
SunTracker_BLE
Dependencies: BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed
Fork of SunTracker_BLE by
Overview
The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:
- A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
- Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
- The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
- The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
- A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
- A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.
Working Status
- SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:
Status 0 (Idle)
- Motor: Free Turning
- Display: Waiting for User Button
Status 1
- Motor: Driven by Light
- Display: Direction and Light Intensity = Direction and Motor Speed
Status 2
- Motor: Driven by Light
- Display: Solar Panel Efficiency
Status 3
- Motor: Driven by Accelerometer
- Display: Direction and Accelerometer Intensity
Server Startup
- When you plug the power supply, the word ‘PUSH’ is shown on display.
- You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
- The display will show this status, which means that the structureis oriented to maximize the efficiency of the solar panel.
- If there is a light displacement, the structure will rotate, left or right,to follow the light source and on display is shown the direction and the speed.
- You can press the User Button to show the panel efficiencywith 4 digits that represent the range from 0v (0000) to 3,3v (3300).
- Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.
Client Startup
- The Client application can remotely control the User Button and the Accelerometer functions.
- Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
- The Green Led on Nucleo Client board will be powered on.
Rotation Features
- It has been implemented a block of rotation to avoid cables twist.
- The blocking point can be set in the firmware by changing a constant.
- You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
- The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.
List of Components
SERVER SunTracker_BLE
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IHM01A1 - Stepper motor driver board based on the EasySPIN L6474.
- X-NUCLEO-6180XA1 - 3-in-1 proximity and ambient light sensor board based on ST FlightSense technology.
- VL6180X-SATEL - Satellite boards compatible with X-NUCLEO-6180XA1 board.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 - Bluetooth Low Energy Bluetooth low energy evaluation board.
- Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
- Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
- Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
- Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
- Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
- Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.
CLIENT SunTracker_BLE_Remote
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1- Bluetooth Low Energy Bluetooth low energy evaluation board.
MECHANICAL STRUCTURE
Find here the STL files to print with a 3D printer.
FLAT CABLE ASSEMBLY
HARDWARE SETUP
Nucleo ADC + Solar Panel
Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.
EasySpin (L6474) + BLE
Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware .Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.
FlightSense Satellites
In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.
Arduino & Morpho Pinout
Revision 11:b5e23d64d366, committed 2016-03-03
- Comitter:
- fabiombed
- Date:
- Thu Mar 03 16:32:10 2016 +0000
- Parent:
- 10:d154094297ce
- Child:
- 12:1e6a1d3a66b5
- Commit message:
- Temporary issued fixed avoiding to use NC
Changed in this revision
main.cpp | Show annotated file Show diff for this revision Revisions of this file |
main_only_BLE_BB.cpp.h | Show annotated file Show diff for this revision Revisions of this file |
--- a/main.cpp Fri Feb 26 14:55:48 2016 +0000 +++ b/main.cpp Thu Mar 03 16:32:10 2016 +0000 @@ -146,7 +146,7 @@ if (Display>2) { Display=0; } if (start==0) { start=1; } - printf("PUSH Display %d\r\n", Display); + printf("PUSH Display %d\r\n", Display+1); } @@ -235,16 +235,13 @@ bool Initialization(void) { - - // Initializing MEMS Component - mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); - accelerometer = mems->GetAccelerometer(); - -//---- - + + dev_i2c.frequency(100000); // at 200KHz or 400KHz doesn't work + +//---- + // Initializing Babybear Component - //board=X_NUCLEO_6180XA1::Instance(&dev_i2c); - board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); + board=X_NUCLEO_6180XA1::Instance(&dev_i2c, PA_4, PA_4, PA_4, PA_4); // Don't use NC because it doesn't set InterruptIn correctly status=board->InitBoard(); if(status) VL6180x_ErrLog("Failed to init the board!\n\r"); @@ -261,8 +258,18 @@ status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + printf("Init Babybear OK\r\n"); + //---- + // Initializing MEMS Component + mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); + accelerometer = mems->GetAccelerometer(); + + printf("Init MEMS OK\r\n"); + +//---- + // Initializing Motor Component motor = new L6474(D2, D8, PB_2, D9, D10, dev_spi); // D7 conflict with BNRG_RST (when motor change direction 0-1 reset BLE) // Used Morpho PB_2 and made HW wiring @@ -277,6 +284,8 @@ motor->SetMaxSpeed(SET_MAX); // Variable by Light/Mems Sensors motor->SetMinSpeed(SET_MIN); + printf("Init Motor OK\r\n"); + return true; } @@ -398,12 +407,12 @@ // Printing to the console printf("SunTracker by Fabio Brembilla\r\n\n"); - + Initialization(); printf("Initialization OK (Line %d)\r\n", __LINE__); - //BLE_Initialization(); - //printf("BLE_Initialization OK (Line %d)\r\n", __LINE__); + BLE_Initialization(); + printf("BLE_Initialization OK (Line %d)\r\n", __LINE__); mybutton.fall(&User_Button_Pressed); printf("Wait Push Button\r\n"); @@ -420,7 +429,7 @@ motor->Enable(); // To put the motor on hold execute CmdEnable - //static int INTLOOP=0; + static int INTLOOP=0; // Main Loop while(true) @@ -430,11 +439,11 @@ Control_Motor(); Measure_SolarPanel(); + + INTLOOP++; + if (INTLOOP==100) { p_customsensorservice->sendEnvPosition(rand(),0); printf("Read BLE\n\r"); INTLOOP=0; } - //INTLOOP++; - //if (INTLOOP==100) { p_customsensorservice->sendEnvPosition(rand(),0); printf("Read BLE\n\r"); INTLOOP=0; } - - //p_BLEdev->waitForEvent(); + p_BLEdev->waitForEvent(); } //status_l=board->sensor_left->StopMeasurement(als_continuous_polling);
--- a/main_only_BLE_BB.cpp.h Fri Feb 26 14:55:48 2016 +0000 +++ b/main_only_BLE_BB.cpp.h Thu Mar 03 16:32:10 2016 +0000 @@ -201,58 +201,67 @@ p_BLEdev->gap().startAdvertising(); printf("BLE_Initialization OK (Line %d)\r\n", __LINE__); - + // Initializing SPI bus - DevSPI dev_spi(D11, D12, D13); + //DevSPI dev_spi(D11, D12, D13); // Initializing I2C bus DevI2C dev_i2c(D14, D15); + dev_i2c.frequency(100000); + // Initializing Babybear Component 6180XA1 static X_NUCLEO_6180XA1 *board; - MeasureData_t data_sensor_left, data_sensor_right; + MeasureData_t data_sensor_top, data_sensor_left, data_sensor_right; // Initializing Babybear Component - //board=X_NUCLEO_6180XA1::Instance(&dev_i2c); // Con questo comando non si blocca quando Connetto il BLE, ma comunque non fuonziona - board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); - //status=board->InitBoard(); + board=X_NUCLEO_6180XA1::Instance(&dev_i2c, PA_4, PA_4, PA_4, PA_4); // Non usare NC altrimenti non funziona!!! InterruptIn fa casino!!! + + status=board->InitBoard(); if(status) VL6180x_ErrLog("Failed to init the board!\n\r"); // Put GPIO not used as Interrupt in Hi-Z status_t=board->sensor_top->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); //status_b=board->sensor_botton->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); No Present - status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); - status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + //status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + //status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); // Set Babybears - status_l=board->sensor_left->AlsSetAnalogueGain(3); - status_r=board->sensor_right->AlsSetAnalogueGain(3); - status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); - status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + //status_l=board->sensor_left->AlsSetAnalogueGain(3); + //status_r=board->sensor_right->AlsSetAnalogueGain(3); + //status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + //status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + + status_t=board->sensor_top->AlsSetAnalogueGain(3); + status_t=board->sensor_top->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); printf("Initialization OK (Line %d)\r\n", __LINE__); printf("Start Main Loop\r\n"); - static int INTLOOP=0; + //static int INTLOOP=0; // Main Loop while(true) { - status_l=board->sensor_left->GetMeasurement(als_continuous_polling, &data_sensor_left); - status_r=board->sensor_right->GetMeasurement(als_continuous_polling, &data_sensor_right); + status_t=board->sensor_top->GetMeasurement(als_continuous_polling, &data_sensor_top); + //status_l=board->sensor_left->GetMeasurement(als_continuous_polling, &data_sensor_left); + //status_r=board->sensor_right->GetMeasurement(als_continuous_polling, &data_sensor_right); - babybear = data_sensor_right.lux - data_sensor_left.lux; + //babybear = data_sensor_right.lux - data_sensor_left.lux; - diff = abs(babybear); + //diff = abs(babybear); - INTLOOP++; - if (INTLOOP==100) { p_customsensorservice->sendEnvPosition(rand(),0); INTLOOP=0; } - - //printf("babybear %d\r\n", diff); + diff = data_sensor_top.lux; + + //INTLOOP++; + //if (INTLOOP==100) { p_customsensorservice->sendEnvPosition(rand(),0); INTLOOP=0; } - sprintf(DisplayStr, "%d", diff); - board->display->DisplayString(DisplayStr, 4); + wait_ms(100); + printf("babybear %d\r\n", diff); + + //sprintf(DisplayStr, "%d", diff); + //board->display->DisplayString(DisplayStr, 4); //strcpy(DisplayStr,"pusH"); //board->display->DisplayString(DisplayStr, 4);