
SunTracker_BLE
Dependencies: BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed
Fork of SunTracker_BLE by
Overview
The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:
- A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
- Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
- The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
- The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
- A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
- A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.
Working Status
- SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:
Status 0 (Idle)
- Motor: Free Turning
- Display: Waiting for User Button
Status 1
- Motor: Driven by Light
- Display: Direction and Light Intensity = Direction and Motor Speed
Status 2
- Motor: Driven by Light
- Display: Solar Panel Efficiency
Status 3
- Motor: Driven by Accelerometer
- Display: Direction and Accelerometer Intensity
Server Startup
- When you plug the power supply, the word ‘PUSH’ is shown on display.
- You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
- The display will show this status, which means that the structureis oriented to maximize the efficiency of the solar panel.
- If there is a light displacement, the structure will rotate, left or right,to follow the light source and on display is shown the direction and the speed.
- You can press the User Button to show the panel efficiencywith 4 digits that represent the range from 0v (0000) to 3,3v (3300).
- Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.
Client Startup
- The Client application can remotely control the User Button and the Accelerometer functions.
- Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
- The Green Led on Nucleo Client board will be powered on.
Rotation Features
- It has been implemented a block of rotation to avoid cables twist.
- The blocking point can be set in the firmware by changing a constant.
- You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
- The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.
List of Components
SERVER SunTracker_BLE
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IHM01A1 - Stepper motor driver board based on the EasySPIN L6474.
- X-NUCLEO-6180XA1 - 3-in-1 proximity and ambient light sensor board based on ST FlightSense technology.
- VL6180X-SATEL - Satellite boards compatible with X-NUCLEO-6180XA1 board.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 - Bluetooth Low Energy Bluetooth low energy evaluation board.
- Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
- Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
- Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
- Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
- Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
- Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.
CLIENT SunTracker_BLE_Remote
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1- Bluetooth Low Energy Bluetooth low energy evaluation board.
MECHANICAL STRUCTURE
Find here the STL files to print with a 3D printer.
FLAT CABLE ASSEMBLY
HARDWARE SETUP
Nucleo ADC + Solar Panel
Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.
EasySpin (L6474) + BLE
Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware .Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.
FlightSense Satellites
In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.
Arduino & Morpho Pinout
Revision 1:8f312c1686b6, committed 2015-12-03
- Comitter:
- fabiombed
- Date:
- Thu Dec 03 15:14:47 2015 +0000
- Parent:
- 0:becf0d313663
- Child:
- 2:013921c26f43
- Commit message:
- Update
Changed in this revision
main.cpp | Show annotated file Show diff for this revision Revisions of this file |
--- a/main.cpp Thu Dec 03 12:17:33 2015 +0000 +++ b/main.cpp Thu Dec 03 15:14:47 2015 +0000 @@ -1,13 +1,11 @@ /** ****************************************************************************** * @file main.cpp - * @author Davide Aliprandi, STMicrolectronics + * @author Fabio Brembilla * @version V1.0.0 - * @date October 16th, 2015 - * @brief mbed vertical application using the STMicrolectronics - * X-NUCLEO-IHM01A1 Motor Control Expansion Board and the - * X-NUCLEO-IKS01A1 MEMS Inertial & Environmental Sensors Expansion - * Board to get a MEMS-based motor control (direction and speed). + * @date December 1st, 2015 + * @brief SunTracker + RemoteControl Vertical Application + * This application use IHM01A1, 6180XA1, IKS01A1, IDB0XA1 expansion boards ****************************************************************************** * @attention * @@ -37,115 +35,258 @@ * ****************************************************************************** */ - - + /* Includes ------------------------------------------------------------------*/ - + /* mbed specific header files. */ #include "mbed.h" - + /* Helper header files. */ #include "DevSPI.h" +#include "DevI2C.h" -/* Components and expansion boards specific header files. */ +/* Component specific header files. */ +#include "l6474_class.h" +#include "x_nucleo_6180xa1.h" #include "x_nucleo_iks01a1.h" -#include "l6474_class.h" +/* C header files. */ +#include <string.h> +#include <stdlib.h> +#include <stdio.h> +#include <assert.h> /* Definitions ---------------------------------------------------------------*/ -/* Absolute value of the threshold on the Y axis acceleration. */ -#define ACCELERATION_TH 50 - -/* Rotation gain. */ -#define ROTATION_SPEED_GAIN 20 - +#define SET_ACC 400 // Set Motor Acceleration +#define SET_DEC 400 // Set Motor Deceleration +#define SET_MAX 200 // Set Motor MaxSpeed +#define SET_MIN 100 // Set Motor MinSpeed +#define STOP 1000 // Set Motor Stop Position +#define TOLLERANCE 100 // Tollerance between Left and Right before Start Movement +#define RANGE_1 200 // Range 1 for Motor Speed +#define RANGE_2 500 // Range 2 for Motor Speed /* Variables -----------------------------------------------------------------*/ -/* MEMS Expansion Board. */ -X_NUCLEO_IKS01A1 *x_nucleo_iks01a1; +int16_t dir=0; // Motor Rotation Direction: 0 = Stop, 1 = Anticlockwise, 2 = Clockwise +int16_t changedir=0; // Change Direction: 0 = No, 1 = Yes +int16_t babybear=0; // Difference (in Lux) between Left and Right +int acc_data[3]; // Difference of Accelerometer +int16_t diff=0; // Abs of Babybear or Accelerometer difference +int16_t left=0; // Left Command for Rotate Direction +int16_t right=0; // Right Command for Rotate Direction +int16_t start=0; // Waiting User Button Push +int32_t pos=0; // Motor Position +char DisplayStr[5]; // Status Display +int16_t Display=0; // Shown on Display: 0 = Motor Speed, 1 = Solar Panel Value, 2 = Manual Control +int16_t status, status_t, status_b, status_l, status_r; // Babybear Status + +/* ---------------------------------------------------------------------------*/ /* Motor Control Component. */ L6474 *motor; +/* Initializing SPI bus. */ +DevSPI dev_spi(D11, D12, D13); -/* Main ----------------------------------------------------------------------*/ +/* Initializing I2C bus. */ +DevI2C dev_i2c(D14, D15); + +/* Instance board 6180XA1. */ +static X_NUCLEO_6180XA1 *board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); +MeasureData_t data_sensor_top, data_sensor_bottom, data_sensor_left, data_sensor_right; -int main() -{ - /*----- Initialization. -----*/ +/* Instance mems IKS01A1. */ +static X_NUCLEO_IKS01A1 *mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); +MotionSensor *accelerometer = mems->GetAccelerometer(); + +void DISP_ExecLoopBody(void){}; - /* Initializing I2C bus. */ - DevI2C dev_i2c(D14, D15); +AnalogIn analog_read_A1(A1); + +InterruptIn mybutton(USER_BUTTON); + +/* User_Button_Pressed -------------------------------------------------------*/ - /* Initializing SPI bus. */ - DevSPI dev_spi(D11, D12, D13); +void User_Button_Pressed() +{ + + if (start>0) { Display++; } + if (Display>2) { Display=0; } + if (start==0) { start=1; } + +} + +/* Initialization ------------------------------------------------------------*/ - /* Initializing MEMS Expansion Board. */ - x_nucleo_iks01a1 = X_NUCLEO_IKS01A1::Instance(&dev_i2c); +bool Initialization(void) +{ + + /* Initializing Babybear Component. */ + status=board->InitBoard(); + if(status) + VL6180x_ErrLog("Failed to init the board!\n\r"); - /* Retrieving the accelerometer. */ - MotionSensor *accelerometer = x_nucleo_iks01a1->GetAccelerometer(); - int acceleration_axis = x_nucleo_iks01a1->gyro_lsm6ds3 == NULL ? 0 : 1; - + // Put GPIO not used as Interrupt in Hi-Z + status_t=board->sensor_top->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + //status_b=board->sensor_botton->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); No Present + status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + /* Initializing Motor Control Component. */ motor = new L6474(D2, D8, D7, D9, D10, dev_spi); if (motor->Init(NULL) != COMPONENT_OK) return false; + + motor->SetStepMode(STEP_MODE_1_8); // Default is STEP_MODE_1_16 + + /* Set defaults Motor Speed. */ + motor->SetAcceleration(SET_ACC); + motor->SetDeceleration(SET_DEC); + motor->SetMaxSpeed(SET_MAX); // Variable by Light/Mems Sensors + motor->SetMinSpeed(SET_MIN); + + return true; + +} - /* Set defaults. */ - motor->SetAcceleration(10000); - motor->SetDeceleration(10000); - motor->SetMinSpeed(100); - int status = 0; - int speed = 0; +/* Measure_Babybear ----------------------------------------------------------*/ + +void Measure_Babybear(void) +{ + + status_l=board->sensor_left->GetMeasurement(als_continuous_polling, &data_sensor_left); + status_r=board->sensor_right->GetMeasurement(als_continuous_polling, &data_sensor_right); + + babybear = data_sensor_right.lux - data_sensor_left.lux; + + diff = abs(babybear); + + if (babybear>0) { left=0; right=1; } + if (babybear<0) { left=1; right=0; } + +} + +/* Measure_Accelerometer -----------------------------------------------------*/ + +void Measure_Accelerometer(void) +{ + + accelerometer->Get_X_Axes(acc_data); + + diff = abs(acc_data[0]); + + if (acc_data[0]>0) { left=0; right=1; } + if (acc_data[0]<0) { left=1; right=0; } + +} - /*----- Infinite Loop. -----*/ +/* Control_Motor -------------------------------------------------------------*/ + +void Control_Motor(void) +{ + + //printf("Diff: %d lux/mems\n\r", diff); + motor->SetMaxSpeed(diff); + if (diff>TOLLERANCE) + { + if (diff <=RANGE_1) { + if (left) { strcpy(DisplayStr,"E___"); } + if (right) { strcpy(DisplayStr,"___3"); } + } + else if (diff >RANGE_1 & diff <=RANGE_2) { + if (left) { strcpy(DisplayStr,"E==="); } + if (right) { strcpy(DisplayStr,"===3"); } + } + else if (diff >RANGE_2) { + if (left) { strcpy(DisplayStr,"E~~~"); } + if (right) { strcpy(DisplayStr,"~~~3"); } + } + + // In Case of Change Direction + if (left & dir==2) { changedir=1; } + if (right & dir==1) { changedir=1; } + + // Run only if Stop or Change Direction + if (diff>TOLLERANCE & (dir==0 | changedir==1)) { + if (left) { motor->Run(StepperMotor::FWD); dir=1; changedir=0; } + if (right) { motor->Run(StepperMotor::BWD); dir=2; changedir=0; } + } + } + + // Get Motor Position and Control Rotation Block + pos = motor->GetPosition(); + if (pos>STOP | pos<-STOP) { + if (pos>0) { motor->GoTo(STOP); } + if (pos<0) { motor->GoTo(-STOP); } + } + + // Stop Motor + if (diff<=TOLLERANCE) { + motor->HardStop(); + if (Display==0) { strcpy(DisplayStr,"----"); } + if (Display==2) { strcpy(DisplayStr,"E 3"); } + dir=0; + changedir=0; + } + +} + +/* Measure_SolarPanel --------------------------------------------------------*/ + +void Measure_SolarPanel(void) +{ + + // AnalogIn A1: 0V return 0.0 , 3.3V return 1.0 + float measure = analog_read_A1.read() * 3300; + //printf("Measure = %.0f mV\r\n", measure); + //board->display->DisplayDigit("A", 0); + + if (Display==1) { sprintf(DisplayStr, "%.0f", measure); } + + board->display->DisplayString(DisplayStr, 4); + +} + +/* Main ----------------------------------------------------------------------*/ + +int main() +{ + + Initialization(); + + mybutton.fall(&User_Button_Pressed); + /* Printing to the console. */ - printf("Motor Control with MEMS\r\n\n"); - + printf("SunTracker by Fabio Brembilla\r\n\n"); + + /* Set Babybears. */ + status_l=board->sensor_left->AlsSetAnalogueGain(3); + status_r=board->sensor_right->AlsSetAnalogueGain(3); + status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + + /* Loop until push User Button to Set 0 Point. */ + strcpy(DisplayStr,"pusH"); + while(start<1) + { + board->display->DisplayString(DisplayStr, 4); + } + /* Main Loop. */ while(true) { - /* Reading Accelerometer. */ - int accelerometer_data[3]; - accelerometer->Get_X_Axes(accelerometer_data); - - /* Motor Control. */ - int module = abs(accelerometer_data[acceleration_axis]); - if (module > ACCELERATION_TH) - { - int sign = accelerometer_data[acceleration_axis] < 0 ? -1 : 1; - speed = module * ROTATION_SPEED_GAIN; - - /* Requesting to run. */ - if (status != sign) - { - motor->Run(sign == -1 ? StepperMotor::BWD : StepperMotor::FWD); - status = sign; - } - - /* Setting Speed. */ - motor->SetMaxSpeed(speed); - - /* Printing to the console. */ - printf("Speed: %c%d\r\n", sign == -1 ? '-' : '+', motor->GetSpeed()); - } - else if (status != 0) - { - /* Requesting to stop. */ - motor->SoftStop(); - status = 0; - speed = 0; - - /* Printing to the console. */ - printf("Stop.\r\n"); - } - - /* Waiting. */ - wait_ms(50); + if (Display==0 | Display==1) { Measure_Babybear(); } + if (Display==2) { Measure_Accelerometer(); } + + Control_Motor(); + Measure_SolarPanel(); } + + status_l=board->sensor_left->StopMeasurement(als_continuous_polling); + status_r=board->sensor_right->StopMeasurement(als_continuous_polling); + }