LoRaWAN MAC layer implementation

Dependents:   LoRaWAN-demo-72_tjm LoRaWAN-demo-72_jlc LoRaWAN-demo-elmo frdm_LoRa_Connect_Woodstream_Demo_tjm ... more

LoRAWAN-lib is a port of the GitHub LoRaMac-node LoRaWAN MAC layer implementation.

This library depends on the SX1276Lib or SX1272Lib radio drivers depending on the used mbed component shield.

This library depends also on some cryptographic helper functions as well as helper functions for the timers management. These can be found on the example projects under the system directory.

The example projects are:

  1. LoRaWAN-demo-72
  2. LoRaWAN-demo-76
  3. LoRaWAN-demo-NAMote72

The LoRaWAN specification specifies different ISM bands operating parameters. These are all implemented under the LoRaMac-board.h file.

In order to select which band to use, please change line 24 of board.h file provided on the examples projects as follows:


EU868

board.h

#define USE_BAND_868


US915

board.h

#define USE_BAND_915


US915 - Hybrid

board.h

#define USE_BAND_915_HYBRID


CN780

board.h

#define USE_BAND_780


EU433

board.h

#define USE_BAND_433

LoRaMac.cpp

Committer:
ubhat
Date:
2018-07-17
Revision:
11:2426a05fe29e
Parent:
6:d7a34ded7c87

File content as of revision 11:2426a05fe29e:

/*
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2013 Semtech
 ___ _____ _   ___ _  _____ ___  ___  ___ ___
/ __|_   _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) |   / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============

Description: LoRa MAC layer implementation

License: Revised BSD License, see LICENSE.TXT file include in the project

Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jäckle ( STACKFORCE )
*/
#include "board.h"

#include "LoRaMacCrypto.h"
#include "LoRaMac.h"
#include "LoRaMacTest.h"

/*!
 * Maximum PHY layer payload size
 */
#define LORAMAC_PHY_MAXPAYLOAD                      255

/*!
 * Maximum MAC commands buffer size
 */
#define LORA_MAC_COMMAND_MAX_LENGTH                 15

/*!
 * FRMPayload overhead to be used when setting the Radio.SetMaxPayloadLength
 * in RxWindowSetup function.
 * Maximum PHYPayload = MaxPayloadOfDatarate/MaxPayloadOfDatarateRepeater + LORA_MAC_FRMPAYLOAD_OVERHEAD
 */
#define LORA_MAC_FRMPAYLOAD_OVERHEAD                13 // MHDR(1) + FHDR(7) + Port(1) + MIC(4)

/*!
 * Device IEEE EUI
 */
static uint8_t *LoRaMacDevEui;

/*!
 * Application IEEE EUI
 */
static uint8_t *LoRaMacAppEui;

/*!
 * AES encryption/decryption cipher application key
 */
static uint8_t *LoRaMacAppKey;

/*!
 * AES encryption/decryption cipher network session key
 */
static uint8_t LoRaMacNwkSKey[] =
{
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/*!
 * AES encryption/decryption cipher application session key
 */
static uint8_t LoRaMacAppSKey[] =
{
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/*!
 * Device nonce is a random value extracted by issuing a sequence of RSSI
 * measurements
 */
static uint16_t LoRaMacDevNonce;

/*!
 * Network ID ( 3 bytes )
 */
static uint32_t LoRaMacNetID;

/*!
 * Mote Address
 */
static uint32_t LoRaMacDevAddr;

/*!
 * Multicast channels linked list
 */
static MulticastParams_t *MulticastChannels = NULL;

/*!
 * Actual device class
 */
static DeviceClass_t LoRaMacDeviceClass;

/*!
 * Indicates if the node is connected to a private or public network
 */
static bool PublicNetwork;

/*!
 * Indicates if the node supports repeaters
 */
static bool RepeaterSupport;

/*!
 * Buffer containing the data to be sent or received.
 */
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];

/*!
 * Length of packet in LoRaMacBuffer
 */
static uint16_t LoRaMacBufferPktLen = 0;

/*!
 * Buffer containing the upper layer data.
 */
static uint8_t LoRaMacPayload[LORAMAC_PHY_MAXPAYLOAD];
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];

/*!
 * LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
 * Only the 16 LSB bits are sent
 */
static uint32_t UpLinkCounter = 1;

static bool UpLinkCounterFlag = false;

/*!
 * LoRaMAC frame counter. Each time a packet is received the counter is incremented.
 * Only the 16 LSB bits are received
 */
static uint32_t DownLinkCounter = 0;

/*!
 * IsPacketCounterFixed enables the MIC field tests by fixing the
 * UpLinkCounter value
 */
static bool IsUpLinkCounterFixed = false;

/*!
 * Used for test purposes. Disables the opening of the reception windows.
 */
static bool IsRxWindowsEnabled = true;

/*!
 * Indicates if the MAC layer has already joined a network.
 */
static bool IsLoRaMacNetworkJoined = false;

/*!
 * LoRaMac ADR control status
 */
static bool AdrCtrlOn = false;

/*!
 * Counts the number of missed ADR acknowledgements
 */
static uint32_t AdrAckCounter = 0;

/*!
 * If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
 * if the nodes needs to manage the server acknowledgement.
 */
static bool NodeAckRequested = false;

/*!
 * If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
 * if the ACK bit must be set for the next transmission
 */
static bool SrvAckRequested = false;

/*!
 * Indicates if the MAC layer wants to send MAC commands
 */
static bool MacCommandsInNextTx = false;

/*!
 * Contains the current MacCommandsBuffer index
 */
static uint8_t MacCommandsBufferIndex = 0;

/*!
 * Buffer containing the MAC layer commands
 */
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];

#if defined( USE_BAND_433 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
};
#elif defined( USE_BAND_780 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
};
#elif defined( USE_BAND_868 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
    BAND1,
    BAND2,
    BAND3,
    BAND4,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
};
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 10, 9, 8,  7,  8,  0,  0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };

/*!
 * Up/Down link data rates offset definition
 */
const int8_t datarateOffsets[16][4] =
{
    { DR_10, DR_9 , DR_8 , DR_8  }, // DR_0
    { DR_11, DR_10, DR_9 , DR_8  }, // DR_1
    { DR_12, DR_11, DR_10, DR_9  }, // DR_2
    { DR_13, DR_12, DR_11, DR_10 }, // DR_3
    { DR_13, DR_13, DR_12, DR_11 }, // DR_4
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { DR_8 , DR_8 , DR_8 , DR_8  },
    { DR_9 , DR_8 , DR_8 , DR_8  },
    { DR_10, DR_9 , DR_8 , DR_8  },
    { DR_11, DR_10, DR_9 , DR_8  },
    { DR_12, DR_11, DR_10, DR_9  },
    { DR_13, DR_12, DR_11, DR_10 },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
};

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 11, 53, 129, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 11, 53, 129, 242, 242, 0, 0, 0, 33, 103, 222, 222, 222, 222, 0, 0 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];

/*!
 * Contains the channels which remain to be applied.
 */
static uint16_t ChannelsMaskRemaining[6];
#else
    #error "Please define a frequency band in the compiler options."
#endif

/*!
 * LoRaMAC 2nd reception window settings
 */
static Rx2ChannelParams_t Rx2Channel = RX_WND_2_CHANNEL;

/*!
 * Datarate offset between uplink and downlink on first window
 */
static uint8_t Rx1DrOffset = 0;

/*!
 * Mask indicating which channels are enabled
 */
static uint16_t ChannelsMask[6];

/*!
 * Channels Tx output power
 */
static int8_t ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;

/*!
 * Channels datarate
 */
static int8_t ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;

/*!
 * Channels default datarate
 */
static int8_t ChannelsDefaultDatarate = LORAMAC_DEFAULT_DATARATE;

/*!
 * Number of uplink messages repetitions [1:15] (unconfirmed messages only)
 */
static uint8_t ChannelsNbRep = 1;

/*!
 * Uplink messages repetitions counter
 */
static uint8_t ChannelsNbRepCounter = 0;

/*!
 * Maximum duty cycle
 * \remark Possibility to shutdown the device.
 */
static uint8_t MaxDCycle = 0;

/*!
 * Aggregated duty cycle management
 */
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;

/*!
 * Enables/Disables duty cycle management (Test only)
 */
static bool DutyCycleOn;

/*!
 * Current channel index
 */
static uint8_t Channel;

static uint8_t LastTxChannel;

/*!
 * LoRaMac internal states
 */
enum eLoRaMacState
{
    MAC_IDLE          = 0x00000000,
    MAC_TX_RUNNING    = 0x00000001,
    MAC_RX            = 0x00000002,
    MAC_ACK_REQ       = 0x00000004,
    MAC_ACK_RETRY     = 0x00000008,
    MAC_TX_DELAYED    = 0x00000010,
    MAC_TX_CONFIG     = 0x00000020,
    MAC_RX_ABORT      = 0x00000040,
};

/*!
 * LoRaMac internal state
 */
uint32_t LoRaMacState = MAC_IDLE;

/*!
 * LoRaMac timer used to check the LoRaMacState (runs every second)
 */
static TimerEvent_t MacStateCheckTimer;

/*!
 * LoRaMac upper layer event functions
 */
static LoRaMacPrimitives_t *LoRaMacPrimitives;

/*!
 * LoRaMac upper layer callback functions
 */
static LoRaMacCallback_t *LoRaMacCallbacks;

/*!
 * Radio events function pointer
 */
static RadioEvents_t RadioEvents;

/*!
 * LoRaMac duty cycle delayed Tx timer
 */
static TimerEvent_t TxDelayedTimer;

/*!
 * LoRaMac reception windows timers
 */
static TimerEvent_t RxWindowTimer1;
static TimerEvent_t RxWindowTimer2;

/*!
 * LoRaMac reception windows delay from end of Tx
 */
static uint32_t ReceiveDelay1;
static uint32_t ReceiveDelay2;
static uint32_t JoinAcceptDelay1;
static uint32_t JoinAcceptDelay2;

/*!
 * LoRaMac reception windows delay
 * \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
 *         join frame  : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
 */
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;

/*!
 * LoRaMac maximum time a reception window stays open
 */
static uint32_t MaxRxWindow;

/*!
 * Acknowledge timeout timer. Used for packet retransmissions.
 */
static TimerEvent_t AckTimeoutTimer;

/*!
 * Number of trials to get a frame acknowledged
 */
static uint8_t AckTimeoutRetries = 1;

/*!
 * Number of trials to get a frame acknowledged
 */
static uint8_t AckTimeoutRetriesCounter = 1;

/*!
 * Indicates if the AckTimeout timer has expired or not
 */
static bool AckTimeoutRetry = false;

/*!
 * Last transmission time on air
 */
TimerTime_t TxTimeOnAir = 0;

/*!
 * Structure to hold an MCPS indication data.
 */
static McpsIndication_t McpsIndication;

/*!
 * Structure to hold MCPS confirm data.
 */
static McpsConfirm_t McpsConfirm;

/*!
 * Structure to hold MLME confirm data.
 */
static MlmeConfirm_t MlmeConfirm;

/*!
 * Holds the current rx window slot
 */
static uint8_t RxSlot = 0;

/*!
 * LoRaMac tx/rx operation state
 */
LoRaMacFlags_t LoRaMacFlags;

/*!
 * \brief Function to be executed on Radio Tx Done event
 */
static void OnRadioTxDone( void );

/*!
 * \brief This function prepares the MAC to abort the execution of function
 *        OnRadioRxDone in case of a reception error.
 */
static void PrepareRxDoneAbort( void );

/*!
 * \brief Function to be executed on Radio Rx Done event
 */
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );

/*!
 * \brief Function executed on Radio Tx Timeout event
 */
static void OnRadioTxTimeout( void );

/*!
 * \brief Function executed on Radio Rx error event
 */
static void OnRadioRxError( void );

/*!
 * \brief Function executed on Radio Rx Timeout event
 */
static void OnRadioRxTimeout( void );

/*!
 * \brief Function executed on Resend Frame timer event.
 */
static void OnMacStateCheckTimerEvent( void );

/*!
 * \brief Function executed on duty cycle delayed Tx  timer event
 */
static void OnTxDelayedTimerEvent( void );

/*!
 * \brief Function executed on first Rx window timer event
 */
static void OnRxWindow1TimerEvent( void );

/*!
 * \brief Function executed on second Rx window timer event
 */
static void OnRxWindow2TimerEvent( void );

/*!
 * \brief Function executed on AckTimeout timer event
 */
static void OnAckTimeoutTimerEvent( void );

/*!
 * \brief Searches and set the next random available channel
 *
 * \param [OUT] Time to wait for the next transmission according to the duty
 *              cycle.
 *
 * \retval status  Function status [1: OK, 0: Unable to find a channel on the
 *                                  current datarate]
 */
static bool SetNextChannel( TimerTime_t* time );

/*!
 * \brief Sets the network to public or private. Updates the sync byte.
 *
 * \param [IN] enable if true, it enables a public network
 */
static void SetPublicNetwork( bool enable );

/*!
 * \brief Initializes and opens the reception window
 *
 * \param [IN] freq window channel frequency
 * \param [IN] datarate window channel datarate
 * \param [IN] bandwidth window channel bandwidth
 * \param [IN] timeout window channel timeout
 */
static void RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous );

/*!
 * \brief Adds a new MAC command to be sent.
 *
 * \Remark MAC layer internal function
 *
 * \param [in] cmd MAC command to be added
 *                 [MOTE_MAC_LINK_CHECK_REQ,
 *                  MOTE_MAC_LINK_ADR_ANS,
 *                  MOTE_MAC_DUTY_CYCLE_ANS,
 *                  MOTE_MAC_RX2_PARAM_SET_ANS,
 *                  MOTE_MAC_DEV_STATUS_ANS
 *                  MOTE_MAC_NEW_CHANNEL_ANS]
 * \param [in] p1  1st parameter ( optional depends on the command )
 * \param [in] p2  2nd parameter ( optional depends on the command )
 *
 * \retval status  Function status [0: OK, 1: Unknown command, 2: Buffer full]
 */
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 );

/*!
 * \brief Validates if the payload fits into the frame, taking the datarate
 *        into account.
 *
 * \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
 *
 * \param lenN Length of the application payload. The length depends on the
 *             datarate and is region specific
 *
 * \param datarate Current datarate
 *
 * \param fOptsLen Length of the fOpts field
 *
 * \retval [false: payload does not fit into the frame, true: payload fits into
 *          the frame]
 */
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen );

/*!
 * \brief Counts the number of bits in a mask.
 *
 * \param [IN] mask A mask from which the function counts the active bits.
 * \param [IN] nbBits The number of bits to check.
 *
 * \retval Number of enabled bits in the mask.
 */
static uint8_t CountBits( uint16_t mask, uint8_t nbBits );

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
 * \brief Counts the number of enabled 125 kHz channels in the channel mask.
 *        This function can only be applied to US915 band.
 *
 * \param [IN] channelsMask Pointer to the first element of the channel mask
 *
 * \retval Number of enabled channels in the channel mask
 */
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask );

#if defined( USE_BAND_915_HYBRID )
/*!
 * \brief Validates the correctness of the channel mask for US915, hybrid mode.
 *
 * \param [IN] mask Block definition to set.
 * \param [OUT] channelsMask Pointer to the first element of the channel mask
 */
static void ReenableChannels( uint16_t mask, uint16_t* channelMask );

/*!
 * \brief Validates the correctness of the channel mask for US915, hybrid mode.
 *
 * \param [IN] channelsMask Pointer to the first element of the channel mask
 *
 * \retval [true: channel mask correct, false: channel mask not correct]
 */
static bool ValidateChannelMask( uint16_t* channelMask );
#endif

#endif

/*!
 * \brief Limits the Tx power according to the number of enabled channels
 *
 * \retval Returns the maximum valid tx power
 */
static int8_t LimitTxPower( int8_t txPower );

/*!
 * \brief Verifies, if a value is in a given range.
 *
 * \param value Value to verify, if it is in range
 *
 * \param min Minimum possible value
 *
 * \param max Maximum possible value
 *
 * \retval Returns the maximum valid tx power
 */
static bool ValueInRange( int8_t value, int8_t min, int8_t max );

/*!
 * \brief Calculates the next datarate to set, when ADR is on or off
 *
 * \param [IN] adrEnabled Specify whether ADR is on or off
 *
 * \param [IN] updateChannelMask Set to true, if the channel masks shall be updated
 *
 * \param [OUT] datarateOut Reports the datarate which will be used next
 *
 * \retval Returns the state of ADR ack request
 */
static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut );

/*!
 * \brief Disables channel in a specified channel mask
 *
 * \param [IN] id - Id of the channel
 *
 * \param [IN] mask - Pointer to the channel mask to edit
 *
 * \retval [true, if disable was successful, false if not]
 */
static bool DisableChannelInMask( uint8_t id, uint16_t* mask );

/*!
 * \brief Decodes MAC commands in the fOpts field and in the payload
 */
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr );

/*!
 * \brief LoRaMAC layer generic send frame
 *
 * \param [IN] macHdr      MAC header field
 * \param [IN] fPort       MAC payload port
 * \param [IN] fBuffer     MAC data buffer to be sent
 * \param [IN] fBufferSize MAC data buffer size
 * \retval status          Status of the operation.
 */
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );

/*!
 * \brief LoRaMAC layer frame buffer initialization
 *
 * \param [IN] macHdr      MAC header field
 * \param [IN] fCtrl       MAC frame control field
 * \param [IN] fOpts       MAC commands buffer
 * \param [IN] fPort       MAC payload port
 * \param [IN] fBuffer     MAC data buffer to be sent
 * \param [IN] fBufferSize MAC data buffer size
 * \retval status          Status of the operation.
 */
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );

/*
 * \brief Schedules the frame according to the duty cycle
 *
 * \retval Status of the operation
 */
static LoRaMacStatus_t ScheduleTx( void );

/*
 * \brief Calculates the back-off time for the band of a channel.
 *
 * \param [IN] channel     The last Tx channel index
 */
static void CalculateBackOff( uint8_t channel );

/*!
 * \brief LoRaMAC layer prepared frame buffer transmission with channel specification
 *
 * \remark PrepareFrame must be called at least once before calling this
 *         function.
 *
 * \param [IN] channel     Channel parameters
 * \retval status          Status of the operation.
 */
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel );



static void OnRadioTxDone( void )
{
    TimerTime_t curTime = TimerGetCurrentTime( );
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }

    // Store last Tx channel
    LastTxChannel = Channel;
    // Update last tx done time for the current channel
    Bands[Channels[LastTxChannel].Band].LastTxDoneTime = curTime;
    // Update Aggregated last tx done time
    AggregatedLastTxDoneTime = curTime;

    if( IsRxWindowsEnabled == true )
    {
        TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
        TimerStart( &RxWindowTimer1 );
        if( LoRaMacDeviceClass != CLASS_C )
        {
            TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
            TimerStart( &RxWindowTimer2 );
        }
        if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
        {
            TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + ACK_TIMEOUT +
                                             randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
            TimerStart( &AckTimeoutTimer );
        }
    }
    else
    {
        McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
        MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;

        if( LoRaMacFlags.Value == 0 )
        {
            LoRaMacFlags.Bits.McpsReq = 1;
        }
        LoRaMacFlags.Bits.MacDone = 1;
    }

    if( NodeAckRequested == false )
    {
        McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
        ChannelsNbRepCounter++;
    }
}

static void PrepareRxDoneAbort( void )
{
    LoRaMacState |= MAC_RX_ABORT;

    if( NodeAckRequested )
    {
        OnAckTimeoutTimerEvent( );
    }

    if( ( RxSlot == 0 ) && ( LoRaMacDeviceClass == CLASS_C ) )
    {
        OnRxWindow2TimerEvent( );
    }

    LoRaMacFlags.Bits.McpsInd = 1;
    LoRaMacFlags.Bits.MacDone = 1;

    // Trig OnMacCheckTimerEvent call as soon as possible
    TimerSetValue( &MacStateCheckTimer, 1000 );
    TimerStart( &MacStateCheckTimer );
}

static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
    LoRaMacHeader_t macHdr;
    LoRaMacFrameCtrl_t fCtrl;
    bool skipIndication = false;

    uint8_t pktHeaderLen = 0;
    uint32_t address = 0;
    uint8_t appPayloadStartIndex = 0;
    uint8_t port = 0xFF;
    uint8_t frameLen = 0;
    uint32_t mic = 0;
    uint32_t micRx = 0;

    uint16_t sequenceCounter = 0;
    uint16_t sequenceCounterPrev = 0;
    uint16_t sequenceCounterDiff = 0;
    uint32_t downLinkCounter = 0;

    MulticastParams_t *curMulticastParams = NULL;
    uint8_t *nwkSKey = LoRaMacNwkSKey;
    uint8_t *appSKey = LoRaMacAppSKey;

    uint8_t multicast = 0;

    bool isMicOk = false;

    McpsConfirm.AckReceived = false;
    McpsIndication.Rssi = rssi;
    McpsIndication.Snr = snr;
    McpsIndication.RxSlot = RxSlot;
    McpsIndication.Port = 0;
    McpsIndication.Multicast = 0;
    McpsIndication.FramePending = 0;
    McpsIndication.Buffer = NULL;
    McpsIndication.BufferSize = 0;
    McpsIndication.RxData = false;
    McpsIndication.AckReceived = false;
    McpsIndication.DownLinkCounter = 0;
    McpsIndication.McpsIndication = MCPS_UNCONFIRMED;

    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    TimerStop( &RxWindowTimer2 );

    macHdr.Value = payload[pktHeaderLen++];

    switch( macHdr.Bits.MType )
    {
        case FRAME_TYPE_JOIN_ACCEPT:
            if( IsLoRaMacNetworkJoined == true )
            {
                break;
            }
            LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );

            LoRaMacRxPayload[0] = macHdr.Value;

            LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );

            micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );

            if( micRx == mic )
            {
                LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );

                LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
                LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
                LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );

                LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );

                // DLSettings
                Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
                Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                /*
                 * WARNING: To be removed once Semtech server implementation
                 *          is corrected.
                 */
                if( Rx2Channel.Datarate == DR_3 )
                {
                    Rx2Channel.Datarate = DR_8;
                }
#endif
                // RxDelay
                ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
                if( ReceiveDelay1 == 0 )
                {
                    ReceiveDelay1 = 1;
                }
                ReceiveDelay1 *= 1e6;
                ReceiveDelay2 = ReceiveDelay1 + 1e6;

#if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
                //CFList
                if( ( size - 1 ) > 16 )
                {
                    ChannelParams_t param;
                    param.DrRange.Value = ( DR_5 << 4 ) | DR_0;

                    LoRaMacState |= MAC_TX_CONFIG;
                    for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 )
                    {
                        param.Frequency = ( ( uint32_t )LoRaMacRxPayload[13 + j] | ( ( uint32_t )LoRaMacRxPayload[14 + j] << 8 ) | ( ( uint32_t )LoRaMacRxPayload[15 + j] << 16 ) ) * 100;
                        LoRaMacChannelAdd( i, param );
                    }
                    LoRaMacState &= ~MAC_TX_CONFIG;
                }
#endif
                MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
                IsLoRaMacNetworkJoined = true;
                ChannelsDatarate = ChannelsDefaultDatarate;
            }
            else
            {
                MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
            }
            break;
        case FRAME_TYPE_DATA_CONFIRMED_DOWN:
        case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
            {
                address = payload[pktHeaderLen++];
                address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
                address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
                address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );

                if( address != LoRaMacDevAddr )
                {
                    curMulticastParams = MulticastChannels;
                    while( curMulticastParams != NULL )
                    {
                        if( address == curMulticastParams->Address )
                        {
                            multicast = 1;
                            nwkSKey = curMulticastParams->NwkSKey;
                            appSKey = curMulticastParams->AppSKey;
                            downLinkCounter = curMulticastParams->DownLinkCounter;
                            break;
                        }
                        curMulticastParams = curMulticastParams->Next;
                    }
                    if( multicast == 0 )
                    {
                        // We are not the destination of this frame.
                        McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
                        PrepareRxDoneAbort( );
                        return;
                    }
                }
                else
                {
                    multicast = 0;
                    nwkSKey = LoRaMacNwkSKey;
                    appSKey = LoRaMacAppSKey;
                    downLinkCounter = DownLinkCounter;
                }

                fCtrl.Value = payload[pktHeaderLen++];

                sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
                sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;

                appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;

                micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
                micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
                micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
                micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );

                sequenceCounterPrev = ( uint16_t )downLinkCounter;
                sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );

                if( sequenceCounterDiff < ( 1 << 15 ) )
                {
                    downLinkCounter += sequenceCounterDiff;
                    LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
                    if( micRx == mic )
                    {
                        isMicOk = true;
                    }
                }
                else
                {
                    // check for sequence roll-over
                    uint32_t  downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
                    LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
                    if( micRx == mic )
                    {
                        isMicOk = true;
                        downLinkCounter = downLinkCounterTmp;
                    }
                }

                // Check for a the maximum allowed counter difference
                if( sequenceCounterDiff >= MAX_FCNT_GAP )
                {
                    McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS;
                    McpsIndication.DownLinkCounter = downLinkCounter;
                    PrepareRxDoneAbort( );
                    return;
                }

                if( isMicOk == true )
                {
                    McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
                    McpsIndication.Multicast = multicast;
                    McpsIndication.FramePending = fCtrl.Bits.FPending;
                    McpsIndication.Buffer = NULL;
                    McpsIndication.BufferSize = 0;
                    McpsIndication.DownLinkCounter = downLinkCounter;

                    McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;

                    AdrAckCounter = 0;

                    // Update 32 bits downlink counter
                    if( multicast == 1 )
                    {
                        McpsIndication.McpsIndication = MCPS_MULTICAST;

                        if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
                            ( curMulticastParams->DownLinkCounter != 0 ) )
                        {
                            McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
                            McpsIndication.DownLinkCounter = downLinkCounter;
                            PrepareRxDoneAbort( );
                            return;
                        }
                        curMulticastParams->DownLinkCounter = downLinkCounter;
                    }
                    else
                    {
                        if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
                        {
                            SrvAckRequested = true;
                            McpsIndication.McpsIndication = MCPS_CONFIRMED;

                            if( ( DownLinkCounter == downLinkCounter ) &&
                                ( DownLinkCounter != 0 ) )
                            {
                                // Duplicated confirmed downlink. Skip indication.
                                skipIndication = true;
                            }
                        }
                        else
                        {
                            SrvAckRequested = false;
                            McpsIndication.McpsIndication = MCPS_UNCONFIRMED;

                            if( ( DownLinkCounter == downLinkCounter ) &&
                                ( DownLinkCounter != 0 ) )
                            {
                                McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
                                McpsIndication.DownLinkCounter = downLinkCounter;
                                PrepareRxDoneAbort( );
                                return;
                            }
                        }
                        DownLinkCounter = downLinkCounter;
                    }

                    // Check if the frame is an acknowledgement
                    if( fCtrl.Bits.Ack == 1 )
                    {
                        McpsConfirm.AckReceived = true;
                        McpsIndication.AckReceived = true;

                        // Stop the AckTimeout timer as no more retransmissions
                        // are needed.
                        TimerStop( &AckTimeoutTimer );
                    }
                    else
                    {
                        McpsConfirm.AckReceived = false;

                        if( AckTimeoutRetriesCounter > AckTimeoutRetries )
                        {
                            // Stop the AckTimeout timer as no more retransmissions
                            // are needed.
                            TimerStop( &AckTimeoutTimer );
                        }
                    }

                    if( fCtrl.Bits.FOptsLen > 0 )
                    {
                        // Decode Options field MAC commands
                        ProcessMacCommands( payload, 8, appPayloadStartIndex, snr );
                    }
                    if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
                    {
                        port = payload[appPayloadStartIndex++];
                        frameLen = ( size - 4 ) - appPayloadStartIndex;

                        McpsIndication.Port = port;

                        if( port == 0 )
                        {
                            LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
                                                   frameLen,
                                                   nwkSKey,
                                                   address,
                                                   DOWN_LINK,
                                                   downLinkCounter,
                                                   LoRaMacRxPayload );

                            // Decode frame payload MAC commands
                            ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );
                        }
                        else
                        {
                            LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
                                                   frameLen,
                                                   appSKey,
                                                   address,
                                                   DOWN_LINK,
                                                   downLinkCounter,
                                                   LoRaMacRxPayload );

                            if( skipIndication == false )
                            {
                                McpsIndication.Buffer = LoRaMacRxPayload;
                                McpsIndication.BufferSize = frameLen;
                                McpsIndication.RxData = true;
                            }
                        }
                    }
                    if( skipIndication == false )
                    {
                        LoRaMacFlags.Bits.McpsInd = 1;
                    }
                }
                else
                {
                    McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;

                    PrepareRxDoneAbort( );
                    return;
                }
            }
            break;
        case FRAME_TYPE_PROPRIETARY:
            {
                memcpy1( LoRaMacRxPayload, &payload[pktHeaderLen], size );

                McpsIndication.McpsIndication = MCPS_PROPRIETARY;
                McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
                McpsIndication.Buffer = LoRaMacRxPayload;
                McpsIndication.BufferSize = size - pktHeaderLen;

                LoRaMacFlags.Bits.McpsInd = 1;
                break;
            }
        default:
            McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
            PrepareRxDoneAbort( );
            break;
    }

    if( ( RxSlot == 0 ) && ( LoRaMacDeviceClass == CLASS_C ) )
    {
        OnRxWindow2TimerEvent( );
    }
    LoRaMacFlags.Bits.MacDone = 1;

    // Trig OnMacCheckTimerEvent call as soon as possible
    TimerSetValue( &MacStateCheckTimer, 1000 );
    TimerStart( &MacStateCheckTimer );
}

static void OnRadioTxTimeout( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }

    McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
    MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
    LoRaMacFlags.Bits.MacDone = 1;
}

static void OnRadioRxError( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }

    if( RxSlot == 1 )
    {
        if( NodeAckRequested == true )
        {
            McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
        }
        MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
        LoRaMacFlags.Bits.MacDone = 1;
    }
}

static void OnRadioRxTimeout( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }

    if( RxSlot == 1 )
    {
        if( NodeAckRequested == true )
        {
            McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
        }
        MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
        LoRaMacFlags.Bits.MacDone = 1;
    }
}

static void OnMacStateCheckTimerEvent( void )
{
    TimerStop( &MacStateCheckTimer );
    bool txTimeout = false;

    if( LoRaMacFlags.Bits.MacDone == 1 )
    {
        if( ( LoRaMacState & MAC_RX_ABORT ) == MAC_RX_ABORT )
        {
            LoRaMacState &= ~MAC_RX_ABORT;
            LoRaMacState &= ~MAC_TX_RUNNING;
        }

        if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
        {
            if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
                ( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
            {
                // Stop transmit cycle due to tx timeout.
                LoRaMacState &= ~MAC_TX_RUNNING;
                McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
                McpsConfirm.AckReceived = false;
                McpsConfirm.TxTimeOnAir = 0;
                txTimeout = true;
            }
        }

        if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
        {
            if( LoRaMacFlags.Bits.MlmeReq == 1 )
            {
                if( MlmeConfirm.MlmeRequest == MLME_JOIN )
                {
                    if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
                    {
                        UpLinkCounter = 0;
                    }
                    // Join messages aren't repeated automatically
                    ChannelsNbRepCounter = ChannelsNbRep;
                }
            }
            if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
            {                
                if( ( ChannelsNbRepCounter >= ChannelsNbRep ) || ( LoRaMacFlags.Bits.McpsInd == 1 ) )
                {
                    ChannelsNbRepCounter = 0;

                    AdrAckCounter++;
                    if( IsUpLinkCounterFixed == false )
                    {
                        UpLinkCounter++;
                        UpLinkCounterFlag = true;
                    }

                    LoRaMacState &= ~MAC_TX_RUNNING;
                }
                else
                {
                    LoRaMacFlags.Bits.MacDone = 0;
                    // Sends the same frame again
                    ScheduleTx( );
                }
            }
        }

        if( LoRaMacFlags.Bits.McpsInd == 1 )
        {            
            if( ( McpsConfirm.AckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
            {
                AckTimeoutRetry = false;
                NodeAckRequested = false;
                //if( ( IsUpLinkCounterFixed == false ) )
                if( ( IsUpLinkCounterFixed == false ) && ( UpLinkCounterFlag == false ) )
                {
                    UpLinkCounter++;
                }
                McpsConfirm.NbRetries = AckTimeoutRetriesCounter;

                LoRaMacState &= ~MAC_TX_RUNNING;
            }
        }
        
        UpLinkCounterFlag = false;

        if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & MAC_TX_DELAYED ) == 0 ) )
        {
            AckTimeoutRetry = false;
            if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
            {
                AckTimeoutRetriesCounter++;

                if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
                {
                    ChannelsDatarate = MAX( ChannelsDatarate - 1, LORAMAC_TX_MIN_DATARATE );
                }
                LoRaMacFlags.Bits.MacDone = 0;
                // Sends the same frame again
                ScheduleTx( );
            }
            else
            {
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                // Re-enable default channels LC1, LC2, LC3
                ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#elif defined( USE_BAND_915 )
                // Re-enable default channels
                ChannelsMask[0] = 0xFFFF;
                ChannelsMask[1] = 0xFFFF;
                ChannelsMask[2] = 0xFFFF;
                ChannelsMask[3] = 0xFFFF;
                ChannelsMask[4] = 0x00FF;
                ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
                // Re-enable default channels
                ReenableChannels( ChannelsMask[4], ChannelsMask );
#else
    #error "Please define a frequency band in the compiler options."
#endif
                LoRaMacState &= ~MAC_TX_RUNNING;

                NodeAckRequested = false;
                McpsConfirm.AckReceived = false;
                McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
                if( IsUpLinkCounterFixed == false )
                {
                    UpLinkCounter++;
                }
            }
        }
    }
    // Handle reception for Class B and Class C
    if( ( LoRaMacState & MAC_RX ) == MAC_RX )
    {
        LoRaMacState &= ~MAC_RX;
    }
    if( LoRaMacState == MAC_IDLE )
    {
        if( LoRaMacFlags.Bits.McpsReq == 1 )
        {
            LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
            LoRaMacFlags.Bits.McpsReq = 0;
        }

        if( LoRaMacFlags.Bits.MlmeReq == 1 )
        {
            LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
            LoRaMacFlags.Bits.MlmeReq = 0;
        }

        LoRaMacFlags.Bits.MacDone = 0;
    }
    else
    {
        // Operation not finished restart timer
        TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
        TimerStart( &MacStateCheckTimer );
    }

    if( LoRaMacFlags.Bits.McpsInd == 1 )
    {
        LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
        LoRaMacFlags.Bits.McpsInd = 0;
    }
}

static void OnTxDelayedTimerEvent( void )
{
    TimerStop( &TxDelayedTimer );
    LoRaMacState &= ~MAC_TX_DELAYED;

    ScheduleTx( );
}

static void OnRxWindow1TimerEvent( void )
{
    uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
    int8_t datarate = 0;
    uint32_t bandwidth = 0; // LoRa 125 kHz

    TimerStop( &RxWindowTimer1 );
    RxSlot = 0;

    if( LoRaMacDeviceClass == CLASS_C )
    {
        Radio.Standby( );
    }

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    datarate = ChannelsDatarate - Rx1DrOffset;
    if( datarate < 0 )
    {
        datarate = DR_0;
    }

    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( ( datarate == DR_3 ) || ( datarate == DR_4 ) )
    { // DR_4, DR_3
        symbTimeout = 8;
    }
    else if( datarate == DR_5 )
    {
        symbTimeout = 10;
    }
    else if( datarate == DR_6 )
    {// LoRa 250 kHz
        bandwidth  = 1;
        symbTimeout = 14;
    }
    RxWindowSetup( Channels[Channel].Frequency, datarate, bandwidth, symbTimeout, false );
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    datarate = datarateOffsets[ChannelsDatarate][Rx1DrOffset];
    if( datarate < 0 )
    {
        datarate = DR_0;
    }
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    switch( datarate )
    {
        case DR_0:       // SF10 - BW125
            symbTimeout = 5;
            break;

        case DR_1:       // SF9  - BW125
        case DR_2:       // SF8  - BW125
        case DR_8:       // SF12 - BW500
        case DR_9:       // SF11 - BW500
        case DR_10:      // SF10 - BW500
            symbTimeout = 8;
            break;

        case DR_3:       // SF7  - BW125
        case DR_11:      // SF9  - BW500
            symbTimeout = 10;
            break;

        case DR_4:       // SF8  - BW500
        case DR_12:      // SF8  - BW500
            symbTimeout = 14;
            break;

        case DR_13:      // SF7  - BW500
            symbTimeout = 16;
            break;
        default:
            break;
    }
    if( datarate >= DR_4 )
    {// LoRa 500 kHz
        bandwidth  = 2;
    }
    RxWindowSetup( 923.3e6 + ( Channel % 8 ) * 600e3, datarate, bandwidth, symbTimeout, false );
#else
    #error "Please define a frequency band in the compiler options."
#endif
}

static void OnRxWindow2TimerEvent( void )
{
    uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
    uint32_t bandwidth = 0; // LoRa 125 kHz

    TimerStop( &RxWindowTimer2 );
    RxSlot = 1;

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( ( Rx2Channel.Datarate == DR_3 ) || ( Rx2Channel.Datarate == DR_4 ) )
    { // DR_4, DR_3
        symbTimeout = 8;
    }
    else if( Rx2Channel.Datarate == DR_5 )
    {
        symbTimeout = 10;
    }
    else if( Rx2Channel.Datarate == DR_6 )
    {// LoRa 250 kHz
        bandwidth  = 1;
        symbTimeout = 14;
    }
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    switch( Rx2Channel.Datarate )
    {
        case DR_0:       // SF10 - BW125
            symbTimeout = 5;
            break;

        case DR_1:       // SF9  - BW125
        case DR_2:       // SF8  - BW125
        case DR_8:       // SF12 - BW500
        case DR_9:       // SF11 - BW500
        case DR_10:      // SF10 - BW500
            symbTimeout = 8;
            break;

        case DR_3:       // SF7  - BW125
        case DR_11:      // SF9  - BW500
            symbTimeout = 10;
            break;

        case DR_4:       // SF8  - BW500
        case DR_12:      // SF8  - BW500
            symbTimeout = 14;
            break;

        case DR_13:      // SF7  - BW500
            symbTimeout = 16;
            break;
        default:
            break;
    }
    if( Rx2Channel.Datarate >= DR_4 )
    {// LoRa 500 kHz
        bandwidth  = 2;
    }
#else
    #error "Please define a frequency band in the compiler options."
#endif
    if( LoRaMacDeviceClass != CLASS_C )
    {
        RxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, false );
    }
    else
    {
        RxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, true );
    }
}

static void OnAckTimeoutTimerEvent( void )
{
    TimerStop( &AckTimeoutTimer );

    if( NodeAckRequested == true )
    {
        AckTimeoutRetry = true;
        LoRaMacState &= ~MAC_ACK_REQ;
    }
    if( LoRaMacDeviceClass == CLASS_C )
    {
        LoRaMacFlags.Bits.MacDone = 1;
    }
}

static bool SetNextChannel( TimerTime_t* time )
{
    uint8_t nbEnabledChannels = 0;
    uint8_t delayTx = 0;
    uint8_t enabledChannels[LORA_MAX_NB_CHANNELS];
    TimerTime_t nextTxDelay = ( TimerTime_t )( -1 );

    memset1( enabledChannels, 0, LORA_MAX_NB_CHANNELS );

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    if( CountNbEnabled125kHzChannels( ChannelsMaskRemaining ) == 0 )
    { // Restore default channels
        memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, 8 );
    }
    if( ( ChannelsDatarate >= DR_4 ) && ( ( ChannelsMaskRemaining[4] & 0x00FF ) == 0 ) )
    { // Make sure, that the channels are activated
        ChannelsMaskRemaining[4] = ChannelsMask[4];
    }
#else
    if( CountBits( ChannelsMask[0], 16 ) == 0 )
    {
        // Re-enable default channels, if no channel is enabled
        ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
    }
#endif

    // Update Aggregated duty cycle
    if( AggregatedTimeOff <= TimerGetElapsedTime( AggregatedLastTxDoneTime ) )
    {
        AggregatedTimeOff = 0;

        // Update bands Time OFF
        for( uint8_t i = 0; i < LORA_MAX_NB_BANDS; i++ )
        {
            if( DutyCycleOn == true )
            {
                if( Bands[i].TimeOff <= TimerGetElapsedTime( Bands[i].LastTxDoneTime ) )
                {
                    Bands[i].TimeOff = 0;
                }
                if( Bands[i].TimeOff != 0 )
                {
                    nextTxDelay = MIN( Bands[i].TimeOff -
                                       TimerGetElapsedTime( Bands[i].LastTxDoneTime ),
                                       nextTxDelay );
                }
            }
            else
            {
                nextTxDelay = 0;
                Bands[i].TimeOff = 0;
            }
        }

        // Search how many channels are enabled
        for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
        {
            for( uint8_t j = 0; j < 16; j++ )
            {
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                if( ( ChannelsMaskRemaining[k] & ( 1 << j ) ) != 0 )
#else
                if( ( ChannelsMask[k] & ( 1 << j ) ) != 0 )
#endif
                {
                    if( Channels[i + j].Frequency == 0 )
                    { // Check if the channel is enabled
                        continue;
                    }
#if defined( USE_BAND_868 ) || defined( USE_BAND_433 ) || defined( USE_BAND_780 )
                    if( IsLoRaMacNetworkJoined == false )
                    {
                        if( ( JOIN_CHANNELS & ( 1 << j ) ) == 0 )
                        {
                            continue;
                        }
                    }
#endif
                    if( ( ( Channels[i + j].DrRange.Fields.Min <= ChannelsDatarate ) &&
                          ( ChannelsDatarate <= Channels[i + j].DrRange.Fields.Max ) ) == false )
                    { // Check if the current channel selection supports the given datarate
                        continue;
                    }
                    if( Bands[Channels[i + j].Band].TimeOff > 0 )
                    { // Check if the band is available for transmission
                        delayTx++;
                        continue;
                    }
                    enabledChannels[nbEnabledChannels++] = i + j;
                }
            }
        }
    }
    else
    {
        delayTx++;
        nextTxDelay = AggregatedTimeOff - TimerGetElapsedTime( AggregatedLastTxDoneTime );
    }

    if( nbEnabledChannels > 0 )
    {
        Channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
        if( Channel < ( LORA_MAX_NB_CHANNELS - 8 ) )
        {
            DisableChannelInMask( Channel, ChannelsMaskRemaining );
        }
#endif
        *time = 0;
        return true;
    }
    else
    {
        if( delayTx > 0 )
        {
            // Delay transmission due to AggregatedTimeOff or to a band time off
            *time = nextTxDelay;
            return true;
        }
        // Datarate not supported by any channel
        *time = 0;
        return false;
    }
}

static void SetPublicNetwork( bool enable )
{
    PublicNetwork = enable;
    Radio.SetModem( MODEM_LORA );
    if( PublicNetwork == true )
    {
        // Change LoRa modem SyncWord
        Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
    }
    else
    {
        // Change LoRa modem SyncWord
        Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD );
    }
}

static void RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
    uint8_t downlinkDatarate = Datarates[datarate];
    RadioModems_t modem;

    if( Radio.GetStatus( ) == RF_IDLE )
    {
        Radio.SetChannel( freq );

        // Store downlink datarate
        McpsIndication.RxDatarate = ( uint8_t ) datarate;

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
        if( datarate == DR_7 )
        {
            modem = MODEM_FSK;
            Radio.SetRxConfig( modem, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, rxContinuous );
        }
        else
        {
            modem = MODEM_LORA;
            Radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
        }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
        modem = MODEM_LORA;
        Radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
#endif

        if( RepeaterSupport == true )
        {
            Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarateRepeater[datarate] + LORA_MAC_FRMPAYLOAD_OVERHEAD );
        }
        else
        {
            Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] + LORA_MAC_FRMPAYLOAD_OVERHEAD );
        }

        if( rxContinuous == false )
        {
            Radio.Rx( MaxRxWindow );
        }
        else
        {
            Radio.Rx( 0 ); // Continuous mode
        }
    }
}

static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen )
{
    uint16_t maxN = 0;
    uint16_t payloadSize = 0;

    // Get the maximum payload length
    if( RepeaterSupport == true )
    {
        maxN = MaxPayloadOfDatarateRepeater[datarate];
    }
    else
    {
        maxN = MaxPayloadOfDatarate[datarate];
    }

    // Calculate the resulting payload size
    payloadSize = ( lenN + fOptsLen );

    // Validation of the application payload size
    if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) )
    {
        return true;
    }
    return false;
}

static uint8_t CountBits( uint16_t mask, uint8_t nbBits )
{
    uint8_t nbActiveBits = 0;

    for( uint8_t j = 0; j < nbBits; j++ )
    {
        if( ( mask & ( 1 << j ) ) == ( 1 << j ) )
        {
            nbActiveBits++;
        }
    }
    return nbActiveBits;
}

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask )
{
    uint8_t nb125kHzChannels = 0;

    for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
    {
        nb125kHzChannels += CountBits( channelsMask[k], 16 );
    }

    return nb125kHzChannels;
}

#if defined( USE_BAND_915_HYBRID )
static void ReenableChannels( uint16_t mask, uint16_t* channelMask )
{
    uint16_t blockMask = mask;

    for( uint8_t i = 0, j = 0; i < 4; i++, j += 2 )
    {
        channelMask[i] = 0;
        if( ( blockMask & ( 1 << j ) ) != 0 )
        {
            channelMask[i] |= 0x00FF;
        }
        if( ( blockMask & ( 1 << ( j + 1 ) ) ) != 0 )
        {
            channelMask[i] |= 0xFF00;
        }
    }
    channelMask[4] = blockMask;
    channelMask[5] = 0x0000;
}

static bool ValidateChannelMask( uint16_t* channelMask )
{
    bool chanMaskState = false;
    uint16_t block1 = 0;
    uint16_t block2 = 0;
    uint8_t index = 0;

    for( uint8_t i = 0; i < 4; i++ )
    {
        block1 = channelMask[i] & 0x00FF;
        block2 = channelMask[i] & 0xFF00;

        if( ( CountBits( block1, 16 ) > 5 ) && ( chanMaskState == false ) )
        {
            channelMask[i] &= block1;
            channelMask[4] = 1 << ( i * 2 );
            chanMaskState = true;
            index = i;
        }
        else if( ( CountBits( block2, 16 ) > 5 ) && ( chanMaskState == false ) )
        {
            channelMask[i] &= block2;
            channelMask[4] = 1 << ( i * 2 + 1 );
            chanMaskState = true;
            index = i;
        }
    }

    // Do only change the channel mask, if we have found a valid block.
    if( chanMaskState == true )
    {
        for( uint8_t i = 0; i < 4; i++ )
        {
            if( i != index )
            {
                channelMask[i] = 0;
            }
        }
    }
    return chanMaskState;
}
#endif
#endif

static int8_t LimitTxPower( int8_t txPower )
{
    int8_t resultTxPower = txPower;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    if( ( ChannelsDatarate == DR_4 ) ||
        ( ( ChannelsDatarate >= DR_8 ) && ( ChannelsDatarate <= DR_13 ) ) )
    {// Limit tx power to max 26dBm
        resultTxPower =  MAX( txPower, TX_POWER_26_DBM );
    }
    else
    {
        if( CountNbEnabled125kHzChannels( ChannelsMask ) < 50 )
        {// Limit tx power to max 21dBm
            resultTxPower = MAX( txPower, TX_POWER_20_DBM );
        }
    }
#endif
    return resultTxPower;
}

static bool ValueInRange( int8_t value, int8_t min, int8_t max )
{
    if( ( value >= min ) && ( value <= max ) )
    {
        return true;
    }
    return false;
}

static bool DisableChannelInMask( uint8_t id, uint16_t* mask )
{
    uint8_t index = 0;
    index = id / 16;

    if( ( index > 4 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
    {
        return false;
    }

    // Deactivate channel
    mask[index] &= ~( 1 << ( id % 16 ) );

    return true;
}

static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut )
{
    bool adrAckReq = false;
    int8_t datarate = ChannelsDatarate;

    if( adrEnabled == true )
    {
        if( datarate == LORAMAC_TX_MIN_DATARATE )
        {
            AdrAckCounter = 0;
            adrAckReq = false;
        }
        else
        {
            if( AdrAckCounter >= ADR_ACK_LIMIT )
            {
                adrAckReq = true;
            }
            else
            {
                adrAckReq = false;
            }
            if( AdrAckCounter >= ( ADR_ACK_LIMIT + ADR_ACK_DELAY ) )
            {
                if( ( ( AdrAckCounter - ADR_ACK_DELAY ) % ADR_ACK_LIMIT ) == 0 )
                {
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                    if( datarate > LORAMAC_TX_MIN_DATARATE )
                    {
                        datarate--;
                    }
                    if( datarate == LORAMAC_TX_MIN_DATARATE )
                    {
                        if( updateChannelMask == true )
                        {

                            // Re-enable default channels LC1, LC2, LC3
                            ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
                        }
                    }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                    if( ( datarate > LORAMAC_TX_MIN_DATARATE ) && ( datarate == DR_8 ) )
                    {
                        datarate = DR_4;
                    }
                    else if( datarate > LORAMAC_TX_MIN_DATARATE )
                    {
                        datarate--;
                    }
                    if( datarate == LORAMAC_TX_MIN_DATARATE )
                    {
                        if( updateChannelMask == true )
                        {
#if defined( USE_BAND_915 )
                            // Re-enable default channels
                            ChannelsMask[0] = 0xFFFF;
                            ChannelsMask[1] = 0xFFFF;
                            ChannelsMask[2] = 0xFFFF;
                            ChannelsMask[3] = 0xFFFF;
                            ChannelsMask[4] = 0x00FF;
                            ChannelsMask[5] = 0x0000;
#else // defined( USE_BAND_915_HYBRID )
                            // Re-enable default channels
                            ReenableChannels( ChannelsMask[4], ChannelsMask );
#endif
                        }
                    }
#else
#error "Please define a frequency band in the compiler options."
#endif
                }
            }
        }
    }

    *datarateOut = datarate;

    return adrAckReq;
}

static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
    LoRaMacStatus_t status = LORAMAC_STATUS_BUSY;

    switch( cmd )
    {
        case MOTE_MAC_LINK_CHECK_REQ:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this command
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_LINK_ADR_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Margin
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_DUTY_CYCLE_ANS:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this answer
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_RX_PARAM_SETUP_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Status: Datarate ACK, Channel ACK
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_DEV_STATUS_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 2 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // 1st byte Battery
                // 2nd byte Margin
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_NEW_CHANNEL_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Status: Datarate range OK, Channel frequency OK
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = LORAMAC_STATUS_OK;
            }
            break;
        case MOTE_MAC_RX_TIMING_SETUP_ANS:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this answer
                status = LORAMAC_STATUS_OK;
            }
            break;
        default:
            return LORAMAC_STATUS_SERVICE_UNKNOWN;
    }
    if( status == LORAMAC_STATUS_OK )
    {
        MacCommandsInNextTx = true;
    }
    return status;
}

static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr )
{
    while( macIndex < commandsSize )
    {
        // Decode Frame MAC commands
        switch( payload[macIndex++] )
        {
            case SRV_MAC_LINK_CHECK_ANS:
                MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
                MlmeConfirm.DemodMargin = payload[macIndex++];
                MlmeConfirm.NbGateways = payload[macIndex++];
                break;
            case SRV_MAC_LINK_ADR_REQ:
                {
                    uint8_t i;
                    uint8_t status = 0x07;
                    uint16_t chMask;
                    int8_t txPower = 0;
                    int8_t datarate = 0;
                    uint8_t nbRep = 0;
                    uint8_t chMaskCntl = 0;
                    uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };

                    // Initialize local copy of the channels mask array
                    for( i = 0; i < 6; i++ )
                    {
                        channelsMask[i] = ChannelsMask[i];
                    }
                    datarate = payload[macIndex++];
                    txPower = datarate & 0x0F;
                    datarate = ( datarate >> 4 ) & 0x0F;

                    if( ( AdrCtrlOn == false ) &&
                        ( ( ChannelsDatarate != datarate ) || ( ChannelsTxPower != txPower ) ) )
                    { // ADR disabled don't handle ADR requests if server tries to change datarate or txpower
                        // Answer the server with fail status
                        // Power ACK     = 0
                        // Data rate ACK = 0
                        // Channel mask  = 0
                        AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );
                        macIndex += 3;  // Skip over the remaining bytes of the request
                        break;
                    }
                    chMask = ( uint16_t )payload[macIndex++];
                    chMask |= ( uint16_t )payload[macIndex++] << 8;

                    nbRep = payload[macIndex++];
                    chMaskCntl = ( nbRep >> 4 ) & 0x07;
                    nbRep &= 0x0F;
                    if( nbRep == 0 )
                    {
                        nbRep = 1;
                    }
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                    if( ( chMaskCntl == 0 ) && ( chMask == 0 ) )
                    {
                        status &= 0xFE; // Channel mask KO
                    }
                    else if( ( ( chMaskCntl >= 1 ) && ( chMaskCntl <= 5 )) ||
                             ( chMaskCntl >= 7 ) )
                    {
                        // RFU
                        status &= 0xFE; // Channel mask KO
                    }
                    else
                    {
                        for( i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
                        {
                            if( chMaskCntl == 6 )
                            {
                                if( Channels[i].Frequency != 0 )
                                {
                                    chMask |= 1 << i;
                                }
                            }
                            else
                            {
                                if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
                                    ( Channels[i].Frequency == 0 ) )
                                {// Trying to enable an undefined channel
                                    status &= 0xFE; // Channel mask KO
                                }
                            }
                        }
                        channelsMask[0] = chMask;
                    }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                    if( chMaskCntl == 6 )
                    {
                        // Enable all 125 kHz channels
                        for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
                        {
                            for( uint8_t j = 0; j < 16; j++ )
                            {
                                if( Channels[i + j].Frequency != 0 )
                                {
                                    channelsMask[k] |= 1 << j;
                                }
                            }
                        }
                    }
                    else if( chMaskCntl == 7 )
                    {
                        // Disable all 125 kHz channels
                        channelsMask[0] = 0x0000;
                        channelsMask[1] = 0x0000;
                        channelsMask[2] = 0x0000;
                        channelsMask[3] = 0x0000;
                    }
                    else if( chMaskCntl == 5 )
                    {
                        // RFU
                        status &= 0xFE; // Channel mask KO
                    }
                    else
                    {
                        for( uint8_t i = 0; i < 16; i++ )
                        {
                            if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
                                ( Channels[chMaskCntl * 16 + i].Frequency == 0 ) )
                            {// Trying to enable an undefined channel
                                status &= 0xFE; // Channel mask KO
                            }
                        }
                        channelsMask[chMaskCntl] = chMask;

                        if( CountNbEnabled125kHzChannels( channelsMask ) < 6 )
                        {
                            status &= 0xFE; // Channel mask KO
                        }

#if defined( USE_BAND_915_HYBRID )
                        if( ValidateChannelMask( channelsMask ) == false )
                        {
                            status &= 0xFE; // Channel mask KO
                        }
#endif
                    }
#else
    #error "Please define a frequency band in the compiler options."
#endif
                    if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == false )
                    {
                        status &= 0xFD; // Datarate KO
                    }

                    //
                    // Remark MaxTxPower = 0 and MinTxPower = 5
                    //
                    if( ValueInRange( txPower, LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) == false )
                    {
                        status &= 0xFB; // TxPower KO
                    }
                    if( ( status & 0x07 ) == 0x07 )
                    {
                        ChannelsDatarate = datarate;
                        ChannelsTxPower = txPower;

                        ChannelsMask[0] = channelsMask[0];
                        ChannelsMask[1] = channelsMask[1];
                        ChannelsMask[2] = channelsMask[2];
                        ChannelsMask[3] = channelsMask[3];
                        ChannelsMask[4] = channelsMask[4];
                        ChannelsMask[5] = channelsMask[5];

                        ChannelsNbRep = nbRep;
                    }
                    AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
                }
                break;
            case SRV_MAC_DUTY_CYCLE_REQ:
                MaxDCycle = payload[macIndex++];
                AggregatedDCycle = 1 << MaxDCycle;
                AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
                break;
            case SRV_MAC_RX_PARAM_SETUP_REQ:
                {
                    uint8_t status = 0x07;
                    int8_t datarate = 0;
                    int8_t drOffset = 0;
                    uint32_t freq = 0;

                    drOffset = ( payload[macIndex] >> 4 ) & 0x07;
                    datarate = payload[macIndex] & 0x0F;
                    macIndex++;

                    freq =  ( uint32_t )payload[macIndex++];
                    freq |= ( uint32_t )payload[macIndex++] << 8;
                    freq |= ( uint32_t )payload[macIndex++] << 16;
                    freq *= 100;

                    if( Radio.CheckRfFrequency( freq ) == false )
                    {
                        status &= 0xFE; // Channel frequency KO
                    }

                    if( ValueInRange( datarate, LORAMAC_RX_MIN_DATARATE, LORAMAC_RX_MAX_DATARATE ) == false )
                    {
                        status &= 0xFD; // Datarate KO
                    }
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
                    if( ( ValueInRange( datarate, DR_5, DR_7 ) == true ) ||
                        ( datarate > DR_13 ) )
                    {
                        status &= 0xFD; // Datarate KO
                    }
#endif
                    if( ValueInRange( drOffset, LORAMAC_MIN_RX1_DR_OFFSET, LORAMAC_MAX_RX1_DR_OFFSET ) == false )
                    {
                        status &= 0xFB; // Rx1DrOffset range KO
                    }

                    if( ( status & 0x07 ) == 0x07 )
                    {
                        Rx2Channel.Datarate = datarate;
                        Rx2Channel.Frequency = freq;
                        Rx1DrOffset = drOffset;
                    }
                    AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
                }
                break;
            case SRV_MAC_DEV_STATUS_REQ:
                {
                    uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
                    if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
                    {
                        batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
                    }
                    AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr );
                    break;
                }
            case SRV_MAC_NEW_CHANNEL_REQ:
                {
                    uint8_t status = 0x03;

#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
                    status &= 0xFC; // Channel frequency and datarate KO
                    macIndex += 5;
#else
                    int8_t channelIndex = 0;
                    ChannelParams_t chParam;

                    channelIndex = payload[macIndex++];
                    chParam.Frequency = ( uint32_t )payload[macIndex++];
                    chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
                    chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
                    chParam.Frequency *= 100;
                    chParam.DrRange.Value = payload[macIndex++];

                    LoRaMacState |= MAC_TX_CONFIG;
                    if( chParam.Frequency == 0 )
                    {
                        if( channelIndex < 3 )
                        {
                            status &= 0xFC;
                        }
                        else
                        {
                            if( LoRaMacChannelRemove( channelIndex ) != LORAMAC_STATUS_OK )
                            {
                                status &= 0xFC;
                            }
                        }
                    }
                    else
                    {
                        switch( LoRaMacChannelAdd( channelIndex, chParam ) )
                        {
                            case LORAMAC_STATUS_OK:
                            {
                                break;
                            }
                            case LORAMAC_STATUS_FREQUENCY_INVALID:
                            {
                                status &= 0xFE;
                                break;
                            }
                            case LORAMAC_STATUS_DATARATE_INVALID:
                            {
                                status &= 0xFD;
                                break;
                            }
                            case LORAMAC_STATUS_FREQ_AND_DR_INVALID:
                            {
                                status &= 0xFC;
                                break;
                            }
                            default:
                            {
                                status &= 0xFC;
                                break;
                            }
                        }
                    }
                    LoRaMacState &= ~MAC_TX_CONFIG;
#endif
                    AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
                }
                break;
            case SRV_MAC_RX_TIMING_SETUP_REQ:
                {
                    uint8_t delay = payload[macIndex++] & 0x0F;

                    if( delay == 0 )
                    {
                        delay++;
                    }
                    ReceiveDelay1 = delay * 1e6;
                    ReceiveDelay2 = ReceiveDelay1 + 1e6;
                    AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
                }
                break;
            default:
                // Unknown command. ABORT MAC commands processing
                return;
        }
    }
}

LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    LoRaMacFrameCtrl_t fCtrl;
    LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;

    fCtrl.Value = 0;
    fCtrl.Bits.FOptsLen      = 0;
    fCtrl.Bits.FPending      = 0;
    fCtrl.Bits.Ack           = false;
    fCtrl.Bits.AdrAckReq     = false;
    fCtrl.Bits.Adr           = AdrCtrlOn;

    // Prepare the frame
    status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );

    // Validate status
    if( status != LORAMAC_STATUS_OK )
    {
        return status;
    }

    // Reset confirm parameters
    McpsConfirm.NbRetries = 0;
    McpsConfirm.AckReceived = false;
    McpsConfirm.UpLinkCounter = UpLinkCounter;

    status = ScheduleTx( );

    return status;
}

static LoRaMacStatus_t ScheduleTx( )
{
    TimerTime_t dutyCycleTimeOff = 0;

    // Check if the device is off
    if( MaxDCycle == 255 )
    {
        return LORAMAC_STATUS_DEVICE_OFF;
    }
    if( MaxDCycle == 0 )
    {
        AggregatedTimeOff = 0;
    }

    CalculateBackOff( LastTxChannel );

    // Select channel
    while( SetNextChannel( &dutyCycleTimeOff ) == false )
    {
        // Set the default datarate
        ChannelsDatarate = ChannelsDefaultDatarate;

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
        // Re-enable default channels LC1, LC2, LC3
        ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#endif
    }

    // Schedule transmission of frame
    if( dutyCycleTimeOff == 0 )
    {
        // Try to send now
        return SendFrameOnChannel( Channels[Channel] );
    }
    else
    {
        // Send later - prepare timer
        LoRaMacState |= MAC_TX_DELAYED;
        TimerSetValue( &TxDelayedTimer, dutyCycleTimeOff );
        TimerStart( &TxDelayedTimer );

        return LORAMAC_STATUS_OK;
    }
}

static void CalculateBackOff( uint8_t channel )
{
    uint16_t dutyCycle = Bands[Channels[channel].Band].DCycle;

    if( IsLoRaMacNetworkJoined == false )
    {
#if defined( USE_BAND_868 ) || defined( USE_BAND_433 ) || defined( USE_BAND_780 )
        dutyCycle = JOIN_DC;
#endif
    }

    // Update Band Time OFF
    if( DutyCycleOn == true )
    {
        Bands[Channels[channel].Band].TimeOff = TxTimeOnAir * dutyCycle - TxTimeOnAir;
    }
    else
    {
        Bands[Channels[channel].Band].TimeOff = 0;
    }
    // Update Aggregated Time OFF
    AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );
}

LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    uint16_t i;
    uint8_t pktHeaderLen = 0;
    uint32_t mic = 0;
    const void* payload = fBuffer;
    uint8_t payloadSize = fBufferSize;
    uint8_t framePort = fPort;

    LoRaMacBufferPktLen = 0;

    NodeAckRequested = false;

    if( fBuffer == NULL )
    {
        fBufferSize = 0;
    }

    LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;

    switch( macHdr->Bits.MType )
    {
        case FRAME_TYPE_JOIN_REQ:
            RxWindow1Delay = JoinAcceptDelay1 - RADIO_WAKEUP_TIME;
            RxWindow2Delay = JoinAcceptDelay2 - RADIO_WAKEUP_TIME;

            LoRaMacBufferPktLen = pktHeaderLen;

            memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
            LoRaMacBufferPktLen += 8;
            memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
            LoRaMacBufferPktLen += 8;

            LoRaMacDevNonce = Radio.Random( );

            LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;

            LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );

            LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;

            break;
        case FRAME_TYPE_DATA_CONFIRMED_UP:
            NodeAckRequested = true;
            //Intentional falltrough
        case FRAME_TYPE_DATA_UNCONFIRMED_UP:
            if( IsLoRaMacNetworkJoined == false )
            {
                return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
            }

            fCtrl->Bits.AdrAckReq = AdrNextDr( fCtrl->Bits.Adr, true, &ChannelsDatarate );

            if( ValidatePayloadLength( fBufferSize, ChannelsDatarate, MacCommandsBufferIndex ) == false )
            {
                return LORAMAC_STATUS_LENGTH_ERROR;
            }

            RxWindow1Delay = ReceiveDelay1 - RADIO_WAKEUP_TIME;
            RxWindow2Delay = ReceiveDelay2 - RADIO_WAKEUP_TIME;

            if( SrvAckRequested == true )
            {
                SrvAckRequested = false;
                fCtrl->Bits.Ack = 1;
            }

            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;

            LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;

            LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;

            if( ( payload != NULL ) && ( payloadSize > 0 ) )
            {
                if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_LENGTH ) && ( MacCommandsInNextTx == true ) )
                {
                    fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;

                    // Update FCtrl field with new value of OptionsLength
                    LoRaMacBuffer[0x05] = fCtrl->Value;
                    for( i = 0; i < MacCommandsBufferIndex; i++ )
                    {
                        LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
                    }
                }
            }
            else
            {
                if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsInNextTx ) )
                {
                    payloadSize = MacCommandsBufferIndex;
                    payload = MacCommandsBuffer;
                    framePort = 0;
                }
            }
            MacCommandsInNextTx = false;
            MacCommandsBufferIndex = 0;

            if( ( payload != NULL ) && ( payloadSize > 0 ) )
            {
                LoRaMacBuffer[pktHeaderLen++] = framePort;

                if( framePort == 0 )
                {
                    LoRaMacPayloadEncrypt( (uint8_t* ) payload, payloadSize, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
                }
                else
                {
                    LoRaMacPayloadEncrypt( (uint8_t* ) payload, payloadSize, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
                }
                memcpy1( LoRaMacBuffer + pktHeaderLen, LoRaMacPayload, payloadSize );
            }
            LoRaMacBufferPktLen = pktHeaderLen + payloadSize;

            LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );

            LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;

            LoRaMacBufferPktLen += LORAMAC_MFR_LEN;

            break;
        case FRAME_TYPE_PROPRIETARY:
            if( ( fBuffer != NULL ) && ( fBufferSize > 0 ) )
            {
                memcpy1( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, fBufferSize );
                LoRaMacBufferPktLen = pktHeaderLen + fBufferSize;
            }
            break;
        default:
            return LORAMAC_STATUS_SERVICE_UNKNOWN;
    }

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel )
{
    int8_t datarate = Datarates[ChannelsDatarate];
    int8_t txPowerIndex = 0;
    int8_t txPower = 0;

    txPowerIndex = LimitTxPower( ChannelsTxPower );
    txPower = TxPowers[txPowerIndex];

    MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
    McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
    McpsConfirm.Datarate = ChannelsDatarate;
    McpsConfirm.TxPower = txPowerIndex;

    Radio.SetChannel( channel.Frequency );

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    if( ChannelsDatarate == DR_7 )
    { // High Speed FSK channel
        Radio.SetMaxPayloadLength( MODEM_FSK, LoRaMacBufferPktLen );
        Radio.SetTxConfig( MODEM_FSK, txPower, 25e3, 0, datarate * 1e3, 0, 5, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_FSK, LoRaMacBufferPktLen );

    }
    else if( ChannelsDatarate == DR_6 )
    { // High speed LoRa channel
        Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
        Radio.SetTxConfig( MODEM_LORA, txPower, 0, 1, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
    else
    { // Normal LoRa channel
        Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
        Radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
    if( ChannelsDatarate >= DR_4 )
    { // High speed LoRa channel BW500 kHz
        Radio.SetTxConfig( MODEM_LORA, txPower, 0, 2, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
    else
    { // Normal LoRa channel
        Radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
#else
    #error "Please define a frequency band in the compiler options."
#endif

    // Store the time on air
    McpsConfirm.TxTimeOnAir = TxTimeOnAir;
    MlmeConfirm.TxTimeOnAir = TxTimeOnAir;

    // Starts the MAC layer status check timer
    TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
    TimerStart( &MacStateCheckTimer );

    // Send now
    Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );

    LoRaMacState |= MAC_TX_RUNNING;

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks )
{
    if( primitives == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }

    if( ( primitives->MacMcpsConfirm == NULL ) ||
        ( primitives->MacMcpsIndication == NULL ) ||
        ( primitives->MacMlmeConfirm == NULL ))
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }

    LoRaMacPrimitives = primitives;
    LoRaMacCallbacks = callbacks;

    LoRaMacFlags.Value = 0;

    LoRaMacDeviceClass = CLASS_A;

    UpLinkCounter = 1;
    DownLinkCounter = 0;
    AdrAckCounter = 0;

    RepeaterSupport = false;
    IsRxWindowsEnabled = true;
    IsLoRaMacNetworkJoined = false;
    LoRaMacState = MAC_IDLE;

#if defined( USE_BAND_433 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_780 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_868 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_915 )
    ChannelsMask[0] = 0xFFFF;
    ChannelsMask[1] = 0xFFFF;
    ChannelsMask[2] = 0xFFFF;
    ChannelsMask[3] = 0xFFFF;
    ChannelsMask[4] = 0x00FF;
    ChannelsMask[5] = 0x0000;

    memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, sizeof( ChannelsMask ) );
#elif defined( USE_BAND_915_HYBRID )
    ChannelsMask[0] = 0x00FF;
    ChannelsMask[1] = 0x0000;
    ChannelsMask[2] = 0x0000;
    ChannelsMask[3] = 0x0000;
    ChannelsMask[4] = 0x0001;
    ChannelsMask[5] = 0x0000;

    memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, sizeof( ChannelsMask ) );
#else
    #error "Please define a frequency band in the compiler options."
#endif

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    // 125 kHz channels
    for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS - 8; i++ )
    {
        Channels[i].Frequency = 902.3e6 + i * 200e3;
        Channels[i].DrRange.Value = ( DR_3 << 4 ) | DR_0;
        Channels[i].Band = 0;
    }
    // 500 kHz channels
    for( uint8_t i = LORA_MAX_NB_CHANNELS - 8; i < LORA_MAX_NB_CHANNELS; i++ )
    {
        Channels[i].Frequency = 903.0e6 + ( i - ( LORA_MAX_NB_CHANNELS - 8 ) ) * 1.6e6;
        Channels[i].DrRange.Value = ( DR_4 << 4 ) | DR_4;
        Channels[i].Band = 0;
    }
#endif

    ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
    ChannelsDefaultDatarate = ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
    ChannelsNbRep = 1;
    ChannelsNbRepCounter = 0;

    MaxDCycle = 0;
    AggregatedDCycle = 1;
    AggregatedLastTxDoneTime = 0;
    AggregatedTimeOff = 0;

#if defined( USE_BAND_433 )
    DutyCycleOn = false;
#elif defined( USE_BAND_780 )
    DutyCycleOn = false;
#elif defined( USE_BAND_868 )
    DutyCycleOn = true;
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    DutyCycleOn = false;
#else
    #error "Please define a frequency band in the compiler options."
#endif

    MaxRxWindow = MAX_RX_WINDOW;
    ReceiveDelay1 = RECEIVE_DELAY1;
    ReceiveDelay2 = RECEIVE_DELAY2;
    JoinAcceptDelay1 = JOIN_ACCEPT_DELAY1;
    JoinAcceptDelay2 = JOIN_ACCEPT_DELAY2;

    TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
    TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );

    TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
    TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
    TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
    TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );

    // Initialize Radio driver
    RadioEvents.TxDone = OnRadioTxDone;
    RadioEvents.RxDone = OnRadioRxDone;
    RadioEvents.RxError = OnRadioRxError;
    RadioEvents.TxTimeout = OnRadioTxTimeout;
    RadioEvents.RxTimeout = OnRadioRxTimeout;
    Radio.Init( &RadioEvents );

    // Random seed initialization
    srand1( Radio.Random( ) );

    // Initialize channel index.
    Channel = LORA_MAX_NB_CHANNELS;

    PublicNetwork = true;
    SetPublicNetwork( PublicNetwork );
    Radio.Sleep( );

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
    int8_t datarate = ChannelsDefaultDatarate;

    if( txInfo == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }

    AdrNextDr( AdrCtrlOn, false, &datarate );

    if( RepeaterSupport == true )
    {
        txInfo->CurrentPayloadSize = MaxPayloadOfDatarateRepeater[datarate];
    }
    else
    {
        txInfo->CurrentPayloadSize = MaxPayloadOfDatarate[datarate];
    }

    if( txInfo->CurrentPayloadSize >= MacCommandsBufferIndex )
    {
        txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - MacCommandsBufferIndex;
    }
    else
    {
        return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
    }

    if( ValidatePayloadLength( size, datarate, 0 ) == false )
    {
        return LORAMAC_STATUS_LENGTH_ERROR;
    }

    if( ValidatePayloadLength( size, datarate, MacCommandsBufferIndex ) == false )
    {
        return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
    }

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
    LoRaMacStatus_t status = LORAMAC_STATUS_OK;

    if( mibGet == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }

    switch( mibGet->Type )
    {
        case MIB_DEVICE_CLASS:
        {
            mibGet->Param.Class = LoRaMacDeviceClass;
            break;
        }
        case MIB_NETWORK_JOINED:
        {
            mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
            break;
        }
        case MIB_ADR:
        {
            mibGet->Param.AdrEnable = AdrCtrlOn;
            break;
        }
        case MIB_NET_ID:
        {
            mibGet->Param.NetID = LoRaMacNetID;
            break;
        }
        case MIB_DEV_ADDR:
        {
            mibGet->Param.DevAddr = LoRaMacDevAddr;
            break;
        }
        case MIB_NWK_SKEY:
        {
            mibGet->Param.NwkSKey = LoRaMacNwkSKey;
            break;
        }
        case MIB_APP_SKEY:
        {
            mibGet->Param.AppSKey = LoRaMacAppSKey;
            break;
        }
        case MIB_PUBLIC_NETWORK:
        {
            mibGet->Param.EnablePublicNetwork = PublicNetwork;
            break;
        }
        case MIB_REPEATER_SUPPORT:
        {
            mibGet->Param.EnableRepeaterSupport = RepeaterSupport;
            break;
        }
        case MIB_CHANNELS:
        {
            mibGet->Param.ChannelList = Channels;
            break;
        }
        case MIB_RX2_CHANNEL:
        {
            mibGet->Param.Rx2Channel = Rx2Channel;
            break;
        }
        case MIB_CHANNELS_MASK:
        {
            mibGet->Param.ChannelsMask = ChannelsMask;
            break;
        }
        case MIB_CHANNELS_NB_REP:
        {
            mibGet->Param.ChannelNbRep = ChannelsNbRep;
            break;
        }
        case MIB_MAX_RX_WINDOW_DURATION:
        {
            mibGet->Param.MaxRxWindow = MaxRxWindow;
            break;
        }
        case MIB_RECEIVE_DELAY_1:
        {
            mibGet->Param.ReceiveDelay1 = ReceiveDelay1;
            break;
        }
        case MIB_RECEIVE_DELAY_2:
        {
            mibGet->Param.ReceiveDelay2 = ReceiveDelay2;
            break;
        }
        case MIB_JOIN_ACCEPT_DELAY_1:
        {
            mibGet->Param.JoinAcceptDelay1 = JoinAcceptDelay1;
            break;
        }
        case MIB_JOIN_ACCEPT_DELAY_2:
        {
            mibGet->Param.JoinAcceptDelay2 = JoinAcceptDelay2;
            break;
        }
        case MIB_CHANNELS_DEFAULT_DATARATE:
        {
            mibGet->Param.ChannelsDefaultDatarate = ChannelsDefaultDatarate;
            break;
        }
        case MIB_CHANNELS_DATARATE:
        {
            mibGet->Param.ChannelsDatarate = ChannelsDatarate;
            break;
        }
        case MIB_CHANNELS_TX_POWER:
        {
            mibGet->Param.ChannelsTxPower = ChannelsTxPower;
            break;
        }
        case MIB_UPLINK_COUNTER:
        {
            mibGet->Param.UpLinkCounter = UpLinkCounter;
            break;
        }
        case MIB_DOWNLINK_COUNTER:
        {
            mibGet->Param.DownLinkCounter = DownLinkCounter;
            break;
        }
        case MIB_MULTICAST_CHANNEL:
        {
            mibGet->Param.MulticastList = MulticastChannels;
            break;
        }
        default:
            status = LORAMAC_STATUS_SERVICE_UNKNOWN;
            break;
    }

    return status;
}

LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
    LoRaMacStatus_t status = LORAMAC_STATUS_OK;

    if( mibSet == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return LORAMAC_STATUS_BUSY;
    }

    switch( mibSet->Type )
    {
        case MIB_DEVICE_CLASS:
        {
            LoRaMacDeviceClass = mibSet->Param.Class;
            switch( LoRaMacDeviceClass )
            {
                case CLASS_A:
                {
                    // Set the radio into sleep to setup a defined state
                    Radio.Sleep( );
                    break;
                }
                case CLASS_B:
                {
                    break;
                }
                case CLASS_C:
                {
                    // Set the NodeAckRequested indicator to default
                    NodeAckRequested = false;
                    OnRxWindow2TimerEvent( );
                    break;
                }
            }
            break;
        }
        case MIB_NETWORK_JOINED:
        {
            IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
            break;
        }
        case MIB_ADR:
        {
            AdrCtrlOn = mibSet->Param.AdrEnable;
            break;
        }
        case MIB_NET_ID:
        {
            LoRaMacNetID = mibSet->Param.NetID;
            break;
        }
        case MIB_DEV_ADDR:
        {
            LoRaMacDevAddr = mibSet->Param.DevAddr;
            break;
        }
        case MIB_NWK_SKEY:
        {
            if( mibSet->Param.NwkSKey != NULL )
            {
                memcpy1( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
                               sizeof( LoRaMacNwkSKey ) );
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_APP_SKEY:
        {
            if( mibSet->Param.AppSKey != NULL )
            {
                memcpy1( LoRaMacAppSKey, mibSet->Param.AppSKey,
                               sizeof( LoRaMacAppSKey ) );
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_PUBLIC_NETWORK:
        {
            SetPublicNetwork( mibSet->Param.EnablePublicNetwork );
            break;
        }
        case MIB_REPEATER_SUPPORT:
        {
             RepeaterSupport = mibSet->Param.EnableRepeaterSupport;
            break;
        }
        case MIB_RX2_CHANNEL:
        {
            Rx2Channel = mibSet->Param.Rx2Channel;
            break;
        }
        case MIB_CHANNELS_MASK:
        {
            if( mibSet->Param.ChannelsMask )
            {
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                bool chanMaskState = true;

#if defined( USE_BAND_915_HYBRID )
                chanMaskState = ValidateChannelMask( mibSet->Param.ChannelsMask );
#endif
                if( chanMaskState == true )
                {
                    if( ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) < 6 ) &&
                        ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) > 0 ) )
                    {
                        status = LORAMAC_STATUS_PARAMETER_INVALID;
                    }
                    else
                    {
                        memcpy1( ( uint8_t* ) ChannelsMask,
                                 ( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( ChannelsMask ) );
                        for ( uint8_t i = 0; i < sizeof( ChannelsMask ) / 2; i++ )
                        {
                            // Disable channels which are no longer available
                            ChannelsMaskRemaining[i] &= ChannelsMask[i];
                        }
                    }
                }
                else
                {
                    status = LORAMAC_STATUS_PARAMETER_INVALID;
                }
#else
                memcpy1( ( uint8_t* ) ChannelsMask,
                         ( uint8_t* ) mibSet->Param.ChannelsMask, 2 );
#endif
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_CHANNELS_NB_REP:
        {
            if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
                ( mibSet->Param.ChannelNbRep <= 15 ) )
            {
                ChannelsNbRep = mibSet->Param.ChannelNbRep;
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_MAX_RX_WINDOW_DURATION:
        {
            MaxRxWindow = mibSet->Param.MaxRxWindow;
            break;
        }
        case MIB_RECEIVE_DELAY_1:
        {
            ReceiveDelay1 = mibSet->Param.ReceiveDelay1;
            break;
        }
        case MIB_RECEIVE_DELAY_2:
        {
            ReceiveDelay2 = mibSet->Param.ReceiveDelay2;
            break;
        }
        case MIB_JOIN_ACCEPT_DELAY_1:
        {
            JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1;
            break;
        }
        case MIB_JOIN_ACCEPT_DELAY_2:
        {
            JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2;
            break;
        }
        case MIB_CHANNELS_DEFAULT_DATARATE:
        {
            if( ValueInRange( mibSet->Param.ChannelsDefaultDatarate,
                              LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) )
            {
                ChannelsDefaultDatarate = mibSet->Param.ChannelsDefaultDatarate;
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_CHANNELS_DATARATE:
        {
            if( ValueInRange( mibSet->Param.ChannelsDatarate,
                              LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) )
            {
                ChannelsDatarate = mibSet->Param.ChannelsDatarate;
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_CHANNELS_TX_POWER:
        {
            if( ValueInRange( mibSet->Param.ChannelsTxPower,
                              LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
            {
                ChannelsTxPower = mibSet->Param.ChannelsTxPower;
            }
            else
            {
                status = LORAMAC_STATUS_PARAMETER_INVALID;
            }
            break;
        }
        case MIB_UPLINK_COUNTER:
        {
            UpLinkCounter = mibSet->Param.UpLinkCounter;
            break;
        }
        case MIB_DOWNLINK_COUNTER:
        {
            DownLinkCounter = mibSet->Param.DownLinkCounter;
            break;
        }
        default:
            status = LORAMAC_STATUS_SERVICE_UNKNOWN;
            break;
    }

    return status;
}

LoRaMacStatus_t LoRaMacChannelAdd( uint8_t id, ChannelParams_t params )
{
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    return LORAMAC_STATUS_PARAMETER_INVALID;
#else
    bool datarateInvalid = false;
    bool frequencyInvalid = false;
    uint8_t band = 0;

    // The id must not exceed LORA_MAX_NB_CHANNELS
    if( id >= LORA_MAX_NB_CHANNELS )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    // Validate if the MAC is in a correct state
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        if( ( LoRaMacState & MAC_TX_CONFIG ) != MAC_TX_CONFIG )
        {
            return LORAMAC_STATUS_BUSY;
        }
    }
    // Validate the datarate
    if( ( params.DrRange.Fields.Min > params.DrRange.Fields.Max ) ||
        ( ValueInRange( params.DrRange.Fields.Min, LORAMAC_TX_MIN_DATARATE,
                        LORAMAC_TX_MAX_DATARATE ) == false ) ||
        ( ValueInRange( params.DrRange.Fields.Max, LORAMAC_TX_MIN_DATARATE,
                        LORAMAC_TX_MAX_DATARATE ) == false ) )
    {
        datarateInvalid = true;
    }

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    if( id < 3 )
    {
        if( params.Frequency != Channels[id].Frequency )
        {
            frequencyInvalid = true;
        }

        if( params.DrRange.Fields.Min > ChannelsDefaultDatarate )
        {
            datarateInvalid = true;
        }
        if( ValueInRange( params.DrRange.Fields.Max, DR_5, LORAMAC_TX_MAX_DATARATE ) == false )
        {
            datarateInvalid = true;
        }
    }
#endif

    // Validate the frequency
    if( ( Radio.CheckRfFrequency( params.Frequency ) == true ) && ( params.Frequency > 0 ) && ( frequencyInvalid == false ) )
    {
#if defined( USE_BAND_868 )
        if( ( params.Frequency >= 865000000 ) && ( params.Frequency <= 868000000 ) )
        {
            band = BAND_G1_0;
        }
        else if( ( params.Frequency > 868000000 ) && ( params.Frequency <= 868600000 ) )
        {
            band = BAND_G1_1;
        }
        else if( ( params.Frequency >= 868700000 ) && ( params.Frequency <= 869200000 ) )
        {
            band = BAND_G1_2;
        }
        else if( ( params.Frequency >= 869400000 ) && ( params.Frequency <= 869650000 ) )
        {
            band = BAND_G1_3;
        }
        else if( ( params.Frequency >= 869700000 ) && ( params.Frequency <= 870000000 ) )
        {
            band = BAND_G1_4;
        }
        else
        {
            frequencyInvalid = true;
        }
#endif
    }
    else
    {
        frequencyInvalid = true;
    }

    if( ( datarateInvalid == true ) && ( frequencyInvalid == true ) )
    {
        return LORAMAC_STATUS_FREQ_AND_DR_INVALID;
    }
    if( datarateInvalid == true )
    {
        return LORAMAC_STATUS_DATARATE_INVALID;
    }
    if( frequencyInvalid == true )
    {
        return LORAMAC_STATUS_FREQUENCY_INVALID;
    }

    // Every parameter is valid, activate the channel
    Channels[id] = params;
    Channels[id].Band = band;
    ChannelsMask[0] |= ( 1 << id );

    return LORAMAC_STATUS_OK;
#endif
}

LoRaMacStatus_t LoRaMacChannelRemove( uint8_t id )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        if( ( LoRaMacState & MAC_TX_CONFIG ) != MAC_TX_CONFIG )
        {
            return LORAMAC_STATUS_BUSY;
        }
    }

    if( ( id < 3 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    else
    {
        // Remove the channel from the list of channels
        Channels[id] = ( ChannelParams_t ){ 0, { 0 }, 0 };

        // Disable the channel as it doesn't exist anymore
        if( DisableChannelInMask( id, ChannelsMask ) == false )
        {
            return LORAMAC_STATUS_PARAMETER_INVALID;
        }
    }
    return LORAMAC_STATUS_OK;
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    return LORAMAC_STATUS_PARAMETER_INVALID;
#endif
}

LoRaMacStatus_t LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
    if( channelParam == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return LORAMAC_STATUS_BUSY;
    }

    // Reset downlink counter
    channelParam->DownLinkCounter = 0;

    if( MulticastChannels == NULL )
    {
        // New node is the fist element
        MulticastChannels = channelParam;
    }
    else
    {
        MulticastParams_t *cur = MulticastChannels;

        // Search the last node in the list
        while( cur->Next != NULL )
        {
            cur = cur->Next;
        }
        // This function always finds the last node
        cur->Next = channelParam;
    }

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
    if( channelParam == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return LORAMAC_STATUS_BUSY;
    }

    if( MulticastChannels != NULL )
    {
        if( MulticastChannels == channelParam )
        {
          // First element
          MulticastChannels = channelParam->Next;
        }
        else
        {
            MulticastParams_t *cur = MulticastChannels;

            // Search the node in the list
            while( cur->Next && cur->Next != channelParam )
            {
                cur = cur->Next;
            }
            // If we found the node, remove it
            if( cur->Next )
            {
                cur->Next = channelParam->Next;
            }
        }
        channelParam->Next = NULL;
    }

    return LORAMAC_STATUS_OK;
}

LoRaMacStatus_t LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
    LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
    LoRaMacHeader_t macHdr;

    if( mlmeRequest == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return LORAMAC_STATUS_BUSY;
    }

    memset1( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );

    MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;

    switch( mlmeRequest->Type )
    {
        case MLME_JOIN:
        {
            if( ( LoRaMacState & MAC_TX_DELAYED ) == MAC_TX_DELAYED )
            {
                return LORAMAC_STATUS_BUSY;
            }

            MlmeConfirm.MlmeRequest = mlmeRequest->Type;

            if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
                ( mlmeRequest->Req.Join.AppEui == NULL ) ||
                ( mlmeRequest->Req.Join.AppKey == NULL ) )
            {
                return LORAMAC_STATUS_PARAMETER_INVALID;
            }

            LoRaMacFlags.Bits.MlmeReq = 1;

            LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
            LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
            LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;

            macHdr.Value = 0;
            macHdr.Bits.MType  = FRAME_TYPE_JOIN_REQ;

            IsLoRaMacNetworkJoined = false;

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
#if defined( USE_BAND_915 )
            // Re-enable 500 kHz default channels
            ChannelsMask[4] = 0x00FF;
#else // defined( USE_BAND_915_HYBRID )
            // Re-enable 500 kHz default channels
            ChannelsMask[4] = 0x0001;
#endif

            static uint8_t drSwitch = 0;

            if( ( ++drSwitch & 0x01 ) == 0x01 )
            {
                ChannelsDatarate = DR_0;
            }
            else
            {
                ChannelsDatarate = DR_4;
            }
#endif

            status = Send( &macHdr, 0, NULL, 0 );
            break;
        }
        case MLME_LINK_CHECK:
        {
            LoRaMacFlags.Bits.MlmeReq = 1;
            // LoRaMac will send this command piggy-pack
            MlmeConfirm.MlmeRequest = mlmeRequest->Type;

            status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
            break;
        }
        default:
            break;
    }

    if( status != LORAMAC_STATUS_OK )
    {
        NodeAckRequested = false;
        LoRaMacFlags.Bits.MlmeReq = 0;
    }

    return status;
}

LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
    LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
    LoRaMacHeader_t macHdr;
    uint8_t fPort = 0;
    void *fBuffer;
    uint16_t fBufferSize;
    int8_t datarate;
    bool readyToSend = false;

    if( mcpsRequest == NULL )
    {
        return LORAMAC_STATUS_PARAMETER_INVALID;
    }
    if( ( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING ) ||
        ( ( LoRaMacState & MAC_TX_DELAYED ) == MAC_TX_DELAYED ) )
    {
        return LORAMAC_STATUS_BUSY;
    }

    macHdr.Value = 0;
    memset1 ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
    McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;

    switch( mcpsRequest->Type )
    {
        case MCPS_UNCONFIRMED:
        {
            readyToSend = true;
            AckTimeoutRetries = 1;

            macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
            fPort = mcpsRequest->Req.Unconfirmed.fPort;
            fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
            fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
            datarate = mcpsRequest->Req.Unconfirmed.Datarate;
            break;
        }
        case MCPS_CONFIRMED:
        {
            readyToSend = true;
            AckTimeoutRetriesCounter = 1;
            AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials;

            macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
            fPort = mcpsRequest->Req.Confirmed.fPort;
            fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
            fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
            datarate = mcpsRequest->Req.Confirmed.Datarate;
            break;
        }
        case MCPS_PROPRIETARY:
        {
            readyToSend = true;
            AckTimeoutRetries = 1;

            macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
            fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
            fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
            datarate = mcpsRequest->Req.Proprietary.Datarate;
            break;
        }
        default:
            break;
    }

    if( readyToSend == true )
    {
        if( AdrCtrlOn == false )
        {
            if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == true )
            {
                ChannelsDatarate = datarate;
            }
            else
            {
                return LORAMAC_STATUS_PARAMETER_INVALID;
            }
        }

        status = Send( &macHdr, fPort, fBuffer, fBufferSize );
        if( status == LORAMAC_STATUS_OK )
        {
            McpsConfirm.McpsRequest = mcpsRequest->Type;
            LoRaMacFlags.Bits.McpsReq = 1;
        }
        else
        {
            NodeAckRequested = false;
        }
    }

    return status;
}

void LoRaMacTestRxWindowsOn( bool enable )
{
    IsRxWindowsEnabled = enable;
}

void LoRaMacTestSetMic( uint16_t txPacketCounter )
{
    UpLinkCounter = txPacketCounter;
    IsUpLinkCounterFixed = true;
}

void LoRaMacTestSetDutyCycleOn( bool enable )
{
    DutyCycleOn = enable;
}