Demonstration of Class-A LoRaWAN device using NAMote-72

Dependencies:   LoRaWAN-lib mbed lib_mpl3115a2 lib_mma8451q lib_gps SX1272Lib

Dependents:   LoRaWAN-NAMote72-BVS-confirmed-tester-0-7v1_copy

LoRaWAN-NAMote72 Application Demo is a Class-A device example project using LoRaWAN-lib and SX1272Lib libraries.

This project is compliant with LoRaWAN V1.0.1 specification.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT.
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

Main.cpp (Device State Machine)

The end-device state machine is defined.

  • Initial State : Device is initialized.
  • Join State : For OTA, Join Request is transmitted to the network until Join Accept is received by the end-device. Join event function is called that sets Red LED ON.
  • Send State : Transmit payload frame is prepared. Tx event is called that blinks the Red LED indicating uplink transmission.
  • Cycle State : Next packet transmission is scheduled

LoRaEventProc.cpp (Events and On-board Application)

Define events during Join, Tx & Rx. Prepare TX packet by appending with appropriate application data.

/media/uploads/ubhat/lora_events.png

  • PrepareLoRaFrame(uint8_t port ) : Prepare LoRa payload frame with on-board application data such as GPS, Temperature, Battery, etc. LoRa.ApplicationCall(AppType ) calls application AppType defined in LoRaApp.cpp. AppType is defined in LoRaApp.h

/media/uploads/ubhat/lora_app.png

LoRaApp.cpp

User-defined applications such as GPS, Temp, Accelerometer, LED indications etc. Event based actions such as LED blink on Tx, LED toggle on downlink etc /media/uploads/ubhat/apptype.png

LoRaDeviceStateProc.cpp

Process function calls corresponding to different Device states /media/uploads/ubhat/device_state.png

LoRaMacLayerService.cpp

Define MAC Layer Services: MLME & MCPS

Serial Terminal Display

By using a serial port connection using applications such as teraterm or putty, one can view the status of the End-Device. Once the End-Device Joins the network, transmission parameters such as payload data, application port, message type etc. are displayed on the terminal.

/media/uploads/ubhat/serial.png

Default Application Payload

This application defaults to sending uplink data to logical port 5. The application payload consists of: /media/uploads/jknapp_smtc/payload.png

Sample Application Payload Calculation for Longitude/Latitude

Payload => 00 19 F6 352BBA A94C20 FFFF

Temperature Calculation

19H => 2510

Temp = 25/2 = 12.5 oC

Battery Level

FFH => 100 %

F6H => 96.5 %

Longitude Calculation

longitude = A94C20H => 1109507210

longitudinal coordinate = -360 + (longitude10 x 180/(223))

longitudinal coordinate = -121.93

Latitude Calculation

latitude = 352BBAH = 348460210

latitude coordinate = (latitude10 x 90/(223-1))

latitude coordinate = 37.39

Committer:
ubhat
Date:
Tue May 17 00:21:55 2016 +0000
Revision:
0:69f2e28d12c1
Project for LoRa Bootcamp

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ubhat 0:69f2e28d12c1 1 /*
ubhat 0:69f2e28d12c1 2 ---------------------------------------------------------------------------
ubhat 0:69f2e28d12c1 3 Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
ubhat 0:69f2e28d12c1 4
ubhat 0:69f2e28d12c1 5 LICENSE TERMS
ubhat 0:69f2e28d12c1 6
ubhat 0:69f2e28d12c1 7 The redistribution and use of this software (with or without changes)
ubhat 0:69f2e28d12c1 8 is allowed without the payment of fees or royalties provided that:
ubhat 0:69f2e28d12c1 9
ubhat 0:69f2e28d12c1 10 1. source code distributions include the above copyright notice, this
ubhat 0:69f2e28d12c1 11 list of conditions and the following disclaimer;
ubhat 0:69f2e28d12c1 12
ubhat 0:69f2e28d12c1 13 2. binary distributions include the above copyright notice, this list
ubhat 0:69f2e28d12c1 14 of conditions and the following disclaimer in their documentation;
ubhat 0:69f2e28d12c1 15
ubhat 0:69f2e28d12c1 16 3. the name of the copyright holder is not used to endorse products
ubhat 0:69f2e28d12c1 17 built using this software without specific written permission.
ubhat 0:69f2e28d12c1 18
ubhat 0:69f2e28d12c1 19 DISCLAIMER
ubhat 0:69f2e28d12c1 20
ubhat 0:69f2e28d12c1 21 This software is provided 'as is' with no explicit or implied warranties
ubhat 0:69f2e28d12c1 22 in respect of its properties, including, but not limited to, correctness
ubhat 0:69f2e28d12c1 23 and/or fitness for purpose.
ubhat 0:69f2e28d12c1 24 ---------------------------------------------------------------------------
ubhat 0:69f2e28d12c1 25 Issue 09/09/2006
ubhat 0:69f2e28d12c1 26
ubhat 0:69f2e28d12c1 27 This is an AES implementation that uses only 8-bit byte operations on the
ubhat 0:69f2e28d12c1 28 cipher state.
ubhat 0:69f2e28d12c1 29 */
ubhat 0:69f2e28d12c1 30
ubhat 0:69f2e28d12c1 31 #ifndef AES_H
ubhat 0:69f2e28d12c1 32 #define AES_H
ubhat 0:69f2e28d12c1 33
ubhat 0:69f2e28d12c1 34 #if 1
ubhat 0:69f2e28d12c1 35 # define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */
ubhat 0:69f2e28d12c1 36 #endif
ubhat 0:69f2e28d12c1 37 #if 0
ubhat 0:69f2e28d12c1 38 # define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */
ubhat 0:69f2e28d12c1 39 #endif
ubhat 0:69f2e28d12c1 40 #if 0
ubhat 0:69f2e28d12c1 41 # define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */
ubhat 0:69f2e28d12c1 42 #endif
ubhat 0:69f2e28d12c1 43 #if 0
ubhat 0:69f2e28d12c1 44 # define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */
ubhat 0:69f2e28d12c1 45 #endif
ubhat 0:69f2e28d12c1 46 #if 0
ubhat 0:69f2e28d12c1 47 # define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */
ubhat 0:69f2e28d12c1 48 #endif
ubhat 0:69f2e28d12c1 49 #if 0
ubhat 0:69f2e28d12c1 50 # define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */
ubhat 0:69f2e28d12c1 51 #endif
ubhat 0:69f2e28d12c1 52
ubhat 0:69f2e28d12c1 53 #define N_ROW 4
ubhat 0:69f2e28d12c1 54 #define N_COL 4
ubhat 0:69f2e28d12c1 55 #define N_BLOCK (N_ROW * N_COL)
ubhat 0:69f2e28d12c1 56 #define N_MAX_ROUNDS 14
ubhat 0:69f2e28d12c1 57
ubhat 0:69f2e28d12c1 58 typedef uint8_t return_type;
ubhat 0:69f2e28d12c1 59
ubhat 0:69f2e28d12c1 60 /* Warning: The key length for 256 bit keys overflows a byte
ubhat 0:69f2e28d12c1 61 (see comment below)
ubhat 0:69f2e28d12c1 62 */
ubhat 0:69f2e28d12c1 63
ubhat 0:69f2e28d12c1 64 typedef uint8_t length_type;
ubhat 0:69f2e28d12c1 65
ubhat 0:69f2e28d12c1 66 typedef struct
ubhat 0:69f2e28d12c1 67 { uint8_t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK];
ubhat 0:69f2e28d12c1 68 uint8_t rnd;
ubhat 0:69f2e28d12c1 69 } aes_context;
ubhat 0:69f2e28d12c1 70
ubhat 0:69f2e28d12c1 71 /* The following calls are for a precomputed key schedule
ubhat 0:69f2e28d12c1 72
ubhat 0:69f2e28d12c1 73 NOTE: If the length_type used for the key length is an
ubhat 0:69f2e28d12c1 74 unsigned 8-bit character, a key length of 256 bits must
ubhat 0:69f2e28d12c1 75 be entered as a length in bytes (valid inputs are hence
ubhat 0:69f2e28d12c1 76 128, 192, 16, 24 and 32).
ubhat 0:69f2e28d12c1 77 */
ubhat 0:69f2e28d12c1 78
ubhat 0:69f2e28d12c1 79 #if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
ubhat 0:69f2e28d12c1 80
ubhat 0:69f2e28d12c1 81 return_type aes_set_key( const uint8_t key[],
ubhat 0:69f2e28d12c1 82 length_type keylen,
ubhat 0:69f2e28d12c1 83 aes_context ctx[1] );
ubhat 0:69f2e28d12c1 84 #endif
ubhat 0:69f2e28d12c1 85
ubhat 0:69f2e28d12c1 86 #if defined( AES_ENC_PREKEYED )
ubhat 0:69f2e28d12c1 87
ubhat 0:69f2e28d12c1 88 return_type aes_encrypt( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 89 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 90 const aes_context ctx[1] );
ubhat 0:69f2e28d12c1 91
ubhat 0:69f2e28d12c1 92 return_type aes_cbc_encrypt( const uint8_t *in,
ubhat 0:69f2e28d12c1 93 uint8_t *out,
ubhat 0:69f2e28d12c1 94 int32_t n_block,
ubhat 0:69f2e28d12c1 95 uint8_t iv[N_BLOCK],
ubhat 0:69f2e28d12c1 96 const aes_context ctx[1] );
ubhat 0:69f2e28d12c1 97 #endif
ubhat 0:69f2e28d12c1 98
ubhat 0:69f2e28d12c1 99 #if defined( AES_DEC_PREKEYED )
ubhat 0:69f2e28d12c1 100
ubhat 0:69f2e28d12c1 101 return_type aes_decrypt( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 102 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 103 const aes_context ctx[1] );
ubhat 0:69f2e28d12c1 104
ubhat 0:69f2e28d12c1 105 return_type aes_cbc_decrypt( const uint8_t *in,
ubhat 0:69f2e28d12c1 106 uint8_t *out,
ubhat 0:69f2e28d12c1 107 int32_t n_block,
ubhat 0:69f2e28d12c1 108 uint8_t iv[N_BLOCK],
ubhat 0:69f2e28d12c1 109 const aes_context ctx[1] );
ubhat 0:69f2e28d12c1 110 #endif
ubhat 0:69f2e28d12c1 111
ubhat 0:69f2e28d12c1 112 /* The following calls are for 'on the fly' keying. In this case the
ubhat 0:69f2e28d12c1 113 encryption and decryption keys are different.
ubhat 0:69f2e28d12c1 114
ubhat 0:69f2e28d12c1 115 The encryption subroutines take a key in an array of bytes in
ubhat 0:69f2e28d12c1 116 key[L] where L is 16, 24 or 32 bytes for key lengths of 128,
ubhat 0:69f2e28d12c1 117 192, and 256 bits respectively. They then encrypts the input
ubhat 0:69f2e28d12c1 118 data, in[] with this key and put the reult in the output array
ubhat 0:69f2e28d12c1 119 out[]. In addition, the second key array, o_key[L], is used
ubhat 0:69f2e28d12c1 120 to output the key that is needed by the decryption subroutine
ubhat 0:69f2e28d12c1 121 to reverse the encryption operation. The two key arrays can
ubhat 0:69f2e28d12c1 122 be the same array but in this case the original key will be
ubhat 0:69f2e28d12c1 123 overwritten.
ubhat 0:69f2e28d12c1 124
ubhat 0:69f2e28d12c1 125 In the same way, the decryption subroutines output keys that
ubhat 0:69f2e28d12c1 126 can be used to reverse their effect when used for encryption.
ubhat 0:69f2e28d12c1 127
ubhat 0:69f2e28d12c1 128 Only 128 and 256 bit keys are supported in these 'on the fly'
ubhat 0:69f2e28d12c1 129 modes.
ubhat 0:69f2e28d12c1 130 */
ubhat 0:69f2e28d12c1 131
ubhat 0:69f2e28d12c1 132 #if defined( AES_ENC_128_OTFK )
ubhat 0:69f2e28d12c1 133 void aes_encrypt_128( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 134 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 135 const uint8_t key[N_BLOCK],
ubhat 0:69f2e28d12c1 136 uint8_t o_key[N_BLOCK] );
ubhat 0:69f2e28d12c1 137 #endif
ubhat 0:69f2e28d12c1 138
ubhat 0:69f2e28d12c1 139 #if defined( AES_DEC_128_OTFK )
ubhat 0:69f2e28d12c1 140 void aes_decrypt_128( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 141 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 142 const uint8_t key[N_BLOCK],
ubhat 0:69f2e28d12c1 143 uint8_t o_key[N_BLOCK] );
ubhat 0:69f2e28d12c1 144 #endif
ubhat 0:69f2e28d12c1 145
ubhat 0:69f2e28d12c1 146 #if defined( AES_ENC_256_OTFK )
ubhat 0:69f2e28d12c1 147 void aes_encrypt_256( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 148 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 149 const uint8_t key[2 * N_BLOCK],
ubhat 0:69f2e28d12c1 150 uint8_t o_key[2 * N_BLOCK] );
ubhat 0:69f2e28d12c1 151 #endif
ubhat 0:69f2e28d12c1 152
ubhat 0:69f2e28d12c1 153 #if defined( AES_DEC_256_OTFK )
ubhat 0:69f2e28d12c1 154 void aes_decrypt_256( const uint8_t in[N_BLOCK],
ubhat 0:69f2e28d12c1 155 uint8_t out[N_BLOCK],
ubhat 0:69f2e28d12c1 156 const uint8_t key[2 * N_BLOCK],
ubhat 0:69f2e28d12c1 157 uint8_t o_key[2 * N_BLOCK] );
ubhat 0:69f2e28d12c1 158 #endif
ubhat 0:69f2e28d12c1 159
ubhat 0:69f2e28d12c1 160 #endif