj));
<> 149:156823d33999 425 }
<> 149:156823d33999 426 }
<> 149:156823d33999 427
Kojto 170:19eb464bc2be 428 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
Kojto 170:19eb464bc2be 429 char *rx_buffer, int rx_length, char write_fill)
AnnaBridge 167:e84263d55307 430 {
AnnaBridge 173:e131a1973e81 431 struct spi_s *spiobj = SPI_S(obj);
AnnaBridge 173:e131a1973e81 432 SPI_HandleTypeDef *handle = &(spiobj->handle);
AnnaBridge 167:e84263d55307 433 int total = (tx_length > rx_length) ? tx_length : rx_length;
AnnaBridge 173:e131a1973e81 434 int i = 0;
AnnaBridge 173:e131a1973e81 435 if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
AnnaBridge 173:e131a1973e81 436 for (i = 0; i < total; i++) {
AnnaBridge 173:e131a1973e81 437 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
AnnaBridge 173:e131a1973e81 438 char in = spi_master_write(obj, out);
AnnaBridge 173:e131a1973e81 439 if (i < rx_length) {
AnnaBridge 173:e131a1973e81 440 rx_buffer[i] = in;
AnnaBridge 173:e131a1973e81 441 }
AnnaBridge 173:e131a1973e81 442 }
AnnaBridge 173:e131a1973e81 443 } else {
AnnaBridge 173:e131a1973e81 444 /* In case of 1 WIRE only, first handle TX, then Rx */
AnnaBridge 173:e131a1973e81 445 if (tx_length != 0) {
AnnaBridge 187:0387e8f68319 446 if (HAL_OK != HAL_SPI_Transmit(handle, (uint8_t *)tx_buffer, tx_length, tx_length * TIMEOUT_1_BYTE)) {
AnnaBridge 173:e131a1973e81 447 /* report an error */
AnnaBridge 173:e131a1973e81 448 total = 0;
AnnaBridge 173:e131a1973e81 449 }
AnnaBridge 173:e131a1973e81 450 }
AnnaBridge 173:e131a1973e81 451 if (rx_length != 0) {
AnnaBridge 187:0387e8f68319 452 if (HAL_OK != HAL_SPI_Receive(handle, (uint8_t *)rx_buffer, rx_length, rx_length * TIMEOUT_1_BYTE)) {
AnnaBridge 173:e131a1973e81 453 /* report an error */
AnnaBridge 173:e131a1973e81 454 total = 0;
AnnaBridge 173:e131a1973e81 455 }
AnnaBridge 167:e84263d55307 456 }
AnnaBridge 167:e84263d55307 457 }
AnnaBridge 167:e84263d55307 458
AnnaBridge 167:e84263d55307 459 return total;
AnnaBridge 167:e84263d55307 460 }
AnnaBridge 167:e84263d55307 461
<> 149:156823d33999 462 int spi_slave_receive(spi_t *obj)
<> 149:156823d33999 463 {
<> 149:156823d33999 464 return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
<> 149:156823d33999 465 };
<> 149:156823d33999 466
<> 149:156823d33999 467 int spi_slave_read(spi_t *obj)
<> 149:156823d33999 468 {
<> 149:156823d33999 469 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 470 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 471 while (!ssp_readable(obj));
AnnaBridge 173:e131a1973e81 472 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
AnnaBridge 173:e131a1973e81 473 return LL_SPI_ReceiveData16(SPI_INST(obj));
<> 149:156823d33999 474 } else {
AnnaBridge 173:e131a1973e81 475 return LL_SPI_ReceiveData8(SPI_INST(obj));
<> 149:156823d33999 476 }
<> 149:156823d33999 477 }
<> 149:156823d33999 478
<> 149:156823d33999 479 void spi_slave_write(spi_t *obj, int value)
<> 149:156823d33999 480 {
<> 149:156823d33999 481 SPI_TypeDef *spi = SPI_INST(obj);
<> 149:156823d33999 482 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 483 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 484 while (!ssp_writeable(obj));
<> 149:156823d33999 485 if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
<> 149:156823d33999 486 // Force 8-bit access to the data register
<> 149:156823d33999 487 uint8_t *p_spi_dr = 0;
<> 149:156823d33999 488 p_spi_dr = (uint8_t *) & (spi->DR);
<> 149:156823d33999 489 *p_spi_dr = (uint8_t)value;
<> 149:156823d33999 490 } else { // SPI_DATASIZE_16BIT
<> 149:156823d33999 491 spi->DR = (uint16_t)value;
<> 149:156823d33999 492 }
<> 149:156823d33999 493 }
<> 149:156823d33999 494
<> 149:156823d33999 495 int spi_busy(spi_t *obj)
<> 149:156823d33999 496 {
<> 149:156823d33999 497 return ssp_busy(obj);
<> 149:156823d33999 498 }
<> 149:156823d33999 499
<> 149:156823d33999 500 #ifdef DEVICE_SPI_ASYNCH
<> 149:156823d33999 501 typedef enum {
<> 149:156823d33999 502 SPI_TRANSFER_TYPE_NONE = 0,
<> 149:156823d33999 503 SPI_TRANSFER_TYPE_TX = 1,
<> 149:156823d33999 504 SPI_TRANSFER_TYPE_RX = 2,
<> 149:156823d33999 505 SPI_TRANSFER_TYPE_TXRX = 3,
<> 149:156823d33999 506 } transfer_type_t;
<> 149:156823d33999 507
<> 149:156823d33999 508
<> 149:156823d33999 509 /// @returns the number of bytes transferred, or `0` if nothing transferred
<> 149:156823d33999 510 static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length)
<> 149:156823d33999 511 {
<> 149:156823d33999 512 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 513 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 514 bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
<> 149:156823d33999 515 // the HAL expects number of transfers instead of number of bytes
<> 149:156823d33999 516 // so for 16 bit transfer width the count needs to be halved
<> 149:156823d33999 517 size_t words;
<> 149:156823d33999 518
<> 149:156823d33999 519 DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length);
<> 149:156823d33999 520
<> 149:156823d33999 521 obj->spi.transfer_type = transfer_type;
<> 149:156823d33999 522
<> 149:156823d33999 523 if (is16bit) {
<> 149:156823d33999 524 words = length / 2;
<> 149:156823d33999 525 } else {
<> 149:156823d33999 526 words = length;
<> 149:156823d33999 527 }
<> 149:156823d33999 528
<> 149:156823d33999 529 // enable the interrupt
<> 149:156823d33999 530 IRQn_Type irq_n = spiobj->spiIRQ;
<> 153:fa9ff456f731 531 NVIC_DisableIRQ(irq_n);
<> 149:156823d33999 532 NVIC_ClearPendingIRQ(irq_n);
<> 149:156823d33999 533 NVIC_SetPriority(irq_n, 1);
<> 149:156823d33999 534 NVIC_EnableIRQ(irq_n);
<> 149:156823d33999 535
AnnaBridge 181:57724642e740 536 // flush FIFO
AnnaBridge 181:57724642e740 537 #if defined(SPI_FLAG_FRLVL) // STM32F0 STM32F3 STM32F7 STM32L4
AnnaBridge 181:57724642e740 538 HAL_SPIEx_FlushRxFifo(handle);
AnnaBridge 181:57724642e740 539 #endif
AnnaBridge 181:57724642e740 540
<> 149:156823d33999 541 // enable the right hal transfer
<> 149:156823d33999 542 int rc = 0;
AnnaBridge 187:0387e8f68319 543 switch (transfer_type) {
<> 149:156823d33999 544 case SPI_TRANSFER_TYPE_TXRX:
AnnaBridge 187:0387e8f68319 545 rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t *)tx, (uint8_t *)rx, words);
<> 149:156823d33999 546 break;
<> 149:156823d33999 547 case SPI_TRANSFER_TYPE_TX:
AnnaBridge 187:0387e8f68319 548 rc = HAL_SPI_Transmit_IT(handle, (uint8_t *)tx, words);
<> 149:156823d33999 549 break;
<> 149:156823d33999 550 case SPI_TRANSFER_TYPE_RX:
<> 149:156823d33999 551 // the receive function also "transmits" the receive buffer so in order
<> 149:156823d33999 552 // to guarantee that 0xff is on the line, we explicitly memset it here
<> 149:156823d33999 553 memset(rx, SPI_FILL_WORD, length);
AnnaBridge 187:0387e8f68319 554 rc = HAL_SPI_Receive_IT(handle, (uint8_t *)rx, words);
<> 149:156823d33999 555 break;
<> 149:156823d33999 556 default:
<> 149:156823d33999 557 length = 0;
<> 149:156823d33999 558 }
<> 149:156823d33999 559
<> 149:156823d33999 560 if (rc) {
<> 149:156823d33999 561 DEBUG_PRINTF("SPI: RC=%u\n", rc);
<> 149:156823d33999 562 length = 0;
<> 149:156823d33999 563 }
<> 149:156823d33999 564
<> 149:156823d33999 565 return length;
<> 149:156823d33999 566 }
<> 149:156823d33999 567
<> 149:156823d33999 568 // asynchronous API
<> 149:156823d33999 569 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
<> 149:156823d33999 570 {
<> 149:156823d33999 571 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 572 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 573
<> 149:156823d33999 574 // TODO: DMA usage is currently ignored
<> 149:156823d33999 575 (void) hint;
<> 149:156823d33999 576
<> 149:156823d33999 577 // check which use-case we have
<> 149:156823d33999 578 bool use_tx = (tx != NULL && tx_length > 0);
<> 149:156823d33999 579 bool use_rx = (rx != NULL && rx_length > 0);
<> 149:156823d33999 580 bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
<> 149:156823d33999 581
<> 149:156823d33999 582 // don't do anything, if the buffers aren't valid
AnnaBridge 187:0387e8f68319 583 if (!use_tx && !use_rx) {
<> 149:156823d33999 584 return;
AnnaBridge 187:0387e8f68319 585 }
<> 149:156823d33999 586
<> 149:156823d33999 587 // copy the buffers to the SPI object
<> 149:156823d33999 588 obj->tx_buff.buffer = (void *) tx;
<> 149:156823d33999 589 obj->tx_buff.length = tx_length;
<> 149:156823d33999 590 obj->tx_buff.pos = 0;
<> 149:156823d33999 591 obj->tx_buff.width = is16bit ? 16 : 8;
<> 149:156823d33999 592
<> 149:156823d33999 593 obj->rx_buff.buffer = rx;
<> 149:156823d33999 594 obj->rx_buff.length = rx_length;
<> 149:156823d33999 595 obj->rx_buff.pos = 0;
<> 149:156823d33999 596 obj->rx_buff.width = obj->tx_buff.width;
<> 149:156823d33999 597
<> 149:156823d33999 598 obj->spi.event = event;
<> 149:156823d33999 599
<> 149:156823d33999 600 DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length);
<> 149:156823d33999 601
<> 149:156823d33999 602 // register the thunking handler
<> 149:156823d33999 603 IRQn_Type irq_n = spiobj->spiIRQ;
<> 149:156823d33999 604 NVIC_SetVector(irq_n, (uint32_t)handler);
<> 149:156823d33999 605
<> 149:156823d33999 606 // enable the right hal transfer
<> 149:156823d33999 607 if (use_tx && use_rx) {
<> 149:156823d33999 608 // we cannot manage different rx / tx sizes, let's use smaller one
AnnaBridge 187:0387e8f68319 609 size_t size = (tx_length < rx_length) ? tx_length : rx_length;
AnnaBridge 187:0387e8f68319 610 if (tx_length != rx_length) {
<> 149:156823d33999 611 DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
<> 149:156823d33999 612 obj->tx_buff.length = size;
<> 149:156823d33999 613 obj->rx_buff.length = size;
<> 149:156823d33999 614 }
<> 149:156823d33999 615 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size);
<> 149:156823d33999 616 } else if (use_tx) {
<> 149:156823d33999 617 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length);
<> 149:156823d33999 618 } else if (use_rx) {
<> 149:156823d33999 619 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length);
<> 149:156823d33999 620 }
<> 149:156823d33999 621 }
<> 149:156823d33999 622
<> 153:fa9ff456f731 623 inline uint32_t spi_irq_handler_asynch(spi_t *obj)
<> 149:156823d33999 624 {
<> 149:156823d33999 625 int event = 0;
<> 149:156823d33999 626
<> 149:156823d33999 627 // call the CubeF4 handler, this will update the handle
<> 153:fa9ff456f731 628 HAL_SPI_IRQHandler(&obj->spi.handle);
<> 149:156823d33999 629
<> 153:fa9ff456f731 630 if (obj->spi.handle.State == HAL_SPI_STATE_READY) {
<> 149:156823d33999 631 // When HAL SPI is back to READY state, check if there was an error
<> 153:fa9ff456f731 632 int error = obj->spi.handle.ErrorCode;
AnnaBridge 187:0387e8f68319 633 if (error != HAL_SPI_ERROR_NONE) {
<> 149:156823d33999 634 // something went wrong and the transfer has definitely completed
<> 149:156823d33999 635 event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
<> 149:156823d33999 636
<> 149:156823d33999 637 if (error & HAL_SPI_ERROR_OVR) {
<> 149:156823d33999 638 // buffer overrun
<> 149:156823d33999 639 event |= SPI_EVENT_RX_OVERFLOW;
<> 149:156823d33999 640 }
<> 149:156823d33999 641 } else {
<> 149:156823d33999 642 // else we're done
<> 149:156823d33999 643 event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
AnnaBridge 187:0387e8f68319 644 }
AnnaBridge 187:0387e8f68319 645 // enable the interrupt
AnnaBridge 187:0387e8f68319 646 NVIC_DisableIRQ(obj->spi.spiIRQ);
AnnaBridge 187:0387e8f68319 647 NVIC_ClearPendingIRQ(obj->spi.spiIRQ);
<> 149:156823d33999 648 }
<> 149:156823d33999 649
<> 149:156823d33999 650
<> 149:156823d33999 651 return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
<> 149:156823d33999 652 }
<> 149:156823d33999 653
<> 149:156823d33999 654 uint8_t spi_active(spi_t *obj)
<> 149:156823d33999 655 {
<> 149:156823d33999 656 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 657 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 658 HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
<> 149:156823d33999 659
AnnaBridge 187:0387e8f68319 660 switch (state) {
<> 149:156823d33999 661 case HAL_SPI_STATE_RESET:
<> 149:156823d33999 662 case HAL_SPI_STATE_READY:
<> 149:156823d33999 663 case HAL_SPI_STATE_ERROR:
<> 149:156823d33999 664 return 0;
<> 149:156823d33999 665 default:
<> 149:156823d33999 666 return 1;
<> 149:156823d33999 667 }
<> 149:156823d33999 668 }
<> 149:156823d33999 669
<> 149:156823d33999 670 void spi_abort_asynch(spi_t *obj)
<> 149:156823d33999 671 {
<> 149:156823d33999 672 struct spi_s *spiobj = SPI_S(obj);
<> 149:156823d33999 673 SPI_HandleTypeDef *handle = &(spiobj->handle);
<> 149:156823d33999 674
<> 149:156823d33999 675 // disable interrupt
<> 149:156823d33999 676 IRQn_Type irq_n = spiobj->spiIRQ;
<> 149:156823d33999 677 NVIC_ClearPendingIRQ(irq_n);
<> 149:156823d33999 678 NVIC_DisableIRQ(irq_n);
<> 149:156823d33999 679
<> 149:156823d33999 680 // clean-up
<> 149:156823d33999 681 __HAL_SPI_DISABLE(handle);
<> 149:156823d33999 682 HAL_SPI_DeInit(handle);
<> 149:156823d33999 683 HAL_SPI_Init(handle);
<> 149:156823d33999 684 __HAL_SPI_ENABLE(handle);
<> 149:156823d33999 685 }
<> 149:156823d33999 686
<> 149:156823d33999 687 #endif //DEVICE_SPI_ASYNCH
<> 149:156823d33999 688
<> 149:156823d33999 689 #endif