Including SPI 3-wires class

Fork of X_NUCLEO_COMMON_SPI3W by Licio Mapelli

DevSPI/DevSPI.h

Committer:
Wolfgang Betz
Date:
2015-10-19
Revision:
12:fb6321e37154
Child:
13:9a2c9b0bbe61
Child:
14:7e8db11e12c7

File content as of revision 12:fb6321e37154:

/**
 ******************************************************************************
 * @file    DevSPI.h
 * @author  AST / Software Platforms and Cloud
 * @version V0.0.1
 * @date    September 24th, 2015
 * @brief   Header file for a special SPI class DevSPI which provides some
 *          helper function for on-board communication.
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 */

/* Define to prevent from recursive inclusion --------------------------------*/
#ifndef __DEV_SPI_H
#define __DEV_SPI_H

/* Includes ------------------------------------------------------------------*/
#include "mbed.h"

/* Classes -------------------------------------------------------------------*/
/** Helper class DevSPI providing functions for SPI communication common for a
 *  series of SPI devices.
 */
class DevSPI : public SPI
{
 public:
    /*
     * Create a DevSPI interface.
     * @param mosi pin name of the MOSI pin of the SPI device to be used for communication.
     * @param miso pin name of the MISO pin of the SPI device to be used for communication.
     * @param sclk pin name of the SCLK pin of the SPI device to be used for communication.
     */
    DevSPI(PinName mosi, PinName miso, PinName sclk) : SPI(mosi, miso, sclk)
    {
        bits = 9;
        mode = 0;
        frequency_hz = 1E6;
        setup_done = false;
    }

    /*
     * Setup the spi.
     * Typically:
     *  + 8 bit data;
     *  + high steady state clock;
     *  + second edge capture;
     *  + 1MHz clock rate.
     *
     * @param bits         Number of bits per SPI frame (4 - 16)
     * @param mode         Clock polarity and phase mode (0 - 3)
     * @param frequency_hz SCLK frequency in hz (default = 1MHz)
     *
     * @code
     * mode | POL PHA
     * -----+--------
     *   0  |  0   0
     *   1  |  0   1
     *   2  |  1   0
     *   3  |  1   1
     * @endcode
     */
    void setup(int bits, int mode = 0, int frequency_hz = 1E6)
    {
        format(bits, mode);
        frequency(frequency_hz);
        setup_done = true;
    }

    /**
     * @brief      Writes a buffer to the SPI peripheral device.
     * @param[in]  pBuffer pointer to the buffer of data to send.
     * @param[in]  ssel GPIO of the SSEL pin of the SPI device to be used for communication.
     * @param[in]  NumBytesToWrite number of bytes to write.
     * @retval     0 if ok.
     * @note       When using the SPI in Interrupt-mode, remember to disable interrupts
     *             before calling this function and to enable them again after.
     */
    int spi_write(uint8_t* pBuffer, DigitalOut ssel, uint16_t NumBytesToWrite)
    {
        /* Setup. */
        if (!setup_done)
        {
            ssel = 1;
            setup(8, 3, 1E6);
            setup_done = true;
        }

        /* Select the chip. */
        ssel = 0;
        
        /* Write data. */
        for (int i = 0; i < NumBytesToWrite; i++)
            write(pBuffer[i]);

        /* Unselect the chip. */
        ssel = 1;

        return 0;
    }

    /**
     * @brief      Reads a buffer from the SPI peripheral device.
     * @param[out] pBuffer pointer to the buffer to read data into.
     * @param[in]  ssel GPIO of the SSEL pin of the SPI device to be used for communication.
     * @param[in]  NumBytesToRead number of bytes to read.
     * @retval     0 if ok.
     * @note       When using the SPI in Interrupt-mode, remember to disable interrupts
     *             before calling this function and to enable them again after.
     */
    int spi_read(uint8_t* pBuffer, DigitalOut ssel, uint16_t NumBytesToRead)
    {
        /* Setup. */
        if (!setup_done)
        {
            ssel = 1;
            setup(8, 3, 1E6);
            setup_done = true;
        }

        /* Select the chip. */
        ssel = 0;
        
        /* Read data. */
        for (int i = 0; i < NumBytesToRead; i++)
            pBuffer[i] = write(0x00);

        /* Unselect the chip. */
        ssel = 1;

        return 0;
    }

    /**
     * @brief      Reads and write a buffer from/to the SPI peripheral device at the same time.
     * @param[out] pBufferToRead pointer to the buffer to read data into.
     * @param[in]  pBufferToWrite pointer to the buffer of data to send.
     * @param[in]  ssel GPIO of the SSEL pin of the SPI device to be used for communication.
     * @param[in]  NumBytes number of bytes to read and write.
     * @retval     0 if ok.
     * @note       When using the SPI in Interrupt-mode, remember to disable interrupts
     *             before calling this function and to enable them again after.
     */
    int spi_read_write(uint8_t* pBufferToRead, uint8_t* pBufferToWrite, DigitalOut ssel, uint16_t NumBytes)
    {
        /* Setup. */
        if (!setup_done)
        {
            ssel = 1;
            setup(8, 3, 1E6);
            setup_done = true;
        }

        /* Select the chip. */
        ssel = 0;
        
        /* Read and write data at the same time. */
        for (int i = 0; i < NumBytes; i++)
            pBufferToRead[i] = write(pBufferToWrite[i]);

        /* Unselect the chip. */
        ssel = 1;

        return 0;
    }

 protected:
    bool setup_done;
    int bits;
    int mode;
    int frequency_hz;
};

#endif /* __DEV_SPI_H */