Our Programm to build up from the PES Board Example

Dependencies:   PM2_Libary

Revision:
17:085fff8287d0
Parent:
16:2de2a437afdc
Child:
18:21de1a131213
diff -r 2de2a437afdc -r 085fff8287d0 main.cpp
--- a/main.cpp	Mon Mar 14 14:35:03 2022 +0000
+++ b/main.cpp	Mon Mar 14 15:51:51 2022 +0100
@@ -27,50 +27,6 @@
 float ir_distance_mV = 0.0f;    // define variable to store measurement
 AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
 
-// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
-DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
-
-float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
-FastPWM pwm_M1(PB_13);              // motor M1 is used open loop
-FastPWM pwm_M2(PA_9);               // motor M2 is speed controlled
-FastPWM pwm_M3(PA_10);              // motor M3 is position controlled (angle controlled)
-
-EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder read objects
-EncoderCounter  encoder_M2(PB_6, PB_7);
-EncoderCounter  encoder_M3(PA_0, PA_1);
-
-// create SpeedController and PositionController controller objects, default parametrization is for 78.125:1 gear box
-float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
-float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
-float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
-// float k_gear = 25.0f / 78.125f;             // define additional ratio in case you are using a dc motor with a different gear box, e.g. 25:1
-// float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
-
-SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box  with default contoller parameters
-// SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 25:1 gear
-
-float max_speed_rps = 0.5f;                 // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
-PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
-// PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 25:1 gear, we need a different speed controller gain here
-
-// Futaba Servo S3001 20mm 3kg Analog
-Servo servo_S1(PB_2);           // create servo objects
-Servo servo_S2(PC_8);
-int servo_pos_S1_mus = 0;       // servo S1 position, the desired position gets commanded as a time
-int servo_pos_S2_mus = 0;       // servo S2 position
-int servo_period_mus = 20000;   // define servo period time in mus
-
-int servo_counter = 0;          // define servo counter, this is an additional variable to make the servos move
-int loops_per_second = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
-
-// Groove Ultrasonic Ranger V2.0
-float us_distance_cm = 0.0f;    // define variable to store measurement
-RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500);
-// RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f,  7000); // create range finder object (ultra sonic distance sensor), 1/main_task_period_ms = 20 Hz parametrization
-
-// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
-// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
-
 int main()
 {
     // attach button fall and rise functions to user button object
@@ -84,17 +40,6 @@
     // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
     mechanical_button.mode(PullUp);
 
-    // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
-    enable_motors = 1;
-
-    // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
-    pwm_M1.period(pwm_period_s);
-    pwm_M1.write(0.5);
-
-    // enable servos, you can also disable them at any point in your program if you don't want your servos to become warm
-    servo_S1.Enable(servo_pos_S1_mus, servo_period_mus);
-    servo_S2.Enable(servo_pos_S2_mus, servo_period_mus);
-
     while (true) { // this loop will run forever
 
         main_task_timer.reset();
@@ -104,70 +49,25 @@
             // read analog input
             ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
 
-            // command dc motors if mechanical button is pressed
+            // if the mechanical button is pressed the extra led is blinking
             if (mechanical_button) {
-                pwm_M1.write(0.75); // write output voltage to motor M1
-                speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
-                positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3
+                // visual feedback that the main task is executed
+                extra_led = !extra_led;
             } else {
-                pwm_M1.write(0.5);
-                speedController_M2.setDesiredSpeedRPS(0.0f);
-                positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
+                extra_led = 1;
             }
 
-            // command servo position, this needs to be calibrated
-            servo_S1.SetPosition(servo_pos_S1_mus);
-            servo_S2.SetPosition(servo_pos_S2_mus);
-            if (servo_pos_S1_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) {
-                servo_pos_S1_mus += 100;
-            }
-            if (servo_pos_S2_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) {
-                servo_pos_S2_mus += 100;
-            }
-            servo_counter++;
-
-            // read ultra sonic distance sensor
-            us_distance_cm = us_range_finder.read_cm();
-
-            // visual feedback that the main task is executed
-            extra_led = 1;
-
         } else {
 
             ir_distance_mV = 0.0f;
 
-            pwm_M1.write(0.5);
-            speedController_M2.setDesiredSpeedRPS(0.0f);
-            positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
-
-            servo_pos_S1_mus = 0;
-            servo_pos_S2_mus = 0;
-            servo_S1.SetPosition(servo_pos_S1_mus);
-            servo_S2.SetPosition(servo_pos_S2_mus);
-
-            us_distance_cm = 0.0f;
-
             extra_led = 0;
         }
 
         user_led = !user_led;
 
         // do only output via serial what's really necessary (this makes your code slow)
-        printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 position (ms): %3d, Servo S2 position (ms): %3d, US sensor (cm): %3.3f\r\n",
-               ir_distance_mV,
-               encoder_M1.read(),
-               speedController_M2.getSpeedRPS(),
-               positionController_M3.getRotation(),
-               servo_pos_S1_mus,
-               servo_pos_S2_mus,
-               us_distance_cm);
-
-        // read out the imu, the actual frames of the sensor reading needs to be figured out
-        // imu.updateGyro();
-        // imu.updateAcc();
-        // imu.updateMag();
-        // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
-        // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
+        printf("IR sensor (mV): %3.3f\r\n", ir_distance_mV);
 
         // read timer and make the main thread sleep for the remaining time span (non blocking)
         int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();